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 

Abstract— A graphene quantized Hall resistance (QHR) device 

fabricated at the National Institute of Standards and Technology 

(NIST) was measured alongside a GaAs QHR device fabricated 

by the National Research Council of Canada (NRC) by 

comparing them to a 1 kΩ standard resistor using a cryogenic 

current comparator. The two devices were mounted in a custom 

developed dual probe that was then assessed for its viability as a 

suitable apparatus for precision measurements. The charge 

carrier density of the graphene device exhibited controllable 

tunability when annealed after Cr(CO)3 functionalization. These 

initial measurement results suggest that making resistance 

comparisons is possible with a single probe wired for two types of 

quantum standards – GaAs, the established material, and 

graphene, the newer material that may promote the development 

of more user-friendly equipment. 

 
Index Terms— dual probe assembly, quantized Hall resistance, 

epitaxial graphene, cryogenic current comparator, carrier 

density 

 

I. INTRODUCTION 

HE implementation of graphene-based quantized Hall 

resistance (QHR) standards over the recent years has 

simplified the efforts needed to realize the ohm at National 

Metrology Institutes (NMIs) and primary standards 

laboratories [1] – [9]. To make standards easier to use, it is 

crucial that graphene devices are prepared such that their 

electrical properties, most prominently the charge carrier 

density (n), can be controllably tuned. In the past, graphene 

devices at the National Institute of Standards and Technology 

(NIST) have been stored in an argon environment to assist in 

stabilizing n. Regardless of this environment, the long-term 

stability of graphene QHR devices in ambient laboratory 

conditions remained an issue.  
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In the past year, techniques for preparing graphene devices 

for long term storage and functionality have been increasing in 

popularity [10] – [13]. Because of the device preparation 

methods contained herein, the shelf-life of these devices has 

increased to years [10] – [11], making them a viable and 

robust option for performing international comparisons.  

 To continue the transition to using new graphene-

compatible technologies, a dual probe system was designed 

and tailored specifically for comparisons utilizing two QHR 

devices in a cryostat that does not require the purchase or 

handling of liquid cryogens. Such a system holds numerous 

advantages over others, including the removal of laboratory 

hazards associated with handling liquid cryogens, as well as a 

reduction in the financial burden imposed by periodic 

replenishment. Furthermore, the use of a dual probe allows 

end users to self-verify full functionality of their QHR devices 

by enabling comparisons to be done with both devices 

simultaneously. Though the literature includes some work on 

dual probes [14] – [15], demonstrations of international 

comparisons on this kind of measurement system are lacking, 

with some systems needing multiple cryostats [2, 4, 6], liquid 

cryogen replenishment [1, 5, 6, 14], or even more expensive 

cryogen mixtures (i.e. 
3
He) to reach temperatures below 1 K 

[2, 3, 4, 14].  

For this system, a GaAs QHR device was provided by the 

National Research Council of Canada (NRC) and NIST 

provided the graphene QHR device. In addition to the dual 

probe and its cryostat, a cryogenic current comparator (CCC) 

bridge was used to assess the quality of the QHR devices. The 

transition to using graphene-based devices would promote the 

development of more user-friendly equipment because of 

graphene’s larger parameter space of functionality. 

Furthermore, dual probe functionality enables the addition of 

future QHR array devices that output different quantized 

resistances [16] – [22]. This enhancement would lead to a 

measurement system having two distinct starting points in a 

calibration chain as opposed to the usual single value 

(12.9 kΩ), thus shortening the calibration chain, allowing for 

simultaneous comparisons, and reducing the need for 

additional cryostats. A dual- or multiple-device probe would 

also facilitate realization of the main ratio arms of a quantum 

Wheatstone bridge [23, 24]. 
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II. SAMPLE PREPARATION 

Wafers of GaAs were grown using molecular beam epitaxy 

by the Institute for Microstructural Sciences at NRC. Devices 

were fabricated using standard ultraviolet photolithography 

and wet etching techniques. Deposited and annealed multi-

layer AuGeNi films were used as electrical contacts. The 

device was mounted onto a transistor outline (TO-8) package. 

An example magnetic flux density sweep is shown in Fig. 1 

(a), along with an optical image of the device.  

 

 
Fig. 1. (a) An example magnetoresistance measurement is shown for the 
GaAs-based QHR device. The inset contains an optical image of the actual 
device (n-type). The calculated charge carrier density is determined by the 
linear behavior near 0 T. (b) Two example magnetoresistance measurements 
are shown for the graphene-based QHR device. The gray curve represents an 
unannealed device after functionalization. A scale magnification reveals that 
the Hall resistance is not well-quantized, thus requiring an annealing process. 
The gold curve represents the device after annealing for approximately 20 min 
at 350 K. The inset contains an optical image of the actual device (n-type).   

 

Graphene is epitaxially grown on the Si-face of silicon 

carbide (SiC) by sublimating Si atoms from the substrate at 

high temperatures. The surface then becomes enriched with 

carbon atoms that reconstruct as a honeycomb lattice. SiC 

substrates were diced from on-axis 4H-SiC(0001) semi-

insulating wafers. The growth was performed using both the 

face-to-graphite orientation on a disk of glassy carbon and 

polymer-assisted-sublimation growth (PASG) [25]. All 

graphene devices were processed in the same resistive-element 

furnace with heating and cooling rates of approximately 

1.5 K/s. The graphite-lined chamber provided a homogeneous 

background temperature and was flushed with argon gas prior 

to the final fill of 100 kPa argon from a 99.999 % liquid argon 

source. Temperatures were increased to a maximum of 

1900 °C for about 270 s annealing time in an argon 

atmosphere.  

Finished graphene substrates were prepared by methods 

already documented in the literature, [26] – [27]. To 

summarize the fabrication process, graphene is protected by a 

layer of Pd-Au to prevent organic contamination. 

Photolithography is then used to obtain a Hall bar geometry 

and electrical contacts. Notable differences between this 

method and previous work are primarily in the layout of the 

electrical contacts. The orthogonal contact pairs seen in Fig. 1 

(b) have varying lateral dimensions and are symmetric with 

respect to the length of the device. These differences were 

implemented in the hope of assessing any measurable 

relationship between the contact shape and its corresponding 

resistance. The graphene device is then functionalized with 

Cr(CO)3, as described in [11], and mounted onto a leadless 

chip carrier with 32 pins (LCC-32).  

Contact resistances were measured at 9 T and 

approximately 2 K by using a three-terminal configuration, 

whereby a source is placed on an arbitrary contact and a drain 

is placed on the contact of interest. Two voltage leads are then 

placed on two additional contacts – the drain contact and 

another contact along the same equipotential line (in the 

quantum Hall regime). These measurements yielded contact 

resistances on the order of 0.1 Ω, with the exception of two 

contacts that measured less than 5 Ω, perhaps due to a 

fabrication defect. There were no reproducible patterns 

between the contact resistances and the different contact pad 

dimensions.  

Fig. 1 (b) shows a positive magnetic flux density 

measurement of the Hall resistance, which exhibits only the 

ν = 2 plateau (RK/2 ≈ 12.9 kΩ). There are two curves shown. 

The gray curve is the corresponding sweep for an unannealed 

device after functionalization with Cr(CO)3. Though this 

plateau appears flat, a scale magnification reveals that the Hall 

resistance is not well-quantized, primarily due to the mixture 

of electron and hole puddles that form with n close to the 

Dirac point of graphene. The gold curve shows the same 

device after annealing at 350 K for approximately 20 min. It 

should be noted that this annealing process is required anytime 

the device is kept in air for more than one day, after which the 

device maintains a low carrier density (< 10
10

 cm
-2

) for periods 

on the order of years [6]. The annealing process reproducibly 

yields a similar n each time it is performed, as per the analysis 

done on the metric known as the integrated heat exposure [11]. 
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III. MEASUREMENT SYSTEM 

The primary measurement system comprises the cryostat, 

dual probe assembly, CCC, and 1 kΩ standard resistor. The 

cryostat was assembled with a helium recovery system and 

only required gaseous helium for operation (with room 

temperature gas being cooled to liquid temperatures). It was 

fitted with a 9 T superconducting magnet (with field 

homogeneity within 0.1 % per cm in the plane of the sample) 

and reached a base temperature of 1.18 K, which was not 

steadily controllable. All measurements were made at this 

lowest temperature. The dual probe assembly was constructed 

to accommodate both GaAs-based and graphene-based QHR 

devices. The challenge of this construction lies mostly with 

the possible introduction of leakage paths to ground, thermal 

strain on cooling power near the sample, and electrical noise. 

An image of the sample holder is shown in Fig. 2. One should 

note that the magnetic field directions experienced by both 

devices are of opposite sign due to the design of the sample 

holder.  

A CCC resistance bridge was equipped with digital current 

sources [28], a low-noise voltmeter based on a chopper 

amplifier [29], and a DC superconducting quantum 

interference device (SQUID). Currents of 38.7 μA (0.5 V) and 

77.5 μA (1 V) were used for all measurement configurations.  

 

 
 
Fig. 2. An image of the sample holder on the dual probe assembly is shown. It 
accommodates both TO-8 and LCC-32 chip packages. To have all wires share 
an exit point, the sample holder was designed such that the devices experience 
magnetic fields with opposite sign. 

 

The 1 kΩ standard resistor was calibrated using the CCC at 

38.7 μA (0.5 V). A subset of historical data is shown in Fig. 3 

and a linear regression was used to predict the present-day 

value of the resistor (blue curve and left vertical axis), with 

secondary support from a calculation of the residuals (red 

curve and right vertical axis). This prediction was the basis on 

which the QHR devices in the dual-probe system were 

compared. 
 

 
 
Fig. 3. CCC-acquired calibration data for the standard resistor are shown over 
the course of several years and provide a stable basis for estimating the 
present-day value of the resistor. Blue is used for the left vertical axis to 
represent the deviation from the nominal resistor value. Data were taken at 
38.7 μA (0.5 V). All information pertaining to the residuals are colored in red 
and are coupled to the right vertical axis. Error bars indicating Type A 
uncertainty are smaller than the data points. 

IV. RESULTS FROM QHR DEVICES 

The predicted value of the 1 kΩ resistor, based on a prior 

history of CCC measurements, drifted over the course of a few 

days by less than 1 nΩ/Ω, which was too small to detect with 

our measurements. Both QHR device measurements were 

performed in close succession (within a few days) to obtain 

data that correspond to approximately the same standard 

resistor value. Four varieties of CCC measurements were 

performed: Hall resistance of a left and right orthogonal pair 

and two corresponding diagonal measurements to assess the 

longitudinal resistivity (ρxx), which, in two dimensions, is 

related to the ratio of the two lateral dimensions of the region 

over which a resistance is measured. These Hall measurements 

are illustrated in Fig. 4 (a) and (b) for GaAs and graphene, 

respectively. All measurements were performed at the same 

magnetic flux density (+7.7 T).  

The quality of device quantization comes from the 

conditions set forth by pertinent literature for DC quantum 

Hall measurements [30] – [31]. The critical currents for the 

QHR devices are approximately 100 μA, since a criterion 

violation is present in the correction factor to the Hall 

resistivity, as defined by Ref. [31] (that such a correction 

factor should not exceed a few parts in 10
8
). When 

measurements were performed at 116 μA (1.5 V), the 

longitudinal resistivity was an order of magnitude larger, 

causing the above violation. For this reason, all comparisons 

were performed at 38.7 μA (0.5 V) and 77.5 μA (1 V).  

A. Comparing GaAs Against the 1 kΩ Resistor 

All GaAs QHR measurements were performed at the same 

field (+7.7 T), as per the condition observed in the 

magnetoresistance measurement in Fig. 1 (a). In Fig. 4 (c) a 

summary of both GaAs QHR measurements on two 

orthogonal Hall pairs are shown (recall that the NIST GaAs 

was used for calibrating the 1 kΩ standard resistor). For all 
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presented weighted mean data, the error bars indicate the Type 

A uncertainty at 1σ.  

The differences between diagonal and orthogonal 

measurements made for a rectangular sample region gives the 

longitudinal resistances, and when multiplied by the ratio of 

the width to length (approximately 1.4:1), we find both 

resistivities to be about (91.2 ± 91.6) μΩ at 38.7 μA (0.5 V) 

and (173 ± 55) μΩ at 77.5 μA (1 V). Though higher than 

values seen in the literature, the CCC measurements still agree 

with those taken with the NIST GaAs, to within their Type A 

uncertainty, demonstrating that such agreements can be made 

with this measurement system. 

 

 
 
Fig. 4. (a) Illustration of the orthogonal measurements taken on the GaAs 
QHR and (b) graphene QHR device. (c) Weighted means of the CCC-obtained 
deviations from RK/2 are shown; with the blue, green, and gold shading 
indicating the data for orthogonal pairs using NIST graphene, NRC GaAs, and 
NIST GaAs. The error bars represent Type A uncertainties at 1σ. All 
orthogonal pair data were collected at 38.7 μA (0.5 V) and 77.5 μA (1 V), 
with the exception of RH

(3), which was collected at the former.  

 

B. Comparing Graphene Against the 1 kΩ Resistor 

For the graphene measurements, the magnetic flux density 

was selected to match that of the GaAs QHR device. The same 

four measurements were performed with the CCC (Fig. 4 (b), 

which is not to scale). The three orthogonal pairs exhibited 

offsets from the predicted value not exceeding 5 nΩ/Ω. The 

first orthogonal pair had the smallest uncertainty of the set. All 

Type A uncertainties (at 1σ), indicated by the error bars, of 

these weighted means are less than 10 nΩ/Ω. For the graphene 

QHR data, three sets of orthogonal pairs were measured, with 

the third pair measured only at 0.5 V and excluded from Table 

I to keep the comparison between both GaAs and the graphene 

devices consistent (two pairs each).  

In a similar fashion, the longitudinal resistivity can be 

calculated for the two sides of the device, giving an 

assessment of the quantization. The width to length ratio is 

slightly smaller than that of GaAs (1.25:1). Taking the 

difference between the diagonal and orthogonal 

measurements, the longitudinal resistivities were found to be 

about (229 ± 154) μΩ at 38.7 μA (0.5 V) and (254 ± 72.2) μΩ 

at 77.5 μA (1 V). These values are also higher than values 

seen in the literature, and further discussion on the matter may 

be found below. It should be noted that only RH
(1)

 and RH
(2)

 

were used for the uncertainty analysis. 

C. Uncertainty Budget - Relative Deviation from RK/2 

The variation in Type A uncertainties seen in Fig. 4 (c) is 

most likely partially attributable to a non-ideal variation in 

local building ground and exhibited an unpredictable time-

dependence. Additional attributions can be made to the 

manufactured cryostat, seeing as it did not have an isolator 

installed for the high-pressure gas lines connecting the system 

to the motorized compressor unit. Though the unit is housed in 

a separate area for vibration isolation and power line isolation, 

this lack of isolation introduces a second ground with 

interference from other mechanical motors. The electrical 

noise is higher in this case than when operating the CCC in a 

quiet laboratory power environment. Vibration in the 

measurement leads are also a source of noise and the 

grounding issue may interact with each lead to a different 

extent. Since increased noise and offsets have also been 

observed in different measurement setups when using a room-

temperature direct current comparator (as a troubleshooting 

device), the noise problem is not likely to be an issue of 

SQUID noise rectification.  

All relevant uncertainties have been summarized below in 

Table I. The dispersion of the bridge ratio readings were 

calculated separately for each device corresponding to the 

weighted mean of the deviation from nominal value. The 

combined standard uncertainty in each case reflects the 

uncertainty for the weighted means of the Hall resistivities 

measured at 77.5 A (1 V) and 38.7 A (0.5 V) for both 

graphene and GaAs. The leakage or insulation resistance was 

estimated to be 1TΩ. The CCC error was calculated as a 

residual sum of squares (RSS) that included the following four 

elements: (1) A ratio error that was measured using a build-up     

method, (2) The drift of the compensation network, (3) Any 

detector nonlinearity and gain errors, (4) Any errors due to 

noise rectification of the SQUID. 
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V. CONCLUSION 

The CCC measurements presented herein yielded results 

suggesting that a dual probe (and its cryostat that does not 

require the handling of liquid cryogens) can be used for low 

uncertainty measurements of graphene and show that the use 

of the latter provides expanded utility to multiple QHR 

devices quantized within a few parts in 10
8
. The improvement 

of these measurement systems should encourage the transition 

from using GaAs-based devices to using graphene-based 

devices. Doing so would promote the further development of 

more user-friendly equipment tailored to graphene’s more 

relaxed parameter space of functionality.  
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