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ABSTRACT
Characterization and quantification of dynamic measure-

ments is an ongoing area of research in the metrological com-
munity, as new calibration methods are being developed to ad-
dress dynamic measurement applications. In the development
undertaken to date, one largely assumes that nominally linear
transducers can be used with linear assumptions in deconvolu-
tion of the input from the response and in system identification.
To quantify the errors that arise from these assumptions, in this
article, the effects of weak nonlinearities in transducers that are
assumed to behave linearly during dynamic excitations are stud-
ied. Specifically, a set of first-order and second-order systems,
which can model many transducers with weak nonlinearities, are
used to numerically quantify the systemic errors due to the linear
assumptions underlying the deconvolution. We show through the
presented results the evolution of different error metrics over a
large parameter space of possible transducers. Additionally, an
example of quantification of the errors due to linear assumptions
in system identification is demonstrated by using a time-series
sparse regression system identification strategy. It is shown that

∗Address all correspondence to this author.

the errors generated from linear identification of a nonlinear
transducer can counteract the systemic errors that arise in linear
deconvolution when the linear system identification is performed
in similar loading conditions. In general, the methodology and
results presented here can be useful for understanding the effect
of nonlinearity in single degree of freedom transient dynamics
deconvolution and specifically in specifying certain metrics of
errors in transducers with known weak nonlinearities.

INTRODUCTION
Dynamic calibrations and signal deconvolution for transduc-

ers are a major area of development in the metrology community
over the past decade [1, 2]. The developed framework for eval-
uating measurement uncertainty relies on the principle of super-
position [3]. However, this principle does not apply for finding
a response of a nonlinear system. Hence, weak nonlinearities in
transducers are a source of unaccounted error.

Much work has been done to analyze the effects of weak
nonlinear terms on the system response when the system is sub-
jected to harmonic forcing. As an example, it is mentioned that
Nayfeh and Mook [4] have shown how the frequency response of

1 Copyright © 2020 by ASME



a system with weak cubic nonlinearity can be approximated near
a primary resonance, a sub-harmonic resonance, and a super-
harmonic resonance by using perturbation methods. In general,
these methods are meant for characterizing the responses of non-
linear systems subjected to a persistent excitation rather than a
transient excitation such as an impulse. There are methods such
as Volterra series based approaches, which have been used for de-
termining the system response when subjected to an impulse in-
put. Volterra series is a generalization of the convolution integral
for nonlinear systems, and the Generalized Frequency Response
Function (GFRF) may be considered as the equivalent one in the
frequency domain [5].

A Volterra Series and GFRF consist of an infinite number
of Volterra kernels; in practice they require truncation for ac-
tual application and can be computationally expensive for even
low-order approximations [6, 7]. There has been previous work
done on defining the generalized impulse response function for
Gaussian impulses in applications related to the dynamic behav-
ior of the economy [8]. In part due to the challenges encountered
in identifying the effect of nonlinearity under arbitrary loading
conditions, many transducers are designed to operate as linearly
as possible, and in some cases, these transducers are subjected to
nonlinear dynamics compensation strategies [9, 10].

Despite the efforts undertaken to date, transducers gener-
ally have some degree of nonlinearity in the responses which can
lead to measurement errors. In this context, it is mentioned that
we have found no previous work on quantification of the errors
that arise in deconvolution when one assumes the responses of
weakly nonlinear systems subjected to impulse loading condi-
tions to be linear. Here, we use numerical methods to analyze a
parameter space that we posit to be applicable to real transduc-
ers, and may be useful in quantifying the errors that arise due to
the neglect of nonlinearities in nominally linear transducers.

In order to isolate the uncertainty due to the nonlinearity,
other sources of potential measurement error are neglected. We
assume noiseless measurements and that the dynamics of the sys-
tem is exactly described by a first-order or second-order system,
as shown in equation (1) and (2), respectively [11]. We focus
primarily on transducers that are modeled as first-order systems,
which can also be a suitable model for filtered certain second-
order and higher systems. Some representative second-order sys-
tem results are also included.

(a+ εa)
dy
dt

+(β + εβ )y+g(y) = F(t) (1)

(a+ εa)
d2y
dt2 +(µ + εµ)

dy
dt

+(β + εβ )y+g(y,
dy
dt

) = F(t) (2)

In these equations, y represents the state of the systems and F(t)
represents the input. Errors in acquiring the parameters from

imperfect system identification models are represented by the
values with ε in the coefficients. The function g(y) is used to
represent the nonlinear terms. Systemic errors from possible ad-
ditional linear terms are not shown here.

The coefficients in the nonlinear term g(y) are assumed to
be small, in keeping with the focus of this study on transducers
that have been designed to exhibit near linear behavior. These
equations are used to model the behavior of a nonlinear sensor
and approximate the error in an inferred (deconvolved) input.

The rest of the paper is organized as follows: The analyt-
ical methodology that is used as a basis for the simulations is
described in Section 2. The numerical methodology including
useful metrics for quantifying time series errors in inferring (or
deconvolving) the response inputs are presented in Section 3. Re-
sults from the numerical simulations are presented in Section 4.
Finally, we present conclusions and remarks to close the article.

ANALYTICAL METHODOLOGY
First-Order Systems

Nondimensionalization In reducing the relevant pa-
rameter space for numerical study, the system can be represented
in nondimensionalized form with the change of variables shown
in equation (3). After using x as the new state variable and τ as
the new time scale, equation (1) is transformed into equation (4).

t =
a
β

τ, y =
1
β

x (3)

dx
dτ

+ x+ g̃(x) = F̃(τ) (4)

Equation (4) is the system in nondimensionalized form, where
x represents the nondimensionalized state variable, and τ repre-
sents the nondimensionalized time. The function g̃(x) represents
the nondimensionalized nonlinear term, and F̃(τ) is an arbitrary
input resulting from the nondimensionalization of x and τ . It was
assumed in this nondimensionalization that ε is equal to zero;
that is, the system parameters are known accurately.

Model-Based Linear Deconvolution We consider
sensors that are accurately described by equation (4), and define
a model-based linear deconvolution as evaluating the input from
the output by using a linear differential equation with the same
parameters as the nonlinear system.

dx̂
dτ

+ x̂+ g̃(x̂) = ˆ̃F(τ) (5)
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Festimated =
dx̂
dτ

+ x̂ (6)

From Equation (5), it follows that for the input ˆ̃F(τ), the system
has the response or solution x̂. The error in the estimated input
can be quantified by the difference between the estimated input
and the actual input.

Factual ≡ F̂(τ) (7)

e(τ)≡ |Festimated−Factual|= |−g̃(x̂)| (8)

Modeling Nonlinearity The systems described in equa-
tion (1) can be used to represent any arbitrary nonlinear system
whose form depends on a transducer’s behavior. In this paper,
we restrict attention to the nonlinearities represented by equation
(9).

g̃(x) = α2|x|x+α3x3 (9)

The considered nonlinear terms are limited up to third order, as
transducers are generally meant to be as linear as possible. The
higher powers of nonlinearity are assumed to be small. This gen-
eral function g(x) will be adapted as necessary by setting the
coefficients of nonlinearities that are not present in a particular
system to zero.

Additional Error From System Identification It is
of practical interest to consider the errors that arise when linear
system identification is used to construct a linear model of a non-
linear transducer. So far it has been assumed that the parameter ε

is zero, meaning the parameters are the same in the linear model
as in the true nonlinear system. This assumption is valid when
nonlinear system identification has been used to generate the pa-
rameters for a system described by these models and where the
system identification measurement errors are small. In the prac-
tical scenario wherein the system model is constructed from lin-
ear system identification, ε will include a component due to the
ignored or unidentified nonlinearity during the system identifica-
tion. Neglecting other sources of errors, we assign the value εo to
ε . The parameter εo is zero when using nonlinear system identifi-
cation for a nonlinear system and nonzero in general when using
linear system identification for a nonlinear system.

When εo is nonzero, equation (8) is only valid approxi-
mately. This is further developed as follows: The actual non-
linear system has ε equal to zero and is described in nondimen-
sionalized form by equation (4).

Alluding here to equation (1) which includes errors in the
identified system parameters, in an application where the user has
assumed the system to be linear and performed a noise free linear
system identification, the corresponding model has nonzero ε =
εo. This linear model is described by equation (10), where ρn =
εn,o/n.

(1+ρa)a
dy
dt

+(1+ρβ )βy = F(t) (10)

In nondimensionalization of the linear system, the change of
variables also takes the form shown in equation (3). The corre-
sponding nondimensionalized versions of equation (10) is shown
as equation (11).

(1+ρa)
dx
dτ

+(1+ρβ )x = F̃(τ) (11)

After substituting the particular solution x̂ to obtain Festimated in
equation (11) and taking the difference with Factual, one obtains
e(τ). Taking into account the εo error, equation (8) is replaced
by equation (12).

e(τ)≡ |Festimated−Factual|= |−g̃(x̂)+ξ (τ)| (12)

ξ (τ) = ρa
dx̂
dτ

+ρβ x̂ (13)

The case where all ρ = 0 corresponds to the case where there is
no nonlinearity. Also ρ = 0 for the case of perfect nonlinear sys-
tem identification, and in which case equation (12) is equivalent
to equation (8).

In this analysis, the type of nonlinearity or magnitude of the
nonlinearity itself has not been considered. In a practical appli-
cation, the type and magnitude of nonlinearity will determine the
magnitudes of ρ .

Magnitude of System Identification Error, ρ At this
point, it is unclear as to how large ρ can be for a particular non-
linearity. Since it is possible that (13) will be of the same magni-
tude as g̃(x̂) for weak nonlinearities, it is necessary to understand
how ρ changes with the nonlinearity to understand the applica-
bility of this methodology in applications where nonlinear sys-
tem identification is not performed. To quantify the magnitude
of ρ for a particular nonlinearity and forcing amplitude, we se-
lected a system identification methodology based on Kutz and
colleagues’ nonlinear identification of governing equations us-
ing sparse regression [12]. This methodology is meant to serve
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only as an example, as it is likely that other linear system identi-
fication strategies will result in different errors in the parameters.

In nonlinear identification carried out with the method of
Kutz and colleagues, a simulated nonlinear output, x̂ from equa-
tion (4), is used to generate a matrix A of candidate nonlinear
functions as shown in equation (14). Each row of the matrix cor-
responds to a time step of the discrete x̂ and each column is a
nonlinear transformation of x̂ in terms that are candidates for the
nonlinear model.

Anl =


...

...
...

...
x̂ |x̂|x̂ x̂3 ˆ̃F
...

...
...

...

 (14)

We use this methodology while ignoring the nonlinear terms, al-
lowing the regression to optimize the linear parameters to the
nonlinear trajectory x̂. A matrix is generated with only the terms
in the linear differential equation as shown in equation (15).

Al =


...

...
x̂ ˆ̃F
...

...

 (15)

Alωl = x̂dot (16)

In equation (16), x̂dot is the time derivative of x̂ computed by us-
ing the central difference formula, and ωl is a vector of weights
optimized for the governing equation that generated x̂. After
solving equation (16) with a solver that promotes sparsity, one
obtains weights, ωl , and generates equation (17).

Equation (18) is equivalent to (11). Comparing equation
(17) to equation (18), we define equations (19) and (20).

x̂dot −ωl(1)x̂ = ωl(2) ˆ̃F (17)

dx
dτ

+
(1+ρβ )

(1+ρa)
x =

1
(1+ρa)

F̃ (18)

ωl(1)≡
−(1+ρβ )

(1+ρa)
(19)

ωl(2)≡
1

(1+ρa)
(20)

From equations (19) and (20), we derive ρa and ρb as shown in
equation (21).

ρa =
1

ωl(2)
−1, ρb =−ωl(1)× (1+ρa)−1 (21)

The ρ values obtained following this methodology can be used
to quantify e(τ) as shown in equation (12).

Second-Order Systems
Here, we consider the second-order systems described by

equation (2). The analysis described in this section follows along
the same lines as that presented for the first-order systems and
will be presented in condensed form.

The nondimensional version of the second-order system
uses the change of variables in equation (22) to generate equa-
tion (23) from equation (2).

t =
√

a
β

τ, y =
1
β

x, δ =
µ√
aβ

(22)

d2x
dτ2 +δ

dx
dτ

+ x+ g̃(x,
dx
dτ

) = F̃(τ), (23)

The parameter δ represents the nondimensionalized linear damp-
ing coefficient. The nonlinear terms in the second-order systems
are described with g̃(x, dx

dτ
) that includes the lower order nonlin-

ear velocity terms as shown in equation (24).

g̃(x,
dx
dτ

) = α2|x|x+α3x3 + γ1x
dx
dτ

+ γ2
dx
dτ

∣∣∣∣ dx
dτ

∣∣∣∣ (24)

Following a similar approach as that for the first-order systems,
the error, e(τ), can be calculated by taking the difference be-
tween an actual input and an estimated input calculated by ap-
plying the output of the nonlinear system, x̂, to the linear system
shown in equation (26).

d2x̂
dτ2 +δ

dx̂
dτ

+ x̂+ g̃(x̂,
dx̂
dτ

) = ˆ̃F(τ) (25)

Festimated2 =
d2x̂
dτ2 +δ

dx̂
dτ

+ x̂ (26)
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Factual ≡ F̂(τ) (27)

e(τ)≡
∣∣Festimated2 −Factual

∣∣= ∣∣∣∣−g̃(x̂,
dx̂
dτ

)

∣∣∣∣ (28)

Note that the definition of e(τ) is in the same spirit for the
second-order systems as that for the first-order systems.

Errors caused by nonlinearity in system identification can
be quantified in a similar manner for the second-order systems
as for the first order systems, but we do not do so here.

SIMULATION METHODOLOGY
Numerical Methods

Numerical integration of differential equations (4) and (23)
was performed by using the Dormand-Prince method with a rel-
ative tolerance of 10−8 and an absolute tolerance of 10−8. In
order to obtain estimated F , the derivatives of the solutions were
calculated by using a central difference formula. Since, in the
Dormand-Prince method, one does not attempt to minimize er-
rors in the discrete derivative (relevant especially when disconti-
nuities are present), the simulations were forced to run with step
sizes smaller than or equal to hmax. The value of hmax was fixed to
0.01 based on visual inspection of convergence while minimizing
simulation run-time. The simulations ran with different values of
the parameters α2, α3, γ1, and γ2 for the nonlinearities given in
equations (9) and (24). Only one nonlinear term was nonzero in
a given simulation; combinations of nonlinearities were not stud-
ied. The input, F̃(τ), was a Gaussian envelope impulse described
by equation (29) generated from the SciPy Python library [13],
in which amplitude A and duration ∆τ were varied.

F̃(τ) = AeC1τ2
, C1 =−

14.288
(∆τ)2 (29)

For finding the parameter space that generates a prescribed error
due to nonlinearity, we ran the simulations by using an iterative
solver based on Newton’s method to find the input amplitude,
A, that generates a prescribed error for a fixed magnitude of the
nonlinear coefficient. Newton’s method was automated to stop
at convergence with thresholds of at most 10 % the magnitude of
the prescribed error.

The open source Scikit-learn lasso regression module [14]
available on python was used to perform sparse regression in im-
plementing Kutz’s and colleagues’ system identification method-
ology. A small regularizer in lasso regression promotes sparsity.
The regularizing parameter, λ , was fixed to 10−6. The regression
module was also configured to run a maximum of 105 iterations

or to stop at convergence tolerances of 10−6. When perform-
ing nonlinear system identification as a control, this configura-
tion kept the errors in the weights of the system identification
methodology at around 0.1 % when used with simulated input
amplitudes greater than 10 and smaller than 104. The additional
systemic error generated from ignoring nonlinear terms in the
linear identification regression are reported in the results.

Error Metrics
Since the response of the system and its errors are a function

of time for dynamic loading, some useful metrics for dynamic
error quantification are presented within this section. When the
maximum error due to nonlinearity is of interest, the maximum
point by point error can be quantified by using equation (30).

M1 ≡ emax =
max(|e(τ)|)

max(|Festimated(τ)|)
(30)

When the integrated input is of interest, the relevant errors can
be quantified by using equation (31).

M2 ≡ eintegral =

∫ τ f
0 e(τ)dτ∫ τ f

0 Festimated(τ)dτ
(31)

In equation (31), the denominator represents the integral of esti-
mated F with respect to time and the numerator represents the in-
tegral of the error in estimated F due to nonlinearity with respect
to time. The parameter τ f >> ∆τ , meaning that the integration
continues until the transient response due to an input of duration
∆τ has died out.

When the peak input is of interest, the error can be quantified
by equations (32)-(34).

τmax1 = argmax(|Factual(τ)|) (32)

τmax2 = argmax(|Festimated(τ)|) (33)

M3 = ePeakRatio =
|Factual(τmax1)−Festimated(τmax2)|

|Festimated(τmax2)|
(34)

The denominator in equation (34) represents the peak estimated
input, and the numerator represents the difference in peaks be-
tween the actual input and the estimated input.
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The metrics are applied in post-processing of simulations in
parameter space of input amplitude, A, input duration, ∆τ , and
nonlinearity coefficients from equations (9) and (24). They can
be used to obtain uncertainty estimates when an inferred peak or
integrated input is known by multiplying the error ratios with the
experimental inferred input values.

RESULTS
First-Order System Results

Simulations of first-order systems with quadratic or cubic
nonlinearity subjected to a gaussian impulse were conducted.
From the response, an inferred linearly deconvolved input was
calculated by neglecting the nonlinear term. An inferred input
from a nonlinear system with a relatively large cubic nonlinear
term compared to the actual input is shown in Fig. 1. The three
error metrics are evaluated in post-processing. From Fig. 2, one
can observe the parameter space of forcing amplitude and non-
linearity coefficient where the errors at the peaks (equation (34))
are 10 % the inferred input amplitude. We note that the cubic
nonlinearity has a slope of− 1

2 and the quadratic nonlinearity has
a slope of−1 in the log space of input amplitude A and nonlinear-
ity coefficient. These slopes are consistent for the three different
error metrics and for different ∆τ . Lines corresponding to error
at the peak (Metric 3: equation (34)) of 1 %, 10 %, 20 %, 50 %,
and 90 % for a cubic nonlinearity are shown in Fig. 3. It can be
inferred from this graph that transducers that are used with input
amplitudes smaller than the 1 % line yield error metric values
smaller than 1 % when used to infer an input. We show in Fig. 4
the vertical shift in the lines for the three different error metrics
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FIGURE 1. Inferred input compared to the actual input for a nonlinear
system with g̃(x) = 0.1x3
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FIGURE 2. Gaussian input amplitude plotted with nonlinearity coef-
ficient for quadratic (|x|x) and cubic (x3) nonlinear terms that produce
error at peak metric values of 10 %. The errors are smaller than 10 % in
the parameter space below the lines.
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FIGURE 3. Gaussian input amplitude plotted with nonlinearity co-
efficient for cubic (x3) nonlinear terms that produce errors of varying
magnitude.

for a cubic nonlinearity with a fixed metric value of 10 %. Met-
ric 1, representing the maximum error between the inferred input
and the actual input (equation (30)) yields 10 % errors at lower
input amplitudes than metric 2, the error at the peaks (equation
(34)). It can be inferred from this observation that the maximum
error in deconvolution does not occur at the inferred peak; this
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can also be observed in the example of Fig. 1. The vertical shift
in the lines for three different ∆τ with a fixed metric value of 10
% are shown in Fig. 5. We note that ∆τ = 0.1 corresponds to
the largest bandwidth of excitation in this study. It is expected
that the Metric 1 and 3 lines will converge to the static case at
the limit ∆τ → ∞. From observations made in figs. 2 to 5, we
generated Table 1 and equation (35) as an interpolating model

TABLE 1. Parameters m1, m2, and b can be used in equation (35) to
approximate the error value for a particular system. Here, 1∗ is bound
as 1 > 1∗ ≥ 0.995.

∆t Metric x3 |x|x
m1 m2 b R2 m1 m2 b R2

0.1 1 -0.5 0.49 2.21 0.90 -1 1.40 3.08 1∗

0.1 2 -0.5 0.91 2.17 0.95 -1 2.37 2.97 0.98
0.1 3 -0.5 0.68 2.71 0.99 -1 1.22 3.51 1∗

1 1 -0.5 0.73 0.99 1∗ -1 1.30 1.27 1∗

1 2 -0.5 0.68 0.92 0.99 -1 1.48 1.22 0.99
1 3 -0.5 0.64 1.2 0.99 -1 1.20 1.6 1∗

10 1 -0.5 0.61 0.26 0.99 -1 1.22 0.33 1∗

10 2 -0.5 0.65 0.43 0.98 -1 1.26 0.49 1∗

10 3 -0.5 0.6 0.29 0.99 -1 1.18 0.37 1∗

for the included figures and those not included. This can be used
to generate an approximate error metric value corresponding to a
nonlinear coefficient, α , and impulse amplitude, A.

M(α,A) = 100×10
(

log10(A)−m1log10(α)−b
m2

)
(35)

As shown in Table 1, the parameters m1, m2, and b have R2 val-
ues close to 1. This indicates that the linear regression in the in-
terpolating model fit the data well. In the parameter range shown
in the included figures, the interpolating model is accurate within
a factor of 2.

First-Order System Identification Error
After using Kutz’s and colleagues’ system identification

from data approach, e(τ) was recalculated considering the error
in linear system identification of a nonlinear system. The new
e(τ) from equation (12) produces new metric values and shifts
metric lines as shown in Fig. 6. One can observe from Fig. 6
that the metric lines of 10 % that include nonzero ρ error occur
at higher forcing amplitudes than the original system. One way to
understand this behavior is to note that the resulting sign of ρ has
the effect of counteracting the negative g̃(x̂,τ) in e(τ); a smaller
e(τ) yields a smaller metric value resulting in higher input am-
plitude or nonlinear coefficients to produce the same error. A
more intuitive way of understanding the effect is to observe that
the optimization of the linear parameters to the nonlinear data
by using linear system identification reduced the error between
the linear inferred input and the actual input because it was op-
timized to do so through an adjustment in the linear parameters
during regression. As shown in Fig. 7, the same trend occurs for
all three metrics at 10 %. We note at this point that the ρ values
were obtained with linear system identification at same input am-
plitude that was used for the inferring procedure. Unlike in the
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sults with the results of considering the ρa and ρb errors generated from
performing linear system identification on the nonlinear system for the
three metrics.

case of nonlinear system identification of the parameters, the op-
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FIGURE 8. ρa magnitude in parameter space of input amplitude and
nonlinearity coefficient for system with cubic nonlinearity. Simulated
points are shown as black dots.
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FIGURE 9. ρb magnitude in parameter space of input amplitude and
nonlinearity coefficient for system with cubic nonlinearity. Simulated
points are shown as black dots.

timization of the parameters by using linear system identification
is only valid at the amplitude of the input used for generating x̂
prior to regression. With this in mind, we show the contour plots
in Fig. 8 and 9 which illustrate how ρ changes in the parameter
space.

The parameter space shown in Fig. 8 and 9 contains only
positive values of ρ . For larger input amplitudes and lower input
amplitudes than presented, the sparse regression failed to con-
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verge. This is likely a direct result of the tight tolerances and
small regularizer used for lasso regression, but may be related
to the ability to identify a nonlinear system through linear iden-
tification when excited by very small amplitudes or very large
amplitudes.

Second-Order System Results
From the responses of second-order systems with nonlinear-

ities subjected to a Gaussian impulse an inferred linearly decon-
volved input was calculated by neglecting the nonlinear term.
The inferred input for four different types of nonlinearities are
shown in Fig. 10.

From Fig. 10 and explorations of the parameter space for
the second-order system, it can be qualitatively observed that the
nonlinearity does not have a large effect on the peak inferred in-
put. However, the nonlinearity modulates the frequency of the
response and generates transient oscillations in the inferred input
after the first peak that decay at rates depending on the linear or
nonlinear damping. Furthermore, as shown in Fig. 11, for higher
forcing amplitudes of the same nonlinear systems, the peak in-
ferred inputs can occur at the second peak of oscillation. This in-
dicates strongly nonlinear behavior and transducers that exhibit
this behavior would not be considered nominally linear.

Based on these qualitative observations, we note that Met-
ric 3 which quantifies errors at the peaks is of small magnitude
for the second order system until there is such strongly nonlinear
behavior that the second peak can be larger than the first peak.
Furthermore, due to the contribution of transient oscillations af-
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FIGURE 10. Inferred inputs compared to the actual input for nonlin-
ear second order systems with g̃(x, dx

dτ
) of 0.1x3, 0.1x|x|, 0.1x dx

dτ
, and

0.1 dx
dτ

∣∣∣ dx
dτ

∣∣∣ and damping term δ = 0.2.
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FIGURE 11. Inferred inputs compared to the actual input for nonlin-
ear second order systems with g̃(x, dx

dτ
) of 0.1x3, 0.1x|x|, 0.1x dx

dτ
, and

0.1 dx
dτ

∣∣∣ dx
dτ

∣∣∣ and damping term δ = 0.2. Notice the second peak can be
higher than the first for the inferred input.

ter the first peak in highly nonlinear behavior, the error metrics
can be highly dependent on the damping ratio of the system.

We limit the scope of the analysis of the second order system
in this paper to a few examples. From Fig. 12, one can observe
the parameter space by which errors at the peaks remain below
1±0.1 % for the four different nonlinear terms. As shown in Fig.
13 for systems with cubic nonlinearity the error rises quickly af-
ter it has reached 1 %. This occurs because at the 1 % line for the
cubic nonlinearity, the second peak is larger than the first peak
and it continues to grow with increasing input amplitudes. One
may take away from this nonetheless that certain nonlinearities
will produce errors smaller that 1 % up to the point they are so
large that they are producing high second peaks in the inferred
input.

We show in Fig. 14 how Metric 2, the error in the integral
of the inferred input, decreases with increasing damping ratio for
a system with the nonlinear function g(x, dx

dτ
) = 0.01x3. This be-

havior is also observed for the other three nonlinear terms and
also generates lower Metric 1 and Metric 2 errors with greater
damping as it takes higher input amplitudes and nonlinear coef-
ficients to generate high oscillations after the first inferred peak.

Finally we also show an example in Fig. 15 where changes
to the excitation duration for the second order system shifts the
error lines vertically as in the first order system. This is most
likely due to the corresponding change in excitation momentum
when the excitation amplitudes are held constant but the excita-
tion duration is changed.
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FIGURE 12. Error at the peaks of 1± 0.1 % between inferred input
and actual input for four different nonlinear terms in a second-order sys-
tems with damping ratio δ = 0.2 excited by a one second pulse.
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FIGURE 13. Error at the peaks between inferred input and actual in-
put for cubic nonlinearity in second-order systems with damping ratio
δ = 0.2 excited by a one second pulse.

DISCUSSION
A novel methodology for quantifying errors in the decovo-

lution process in transducers, which can be modeled as first-
or second-order systems is presented within the article. This
methodology is not limited to nominally linear transducers.
Here, the lower order nonlinear terms more prevalent in weakly
nonlinear systems are considered. We also present error metrics
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FIGURE 14. Filled contour of integral error ratio (metric 2) as a
function of damping ratio and input amplitude for a fixed nonlinearity,
0.01x3.
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FIGURE 15. Maximum error between inferred input and actual input
for three different bandwidths of excitations of a second order system
with cubic nonlinearity and damping ratio δ = 0.2.

that may be useful in quantifying errors in measurements with
nominally linear transducers. Through simulations, we highlight
the variations of the error metrics in a space of weak nonlinear
coefficients. If upper bounds to the nonlinear coefficients and the
input amplitudes for a transducer are known, then upper bounds
to the error metrics can be estimated. Furthermore, we provide
an interpolating function for estimating errors in deconvolution
over the parameter space that was studied here.
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We present a simple and novel methodology for quantifying
the error that arises in ignoring the nonlinearity in a transducer
during system identification. Through simulations, we show that
using this approach, in first-order systems within the parame-
ter space of this study, errors due to system identification can
counter the errors in deconvolution by optimizing the inferred
input to the actual input by using the linear parameters. A metrol-
ogist may be interested in this effect, noting certain linear cali-
bration methods performed near measuring conditions for a non-
linear sensor may help diminish unaccounted errors in linear de-
convolution.

For the second-order systems, we also present some exam-
ples where the errors in the second-order system are observed as
transient oscillations after the first peak and decrease with higher
linear damping ratios.

The parameter space studied is not comprehensive for non-
linear systems in general or nominally linear transducers. Ad-
ditionally, only Gaussian impulses were explored and for only
three limited bandwidths. Furthermore, the effects of noise were
not considered in the methodology and simulations.

It would be interesting in future studies to compare this
methodology and the associated results to results from deconvo-
lution algorithms, to evaluate the extent to which real transduc-
ers fall within the parameter space considered here, and to test
the methodology experimentally through real or representative
transducers.
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[2] Eichstädt, S., Wilkens, V., Dienstfrey, A., Hale, P., Hughes,
B., and Jarvis, C., 2016. “On challenges in the uncertainty
evaluation for time-dependent measurements”. Metrologia,
53(4), June, pp. S125–S135. Publisher: IOP Publishing.
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