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Abstract

This, the second in a series of articles present a new framework for
considering the computation of uncertainty in electron excited X-ray mi-
croanalysis measurements, will discuss matrix correction. The framework
presented in the first article will be applied to the matrix correction model
called “Pouchou and Pichoir’s Simplified Model” or simply “XPP”. This
uncertainty calculation will consider the influence of beam energy, take-off
angle, mass-absorption coefficient, surface roughness and other parame-
ters. Since uncertainty calculations and measurement optimization are so
intimately related, it also provides a starting point for optimizing accuracy
through choice of measurement design.

1 Introduction

1.1 Recap

In part I of this series[Ritchie, 2020], the framework for propagating uncer-
tainties in multi-variate measurement models described in the BIPM JCGM
102[ISO/JCGM, 2011] is presented and applied to some common microanaly-
sis calculations like converting between various representations of composition.
This model is a generalization of the conventional univariate models which de-
pend on the first order term in a Taylor series expansion. This generalization is
expressed in the matrix equation

U(y) = J(Y)|X=x · U(x) · J(Y)
T
∣∣∣
X=x

(1)

where U(x) is the covariance or uncertainty matrix and J(Y) is the Jacobian
matrix, a matrix of partial derivatives of the multivariate measurement model
with respect to the input variables.

To apply this model, it is necessary is to know the input uncertainties and
to be able to compute the partial derivatives. The computation of the partial
derivatives can be daunting unless you realize that the standard chain rule of
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differential calculus applies to Jacobians like it applies to univariate derivatives.
If a complex function f(X) can be broken down into a sequential steps, f(X) =
g(h(X)), then by the chain rule,

J(f(X)) = J(g(Z))|Z=h(X) J(h(X)). (2)

This is the strategy we will apply in Part II to the process of matrix correction.
It is beneficial but not necessary to understand the mathematics. Section 3
explains some of the consequences of the math in terms of practical measurement
decisions.

1.2 Compostional Analysis

Compositional analysis by electron excited X-ray spectroscopy is an indirect,
comparative measurement. The X-ray intensities measured on an unknown ma-
terial are compared with X-ray intensities measured on standard materials of
known composition. The ratio of the X-ray intensities for a specific transition as-
sociated with a specific element (called the k-ratio) is, to a crude approximation,
equal to the mass fraction of that element. This is often called ‘Castaing’s First
Approximation’[Castaing, 1951]. However, it is necessary to compensate for dif-
ferences in electron transport and X-ray transmission between the unknown and
standard material. This process is an implicit multivariate measurement model
called “matrix correction.” The model is implicit because it is not possible
to analytically solve the equation for the mass fraction and multivariate be-
cause it is not possible to solve for one element in an unknown material without
simultaneously solving for all the other elements in the material. The equation

ki −
Cunk,i
Cstd,i

ZAFi(Cunk,Cstdi ; Q) = 0 (3)

where i indexes the elements, Cunk,i and Cstdi,i are the mass-fractions in the
unknown and standard, respectively, ZAFi(Cunk,Cstdi ; Q) is the matrix correc-
tion factor which is a function of the composition of the standards and unknown
and other parameters Q like beam energy and take-off angle, is inherently cou-
pled. Note that the standard for each element may be distinct as reflected by
the index i on stdi.

The measurement proceeds by collecting intensity data from the standard
and unknown materials to determine ki. Cstd is known as are the other pa-
rameters Q. However, Cunk appears in the mass-fraction ratio and also the
expression ZAFi(Cunk,Cstdi ; Q). An initial guess is made for Cunk and the
left-hand side (LHS) of Equation 3 is evaluated. The result is compared to 0
and the estimates of Cunk are updated to attempt to bring the LHS closer to
zero. This process, called “iteration”, is repeated until all the LHS are deemed
sufficiently close to zero[Reed, 1993; Springer, 1976; Wegstein, 1958].

There are tens-of-different models in the literature for the ZAFi(...)-term
and hundreds of possible permutations of models (e.g. [Armstrong et al., 2013]).

2



Furthermore, there are many different reasonable selections of input parame-
ters for these models. Over time and with experience, the zoo of models has
been culled to a handful that remain in common usage. These include Pou-
chou and Pichoir’s two models[Pouchou & Pichoir, 1991], Armstrong’s CITZAF
model[Armstrong, 1995] and Bastin’s PROZA96 model[Bastin et al., 1998]. All
of these represent a class of models, called “φ(ρz) models”, which combine the
atomic number and absorption correction terms into a single model based on
the an assumed mass-depth (ρz where ρ is the density and z is a depth) dis-
tribution of inner shell ionization. While the older style of Z · A · F correction
models have largely fallen out of favor (the JEOL microprobe system being a
significant exception), the language of Z, atomic number correction, A, absorp-
tion correction, and F , fluorescence correction, continues to be used to discuss
φ(ρz) models. φ(ρz) models represent a mechanism to calculate the Z and A
terms. We will not further discuss the fluorescence correction term, F , in this
paper.

In general, distinct matrix correction models produce similar but not iden-
tical results. For most of the important experimental parameters, the models
have similar behavior. For example, all the models predict that the absorption
correction increases as the incident beam energy increases. While there are rea-
sons to favor one model over another in specific situations, “XPP” has become
quite popular in both commercial products and in academic use. For this rea-
son, we have chosen to work with this model. However, the insights from this
model are likely to hold for other matrix correction models.

2 Matrix Correction

2.1 Mass Absorption Coefficients

We choose to use the Chantler elemental mass absorption coefficients (MACs)[Chantler,
1995, 2000; Chantler et al., 2005] as published on the National Institute of Stan-
dards and Technology (NIST) web site. This tabulation is computed using a
self-consistent Dirac-Hartree-Fock framework across a range of X-ray energies
which fully encompasses the range seen in X-ray microanalysis measurements.
In addition, the tabulation provides a self-consistent set of edge energies which
helps to eliminate inconsistencies between edge energies and characteristic X-
ray energies. The MAC at intermediate energies can be estimated using log-log
interpolation, .

In the simple linear model used in X-ray microanalysis, the MAC for a mate-
rial M as a function of energy E, [µ/ρ]M (E), is computed as linear combination
of elemental MACs, [µ/ρ]z (E) where z is the atomic number.

[µ/ρ]M (E) =
∑
z

C(z) [µ/ρ]z (E) (4)

where C(z) is the mass-fraction of the element z.
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Regions of energy f2, [µ/ρ]PE , µPE
within the tabulated range Solids, liquid
Below 200 eV (correlations, photons) 100 % to 200 %
200 eV to 500 eV 50 % to 100 %
500 eV to 1000 eV 5 % to 20 %
Near edges (within 0.1 % 50 %
Near K edges (within 10 %) 10 % to 20 %
Near K edges (1.1 < E0/EK < 1.2) 3 %
Well above K edges (E0/EK > 1.2) 1 %
Near LI , MI -MIII edges (within 15 %) 15 % to 30 %
Near LI , MI -MIII edges (1.15 < E0/Eedge < 1.4) 4 %
Well above LI , MI -MIII edges (E0/Eedge > 1.4) 1 %
Near LII,III , MIV,V edges (1.15 < E0/Eedge < 1.4) 4 %
Well above LII,III , MIV,V edges (E0/Eedge > 1.4) 1 %
Above 200 keV 2 % to 3 %

Table 1: Estimates of the uncertainty in the MACs as detailed in Chantler
2000’s[Chantler, 2000] Table 2 for elemental solids and liquids.

The elemental MACs have associated uncertainties. At high energies (&
2.0 keV) these uncertainties can be as low as 1.0 % but, at lower energies and near
absorption edges, the uncertainties can be much, much larger. Chantler[Chantler,
2000] suggested estimates of uncertainties according to a set of rules which de-
pend upon such properties as X-ray energy and proximity to an absorption edge.
The relevant columns of Chantler’s Table 2 is replicated in Table 1.

However, Chantler does not provide any guidance on uncertainties when
combining the elemental MACs to produce material MACs. The models that
Chantler uses are atomic models and do not include terms to handle the atom’s
environment. The linear approximation in Equation 4 is observed to work well-
enough at moderate to high energies and away from absorption edges. High
energy X-rays are absorbed most efficiently by a process involving the ionization
of an inner atomic shell. The inner atomic shells are largely unaffected by
the bonding environment. However, lower energy X-rays are energetic enough
to only excite near valence shells which are influenced by the local bonding
environment. This suggests that we would expect at least as large uncertainties
as in Table 1 in combining elemental MACs for materials. This was discussed
in detail in Part I[Ritchie, 2020].

2.2 Pouchou and Pichoir’s XPP Model

While the XPP model is discussed in earlier articles[Pouchou & Pichoir, 1984,
1985, 1986], the presentation in the book Electron Probe Quantitation[Pouchou
& Pichoir, 1991] is the most complete and is the primary reference for this work.
For XPP, Pouchou and Pichoir chose the ansatz

φ(ρz) = A exp(−aρz) + (Bρz + φ(0)−A) exp(−bρz) (5)
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for the φ(ρz)-curve. While data is sparse, this shape is seen to crudely match the
shape of measured and Monte Carlo-modeled φ(ρz)-curves. They then provide
models to calculate values for A, a, B, and b from φ(0), the slope of φ(ρz) at
ρz = 0,

P =
dφ(ρz)

dρz

∣∣∣∣
ρz=0

, (6)

the integral of φ(ρz), representing the number of primary ionizations,

F =

∫ ∞
0

φ(ρz) dρz (7)

and the mean depth of ionization,

R̄ = (1/F )

∫ ∞
0

ρz φ(ρz) d(ρz). (8)

2.3 Breaking the Problem into Steps

This article will demonstrate how to break up the XPP calculation into an
efficient set of steps which 1) calculate each intermediary quantity once and
only once; 2) order and group these calculations in an efficient manner; 3)
combine the calculation into a single monolithic calculation for all elements,
characteristic X-ray lines, instrumental conditions, standards and unknown; 4)
propagate uncertainties in the input parameters through the calculation in a
manner that maintains correlations from the inputs through the intermediary
quantities to the resultant quantities; and 5) compute the sensitivity of the
matrix correction factor relative to each input variable.

2.4 Tracking Input and Intermediary Values

It is critical to keep close track of variables as each input and intermediary vari-
able must be represented by one-and-only-one column in the Jacobian matrix.
The calculation proceeds in a series of steps in which intermediary quantities
and their Jacobian are calculated. Each step provides intermediary values that
are needed by subsequent steps. Careful ordering of the steps ensures that in-
termediary quantities are available when needed. For efficiency, we also desire
that intermediary variables are calculated no sooner than necessary. Each step
should be sufficiently simple that the Jacobian elements can be readily calcu-
lated. Careful ordering and parallelization of the steps can lead to substantial
increases in computational speed.

Matrix correction is particularly challenging to implement because the num-
ber and character of the input, intermediary and output parameters vary from
measurement-to-measurement. Input data may not be provided in the form re-
quired by the calculation and must be transformed before use. For example, a
composition expressed as oxide fractions or atomic percent must be converted to
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mass fraction while maintaining covariance relationships. The number of input
parameters can vary by an order-of-magnitude between binary unknowns with
simple standards and multi-element unknowns with many complex standards.
Thus it is critical to implement a calculation scheme which is flexible enough to
keep track of varying input and output values and all the intermediaries gener-
ated by the calculation. It is critical to keep track of the contents of each row
and column of the Jacobian matrix as it is constructed step-by-step. Sometimes
it is necessary to reorder the Jacobian. Sometimes, it is beneficial to discard
columns after the values they represent are no longer needed by the calculation.

Often the same calculation is performed on many different inputs. For ex-
ample, we typically need to calculate the material MAC for multiple different
standards and the unknown material. The φ(ρz)-curve needs to be calculated
for the standards and the unknown. Many aspects of these calculations can
be performed in parallel on multi-core CPUs so long as the inputs are tracked
carefully so that they can be recombined at a later step in the calculation. Since
many of the computations are performed using matrix multiplication, it can be
much more efficient to divide a calculation into M products of N/M ×N/M ma-
trices rather than a single N×N. Whenever possible, calculations are performed
independently and combined only when necessary.

It is critical when proceeding in parallel that even when the calculations
are performed separately, that, when the same quantity is used in different
calculations, the bookkeeping reflects that it was identically the same quantity
referenced in each calculation. In other words, the same label must be used
throughout the entire calculation to refer to a single input, intermediary or
output variable. It is not sufficient that the numerical values be the same.

An intuitive way to understand the necessity of maintaining the identity of
variables is to consider an uncertainty calculation performed using the Monte
Carlo method[ISO/JCGM, 2008]. At each iteration of the Monte Carlo calcu-
lation, the algorithm proceeds by assigning a randomized value drawn from the
variable appropriate distribution to each value with an associated uncertainty.
Over an ensemble of such randomized draws, the distributions of the random
variates will approach the desired distribution. For each draw, the entire model
is calculated and the resulting values tabulated. Over an ensemble of calcula-
tions, the resulting distribution of values will approach the distribution of the
output variables. However, if instead of assigning the input randomized values
once, we were create new randomized values each time a value appeared in the
calculation, we would end up with a very different and incorrect distribution.

Consider, for example, the effective beam energy. The effective beam energy
is identically the same for all elements measured in a single spectrum. The
beam energy may be 1 % high or 1 % low but it is the same value for the entire
spectrum. It may even vary during the acquisition of the spectrum (due to
charging, for example) but the effect of the variation will be identical for all
the elements. It is the same random variable for all calculations associated
with that one spectrum. However, if we collect a second spectrum from a
different material, the sample may have very different conductivity properties
which might lead to different levels of charging and result in a different effective
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beam energy. Thus while the two beam energies are nominally the same value,
the characteristics of their uncertainty may be very different.

Unfortunately, it is rarely clear cut how to handle different but related vari-
ables like beam energy. It really depends upon the majority source of uncertainty
and whether that source is correlated between the measurements. For example,
if unknown to you the beam energy on your instrument is consistently off by
a constant bias, this will be reflected in all measurements equivalently - this
source is correlated. However, if the difference is due to differences in charging
on various semi-conductive samples then this contribution will be uncorrelated.
To address this problem, you might decide to model the beam energy using
a more sophisticated model with multiple input parameters that accounts for
the various different sources of uncertainty. However, uncertainty calculations
can become arbitrarily complex as we attempt to refine our understanding and
our models of the input parameters. In the end, we have to make an educated
judgement when to say good enough is good enough.

In the end, for the specific case of effective beam energy, I suspect that
a good answer is to take the Duane-Hunt limit as the effective beam energy
and add a small uncertainty for conductive samples and larger uncertainty for
semi-conductive and coated non-conductive samples. However, representing the
Duane-Hunt limit is a single number when it can change during the acquisition
process due to charging and discharging ias already a simplification.

It should be noted that for complex energy-dispersive X-ray spectroscopy
(EDX) measurements consisting of many characteristic lines for many elements,
there may be hundreds of input parameters including mass fractions, mass ab-
sorption coefficients, mean ionization potentials, ionization cross-section expo-
nents, weights-of-lines, beam energies, k-ratios and others. The issues associated
with using multiple characteristic lines in a matrix correction will be discussed
in a future article. While wavelength-dispersive spectrometer (WDS) measure-
ments depend on fewer characteristic X-ray lines, the total number of input
parameters can also be large when all the parameters associated with each k-
ratio measurement are taken into account.

Because the number and character of the parameters change from measure-
ment to measurement, careful bookkeeping of parameters is critical. This is why
we have implemented a mechanism which allows us to perform these calcula-
tions using a well-vetted numerical algorithm library (Apache Commons Math
3.6.1) with custom extensions to label the rows and columns of the vectors and
matrices. These extensions implement three mechanisms for propagating the un-
certainties from input variables to output variables. They are 1) an analytical
approach based on Jacobian matrices as described in Evaluation of Measure-
ment Data Supplement 2 to the “Guide to the Expression of Uncertainty in
Measurement” Extension to Any Number of Output Quantities[ISO/JCGM,
2011] (JCGM:102); 2) a Monte Carlo approach based as described in ISO Eval-
uation of Measurement Data Supplement 1 to the “Guide to the Expression
of Uncertainty in Measurement” Propagation of Distributions Using a Monte
Carlo Method[ISO/JCGM, 2008] (JCGM:101); and 3) a finite difference ap-
proach which approximates the Jacobian matrices as described in JCGM:102.
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Variable Reference Notes
CM,z Mass fraction of element z in material M (standard

or unknown)
E0 Incident beam energy
tC Conductive or other coating thickness
∆z Surface roughness parameter
θ Take off angle (assumes perpendicular sample)
Jz PAP Eqn. 7 Mean ionization potential of element z
Az Atomic weight of element z
Ea Ionization edge energy (not considered to have un-

certainty.)
m PAP p.36 Exponent in the expression for the ionization cross

section
[µ/ρ]M,l Mass absorption coefficient (Material M , line l)

Table 2: Input variables. The top five represent experimental parameters and
the bottom five represent physical parameters. While all the physical parameter
have associated uncertainties, in some, the uncertainties are sufficiently small
that they are unlikely to ever make a substantive contribution to the final uncer-
tainties. The PAP column identifies where these parameters are defined within
Pouchou and Pichoir, 1991[Pouchou & Pichoir, 1991].

The three different methods should produce similar results except in extraordi-
nary situations. This triple redundant approach is how we convinced ourselves
that the analytic partial derivatives are implemented correctly. For day-to-day
use, the analytical approach is considered to be optimal as it is 1) relatively
computationally efficient; 2) facilitates tracking the sensitivity to input uncer-
tainties; and 3) it is deterministic.

2.4.1 Input Variables

Table 2 lists the variable inputs to the model. Additional details are provided
in the paragraphs below. Measurement and physics parameters are values pro-
vided to the model by the user or from tabulations. Output parameters are
computed during a calculation step. Output parameters from one step can be-
come intermediary parameter inputs to subsequent steps. Each step lists the
physics, measurement, intermediary and output parameters required.

Measurement Parameters Measurement parameters are those values which
represent characteristics of the samples or parameters associated with instru-
mental choices. By the time that the uncertainty calculation is performed, the
values for the unknown sample’s mass fractions have been established through
iteration. The uncertainties have been established for the composition of the
standards and the other input parameters and we desire to calculate the uncer-
tainty associated with the composition of the unknown.
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CM,z The mass fraction of element z for the material M . The uncertainty in the
composition of the standard is propagated through to the final estimate of
the standard material. (One for each element in each independent material
involved in the measurement - unknown, standards and coatings.)

E0 The kinetic energy of the incident electron beam. (One per spectrum/inde-
pendent X-ray measurement.)

tC Thickness of a conductive or other coating on the surface of the sample.
Assumed to be thin enough to have negligible effect on the trajectory or
energy of the incident beam. If the samples are coated simultaneously
then it is likely that the magnitudes are similar and uncertainties are
highly correlated. (One per sample)

∆z An estimate of the scale of surface roughness. (One per sample)

θ The nominal take-off angle. Under the near normal conditions considered in
this model, the uncertainty in the take-off angle is due to uncertainty in
the position of the detector (fixed) and the uncertainty due to uncontrolled
tilt of the sample (variable). The model chooses to emphasize the later as
this tends to be more significant overall. (One per measurement)

Physics Parameters

Jz Mean ionization potential for element z. Used to compute electron energy
loss during transport through a material. Influences the range of the
electron. (One per element)

Az Atomic weight for element z. The atomic weight is handled specially as in
most cases the nominal book value is suitable for standards and unknown.
However, there are situations in which a sample has been isotopically
modified in which a different value might be required for the standard and
unknown. (Optionally: one per element per material)

Ea The ionization edge energy for the edge associated with the a-th atomic
shell. This value is sufficiently well known relative to its use that no
uncertainty is associated with it.

m The exponent in the expression for the ionization cross-section. By associat-
ing an uncertainty with m, it allows us to model how uncertainty in the
ionization cross-section influences the cross-section and the matrix correc-
tion.

[µ/ρ]M,l The MAC for the l characteristic X-ray in the material (or element)
M . The MAC has long been recognized as one of the major sources of
uncertainty in matrix correction. The MAC associated with a coating is
labeled [µ/ρ]C,l.
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Intermediary Parameters The output from one step often becomes the
input to the next step. Various different intermediary parameters and the asso-
ciated uncertainties are calculated in the model. The values and uncertainties
associated with these parameters may be tracked to the end of the calculation
or they may be dropped after they are no longer required. Dropping them can
result in substantially faster calculations.

2.5 The Calculation

The calculation has been carefully organized as a series of 12 sequential steps
(See Table 3). At each step, all the necessary parameters are either an input
variable or an intermediary value calculated in a previous step. No parameter is
calculated twice. At each step, the parameters being calculated are presented,
followed (slightly indented) by the partial derivatives with respect to the physics,
measurement and intermediary input parameters. Partials derivatives not pre-
sented can be assumed to be equal to zero. Each step represents a Jacobian and
the full uncertainty propagation is represented by the matrix product of all 12
Jacobians.
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2.5.1 Step M , J and Z̄b

The first step involves calculating parameters dependent upon Cz, the elemental
mass fraction, and Jz, the mean ionization potential, for all elements z present
in the material. The mean ionization potential was allowed to have an uncer-
tainty as Jz is an empirical parameter with numerous parameterizations in the
literature and it influences the penetration depth of the incident electrons, a key
parameter in the φ(ρz)-model.

The three parameters calculated in this step are M (defined in Eqn. 5 of
PAP), J (defined in Eqn. 6 of PAP) and Z̄b (defined on page 59 of PAP).

Physics Jz, Az

Measurement Cz

Intermediary None

Outputs M , J , Z̄b

Reduced mass

M =
∑
z

Cz(Zz/Az) (9)

∂M

∂Cz
= (Zz/Az)

∂M

∂Az
= −(CzZz)/A

2
z

Effective material mean ionization potential (MIP). The MIP is the amount
of energy required on average to eject a valence electron.

log(J) =
1

M

∑
z

Cz(Zz/Az) log(Jz) (10)

∂J

∂Jz
=

(
J

M

Zz
Az

)
Cz
Jz

∂J

∂Cz
=

(
J

M

Zz
Az

)
(log(Jz)− log(J))

∂J

∂Az
=

(
J

M

Zz
Az

)
Cz
Az

(log(J)− log(Jz))

Z̄b =

(∑
z

CzZ
1/2
z

)2

(11)

∂Z̄b
∂Cz

= 2
√
ZzZ̄b

12



2.5.2 Step D, P, T

These functions parameterize the model the deceleration of electrons in the
sample. With f(V ) =

∑3
k=1DkV

Pk ,

dE

dρs
=
−M
J

1

f(V )
. (12)

Physics m The exponent in ionization cross-section expression (see p. 36 of
PAP)

Intermediaries J

Outputs D, P, T

D =
(

6.6× 10−6, 1.12× 10−5(1.35− 0.45J2), 2.2× 10−6/J
)

(13)

∂D

∂J
=
(

0.0, −1.008× 10−5J, −2.2× 10−6/J2
)

P = ( 0.78, 0.1, 0.25J − 0.5 ) (14)

∂P

∂J
= ( 0.0, 0.0, 0.25 )

Tk = 1 + Pk −m (15)

∂T

∂J
=
∂P

∂J

∂Tk
∂m

= −1

2.5.3 Step QAl (E0), [1/S]

Physics Jz, m, Ea

Measurement E0

Intermediaries M , J , D, P, T

Outputs QAl (E0) (ionization cross-section), [1/S] (inverse stopping power), η̄
(backscatter coefficient), J(U0) W and q.

Ionization cross section - parameterizes the likelihood of a core-shell ioniza-
tion.

QAl (E0) =
log(U0)

Um0 E
2
a

where U0 = E0/Ea (16)
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∂QAl (E0)

∂E0
=

1−m log(U0)

Um+1
0 E3

a

∂QAl (E0)

∂m
= −QAl (E0) log(U0)

Inverse of the stopping power - The stopping power is a measure of how
quickly an electron will slow in a material.

[1/S] =
U0

V0M

3∑
k=1

hk (17)

=
J

MEa

3∑
k=1

hk

where

hk = Dk(V0/U0)Pk(TkU
Tk
0 log(U0)− UTk

0 + 1)/T 2
k ,

and U0 = E0/Ea, V0 = E0/J and V0/U0 = Ea/J .

∂[1/S]

∂Dk
=

J

MEa

hk
Dk

∂[1/S]

∂Pk
=

Jhk
MEa

log(Ea/J)

∂[1/S]

∂Tk
=

J

MEa

1

Tk

(
DkU

Tk
0

(
Ea
J

)Pk

log(U0)2 − 2hk

)
∂[1/S]

∂M
=
− [1/S]

M

∂[1/S]

∂E0
=
J log(U0)

E0EaM

3∑
k=1

Dk

(
Ea
J

)Pk

UTk
0

∂[1/S]

∂J
=

1

MEa

3∑
k=1

(1− Pk)hk

η̄ = 1.75× 10−3Z̄b + 0.37
[
1− exp(−0.015Z̄1.3

b )
]

(18)

∂η̄

∂Z̄b
= 1.75× 10−3 + 7.215× 10−3 exp(−0.015Z̄1.3

b )Z̄0.3
b

J(U0) = 1 + U0(log(U0)− 1) (19)
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∂J(U0)

∂E0
= log(U0)/Ea

where J(U0) is a intermediate parameterization in the backscatter factor model
of Coulon and Zeller[Coulon & Zeller, 1973] as quote by PAP.

Because W , the average backscatter coefficient, and q, a useful intermedi-
ary, are univariate functions of only Z̄b, they are trivially handled using the
univariate chain rule and are not worth breaking out into a separate step.

W = 0.595 + η̄/3.7 + η̄4.55 (20)

∂W

∂Z̄b
=
(
1/3.7 + 4.55η̄3.55

) ∂η̄

∂Z̄b

q =
2W − 1

1−W
(21)

∂q

∂Z̄b
=

1

(W − 1)2

∂W

∂Z̄b

2.5.4 Step R and φ(0)

Measurement E0

Physics Ea

Intermediaries Z̄b, q, η̄

Outputs R (backscatter factor), φ(0) = φ(ρz)|z=0

G(U0) =
U0 − 1− (1− U−1−q

0 )/(1 + q)

(2 + q)J(U0)
(22)

∂G(U0)

∂E0
=

1− U−2−q
0

EaJ(U0)(2 + q)

∂G(U0)

∂q
=

(1−U0−1−q)
(1+q)2 − U−1−q

0 log(U0)
1+q −G(U0)J(U0)

J(U0)(2 + q)

∂G(U0)

∂J(U0)
=
−G(U0)

J(U0)

R = 1− η̄W [1−G(U0)] (23)

∂R

∂η̄
= W [G(U0)− 1]

15



∂R

∂W
= η̄[G(U0)− 1]

∂R

∂E0
= η̄W

∂G(U0)

∂E0

∂R

∂q
= η̄W

∂G(U0)

∂q

∂R

∂J(U0)
= η̄W

∂G(U0)

∂J(U0)

φ(0) = 1 + 3.3(1− 1/U2−2.3η̄
0 )η̄1.2 (24)

∂φ(0)

∂η̄
= 3.96η̄0.2(1− U2.3η̄−2

0 )− 7.59η̄U2.3η̄−2
0 log(U0)

∂φ(0)

∂E0
= −3.3η̄1.2 (2.3η̄ − 2)U2.3η̄−3

0 /Ea

2.5.5 Step F , R̄

Measurement E0

Intermediaries Z̄b, [1/S], QAl (E0), φ(0), R

Outputs F =
∫∞

0
φ(ρz) dρz, R̄ (average depth of ionization)

Here the expressions [F/R̄] and F are computed directly and then R̄ is com-
puted.

X = 1 + 1.3 log(Z̄b) Y = 0.2 + Z̄b/200 (25)

∂X

∂Z̄b
= 1.3/Z̄b

∂Y

∂Z̄b
= 1/200

[F/R̄] = 1 +
X log(1 + Y (1− U−0.42

0 ))

log(1 + Y )
(26)

∂[F/R̄]

∂X
=

log(1 + Y (1− U−0.42
0 ))

log(1 + Y )

∂[F/R̄]

∂Y
=
X
[

(U0.42
0 −1) log(1+Y )

U0.42
0 +(U0.42

0 −1)Y
− log(1+Y−Y/U0.42

0 )
1+Y

]
log(1 + Y )2
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∂[F/R̄]

∂Z̄b
=
∂[F/R̄]

∂X

∂X

∂Z̄b
+
∂[F/R̄]

∂Y

∂Y

∂Z̄b

∂[F/R̄]

∂U0
=

0.42XY

U1.42
0 (1 + Y (1− U−0.42

0 )) log(1 + Y )

F is the area under the φ(ρz) curve.

F = R [1/S] /QAl (E0) (27)

∂F

∂R
=

[1/S]

QAl (E0)

∂F

∂[1/S]
=

R

QAl (E0)

∂F

∂QAl (E0)
=
−R [1/S]

QAl (E0)2

Under most measurement conditions, [F/R̄] >= φ(0). In which case,

R̄ = F/ [F/R̄] (28)

∂R̄

∂F
=

1

[F/R̄]

∂R̄

∂[F/R̄]
=
−F

[F/R̄]
2 .

Otherwise, if [F/R̄] < φ(0),

R̄ = F/φ(0) (29)

∂R̄

∂F
=

1

φ(0)

∂R̄

∂φ(0)
=
−F
φ(0)2

.

The derivatives with respect to R, [1/S] and QAl (E0) are computed from ∂R̄
∂F

for the two cases.

∂R̄

∂R
=
∂R̄

∂F

∂F

∂R

∂R̄

∂[1/S]
=
∂R̄

∂F

∂F

∂[1/S]

∂R̄

∂QAl (E0)
=
∂R̄

∂F

∂F

∂QAl (E0)
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2.5.6 Step P , b

Measurement E0

Intermediaries R̄, F , Z̄b, φ(0)

Outputs P = dφ(ρz)
dρz

∣∣∣
z=0

(PAP Eqn. 29), b (Parameter in Eqn. 5, PAP Ap-

pendix 4)

g = 0.22 log(4 Z̄b) (1− 2 exp(−Z̄b(U0 − 1)/15)) (30)

∂g

∂Z̄b
=

g

Z̄b log(4Z̄b)
+ 0.0293 exp(−Z̄b(U0 − 1)/15)(U0 − 1) log(4Z̄b)

∂g

∂U0
= 0.0293 exp(−Z̄b(U0 − 1)/15)Z̄b log(4Z̄b)

h = 1− 10(1− 1/(1 + U0/10))/Z̄2
b (31)

∂h

∂Z̄b
= 20(1− 1/(1 + U0/10))/Z̄3

b

∂h

∂U0
=

−1

((1 + U0/10)Z̄b)2

b =
√

2

(
1 +

√
1− R̄ φ(0)/F

)
/R̄ (32)

∂b

∂R̄
=
−b
R̄
− φ(0)

FR̄
√

2(1− φ(0)R̄/F )

∂b

∂φ(0)
=

−1

F
√

2(1− φ(0)R̄/F )

∂b

∂F
=

φ(0)

F 2
√

2(1− φ(0)R̄/F )

Compute g h4 and determine whether it is less than 0.9 b R̄2(b − 2φ(0)/F ).
If it is less then proceed to calculate P as

P = g h4 F/R̄2 (33)

∂P

∂g
= P/g

∂P

∂h
= 4P/h
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∂P

∂F
= P/F

∂P

∂R̄
= −2P/R̄.

Otherwise, redefine g h4 = 0.9 b R̄2(b− 2φ(0)/F ), in which case

P = 0.9 b R̄2(b− 2φ(0)/F ) F/R̄2 (34)

= 0.9(b2F − 2bφ(0))

∂P

∂φ(0)
= 1.8

[
(Fb− φ(0))

∂b

∂φ(0)
− b
]

∂P

∂F
= 0.9b2.

2.5.7 Step a

Physics/Measurement None

Intermediaries φ(0), P , R̄, F , b

Outputs a (Parameter in Eqn. 5), ε (relates a and b)

a =
P + b(2φ(0)− bF )

bF (2− bR̄)− φ(0)
(35)

∂a

∂P
=

1

bF (2− bR̄)− φ(0)

∂a

∂φ(0)
=

3b2F + P − 2b3FR̄

(bF (2− bR̄)− φ(0))2

∂a

∂R̄
=
b2F (P + 2bφ(0)− b2F )

(bF (2− bR̄)− φ(0))2

∂a

∂F
= b

(P (bR̄− 2) + bφ(0)(2bR̄− 3))

(bF (2− bR̄)− φ(0))2

∂a

∂b
= −2

F (P − b(φ(0) + PR̄) + b2(F − φ(0)R̄)) + φ(0)2

(bF (2− bR̄)− φ(0))2

PAP ensure that a and b are sufficiently different by enforcing a minimum on
the quantity ε defined as

ε =

{
(a− b)/b if |(a− b)/b| > 10−6

10−6 otherwise.
(36)
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If ε = 10−6 then a = b(1 + ε).

∂ε

∂b
=

{(
b∂a∂b − a

)
/b2 if ε 6= 10−6

0 otherwise

∂ε

∂a
=

{
1
b if ε 6= 10−6

0 otherwise

The partial derivatives of ε with respect to P , φ(0), R̄ and F can be computed
using the chain rule.

2.5.8 Step A and B

Physics/Measurement None

Intermediaries ε, b, F , P , φ(0)

Outputs A and B (Parameters in Eqn. 5)

B =
b2F (1 + ε)− P − φ(0)b(2 + ε)

ε
(37)

∂B

∂ε
=
P + 2bφ(0)− b2f

ε2

∂B

∂b
=

(2b(1 + ε)F − (2 + ε)φ(0))

ε

∂B

∂F
= b2

(
1 + ε

ε

)
∂B

∂P
=
−1

ε

∂B

∂φ(0)
= −b

(
2 + ε

ε

)

A =

(
B

b
+ φ(0)− bF

)(
1 + ε

ε

)
(38)

∂A

∂ε
=

−A
ε(1 + ε)

+

(
1

b

∂B

∂ε

)(
1 + ε

ε

)
∂A

∂b
=

(
1

b

∂B

∂b
−
(
B

b2
+ F

))(
1 + ε

ε

)
∂A

∂F
=

(
∂B
∂F − b

2

b

)(
1 + ε

ε

)
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∂A

∂φ(0)
=

(
b+ ∂B

∂φ(0)

b

)(
1 + ε

ε

)
∂A

∂P
=

1

b

∂B

∂P

(
1 + ε

ε

)
2.5.9 Step χ

Physics [µ/ρ]M

Measurement θ

Intermediaries None

Outputs χ (The reduced MAC)

χ = [µ/ρ]M csc(θ) (39)

∂χ

∂[µ/ρ]M
= csc(θ)

∂χ

∂θ
= −χ cot(θ)

2.5.10 Step FR(χ)

Measurement dz

Intermediaries b, A, B, φ(0), ε

Outputs FR(χ) (Emitted intensity compensated for surface roughness)

We have extended the base XPP model to include a term to model X-ray ab-
sorption variability due surface roughness. The model is quite crude but none-
the-less provides a useful mechanism for estimating how much of an influence
surface quality will have on a measurement.

FR(χ) = exp(−zχ)F (χ) (40)

The surface roughness is defined by a parameter z = 0 ± ∆z where ∆z is a
measure of the vertical roughness experienced by the exiting X-rays. Charac-
terizing roughness is extremely difficult. A full characterization at a certain
horizontal resolution involves creating a height map of the surface using an
atomic force, confocal or similar microscope. There are summary metrics that
have been developed to encapsulate properties of the height map - 2D mean
roughness, root-mean squared roughness, spectral analysis, fractal analysis and
many others. None of these however can be readily converted into a simple
number that can be used in uncertainty calculations. Furthermore, it is rare
that we actually have a height map on a sample of interest. Instead, rather than
un-necessarily complicate the issue a crude, ill-defined but intuitive parameter,
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∆z, which should be thought of as a vertical length scale of features near the
beam entry point, was selected.

Because the model does not account for how roughness effects the electron
trajectory, it will fail when the surface roughness is of the order of the electron
range. Intuitively, we don’t expect surface roughness to have a strong influence
on the backscatter coefficient because, over micrometer scale distances, the sam-
ple is still on average flat and the electron beam momentum perpendicular to
the surface. This is very different from the situation in which the sample is
tilted.

FR(χ) |z=0 =
φ(0) +B/(b+ χ)−Abε/(b(1 + ε) + χ)

b+ χ
(41)

∂FR(χ)

∂z
|z=0 = −χFR(χ)

∂FR(χ)

∂A
|z=0 =

−bε
(b+ χ)(b(1 + ε) + χ)

∂FR(χ)

∂B
|z=0 =

1

(b+ χ)2

∂FR(χ)

∂b
|z=0 =

(
−B

(b+χ)2 + −Aχε
(b(1+ε)+χ)2

)
− FR(χ)

b+ χ

∂FR(χ)

∂χ
|z=0 =

(
Abε

(b(1+ε)+χ)2 −
B

(b+χ)2

)
− FR(χ)

b+ χ

∂FR(χ)

∂φ(0)
|z=0 =

1

b+ χ

∂FR(χ)

∂ε
|z=0 =

−Ab
(b(1 + ε) + χ)2

2.5.11 Step FR,C(χ)

Physics [µ/ρ]C,l

Measurement tC , θ

Intermediaries FR(χ)

Outputs FR,C(χ) (Emitted intensity compensated for roughness and coatings)

We also implement a crude model of absorption by a surface coating. Typically
surface coatings are used to place a conductive layer on the surface of a non-
conductive material to dissipate accumulated charge. However, this model can
also be used to model thin surface contamination layers like oxide layers on
certain metals.
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The model assumes that the only effect of the layer is to absorb outgoing X-
rays. It neglects the influence of the layer on the energy and incident direction
of the incoming electron beam.

The additional absorption is modeled

FR,C(χ) = exp
(
− [µ/ρ]C,l tC csc(θ)

)
FR(χ) |z=0 (42)

∂FR,C(χ)

∂tC
= −FR,C(χ) [µ/ρ]C,l csc(θ)

∂FR,C(χ)

∂θ
= FR,C(χ) [µ/ρ]C,l tC csc(θ) cot(θ)

∂FR,C(χ)

∂[µ/ρ]C,l
= −FR,C(χ)tC csc(θ)

∂FR,C(χ)

∂FR(χ)
= FR,C(χ)/FR(χ) |z=0

Some labs coat their standards and unknown at the same time to ensure
that the layer thicknesses are equivalent across the samples. In this case, the
thickness may not be known with precision but the uncertainty in the thickness
is correlated across the samples. If the samples and unknown are coated at
different times, the thickness may not be known with any worse precision but the
thicknesses are less correlated. The degree of correlation between the thicknesses
reflects the similarity of the procedure used to coat standard and unknown.

2.5.12 Step Z and A

Physics/Measurement None

Intermediaries FUnkR,C (χ), FUnk, FStdR,C(χ), FStd

Outputs Z (the atomic number correction), A (absorption correction)

All the previous steps must be performed once for the unknown and once for
the standard. This step combines the results of the unknown and standard
calculations to determine the conventional Z (atomic number correction) and
A (absorption) correction factors. The calculation can proceed in parallel (on
separate CPUs as distinct calculations, for example) for the unknown and all
necessary standards for each characteristic X-ray involved in the measurement.

A =
FUnkR,C (χ)/FUnk

FStdR,C(χ)/FStd
(43)

∂A

∂FUnkR,C (χ)
= A/FUnkR,C (χ)
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Figure 1: Examples of simulated K240 spectra at various incident beam energies
scaled the same maximum intensity.

∂A

∂FUnk
= −A/FUnk

∂A

∂FStdR,C(χ)
= −A/FStdR,C(χ)

∂A

∂FStd
= A/FStd

Z = FUnk/FStd (44)

∂Z

∂FUnk
= 1/FStd

∂Z

∂FStd
= −Z/FStd

3 Example Calculation

To demonstrate various ways that these uncertainty calculations can provide
insight into measurements of composition, we will explore four perspectives on
the uncertainty budget for engineered glass K240 (see Table 4).

Beam Energy What beam energy produces the smallest overall uncertainty?

Mass Absorption Coefficients How does uncertainty in the elemental MACs
contribute to the uncertainty in the matrix correction?

Standard Selection How does the choice of standard (pure element, binary
vs. similar, matched standard) influence the uncertainty budget?

Surface roughness How smooth does the surface need to be to produce a
negligible contribution to the uncertainty budget?
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Figure 2: The total absolute uncertainty on the measurement of mass fraction
in K240 for beam energies between 12 keV to 30 keV. The standards selected
were pure elements (Mg, Si, Ti, Zn, Zr) and binary compounds (BaF2 for Ba
and SiO2 for O). A) The uncertainty for O is largest over the entire range of
beam energies. It increases as the excitation depth and thus also the mean
absorption path length increases. Many but not all elements show this pattern.
Elements like Zn however show a decrease in uncertainty as the overvoltage
increases from barely able to excite (U = 1.2) at the lowest beam energies. B)
The same measurement except measured oxygen has been replaced with oxygen
computed from stoichiometric assumptions.
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Mass Atomic Char. Mass Abs. Ionization
Element Z Fraction Fraction X-ray Coefficient Energy (keV)
Oxygen 8 0.3400 0.6290 O K-L3 5813 0.53

Magnesium 12 0.0302 0.0368 Mg K-L3 3281 1.31
Silicon 14 0.1870 0.1971 Si K-L3 1583 1.84

Titanium 22 0.0600 0.0371 Ti K-L3 225 4.97
Zinc 30 0.0402 0.0182 Zn K-L3 104 9.66

Zirconium 40 0.0740 0.0240 Zr L3-M5 1518 2.22
Barium 56 0.2687 0.0579 Ba L3-M5 190 5.25

Table 4: The nominal composition of K240 glass and characteristic line choice.
K240 is an engineered glass and the composition is not certified. The ‘Char
X-ray‘ column contains the characteristic line used. At 15 keV and 20 keV, the
beam is insufficiently energetic to excite the K-shell in Zr and Ba so we measure
a L-family transition.

3.1 Beam Energy

Figure 2 shows the calculated uncertainty for the measurement of K240 using
BaF2 as a standard for Ba, SiO2 as a standard for O and pure elements for
the rest. The uncertainty in the k-ratios was selected to model a dose of about
60 nA s. The roughness was assumed to be about 10 nm and the uncertainty
in the take-off angle of 40° was assumed to be about 0.5°. The uncertainty in
the beam energy was assumed to ±0.1 keV at all beam energies. The samples
were assumed to have no conductive coating. These values were selected to be
somewhat typical yet interesting. The characteristic X-rays selected for each
line are those listed in Table 4.

Figure 2 A) shows that the the uncertainty in oxygen is the largest and
increases with beam energy. This is largely a consequence of two influences.
First, the overvoltage is large, even at 12 keV, so there is little benefit from
additional overvoltage. Second, the MAC is relatively large for O K-L3 in K240.
Thus as the beam energy increases, the excitation volume increases and the
mean emission depth increases leading to a decreasing fraction of the O K-L3

X-rays escaping the sample and a larger dependence on the uncertainty in the
MAC. Zr L3-M5, Mg K-L3 and Si K-L3 show similar behavior for similar reasons.

As the ionization edge energy increases and the mass absorption coefficient
decreases, the dependence on beam energy changes. Zn K-L3 has the highest
ionization edge energy and the smallest MAC. At the lower beam energies, the
low overvoltage produces few X-rays and poor count statistics produces a lot
of uncertainty. This could be mitigated by measuring with a larger probe dose.
Since the MAC is small, even at the highest beam energies, most of the X-rays
escape the sample and the absorption correction plays a relatively small role in
the uncertainty budget. Ba L3-M5 and Ti K-L3 display similar behaviour to Zn
K-L3.

Any optimization of the total uncertainty is going to be dominated by the
uncertainty in the oxygen. If fact, the uncertainty in the oxygen can feed back
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through the matrix correction into the other element uncertainties and increase
them. One strategy to deal with this is to calculate the oxygen using stoi-
chiometric assumptions. In this way, the uncertainty in the oxygen is a simple
function (see Part I) of the uncertainties in the other elements and is not de-
pendent on the O K-L3 MAC in K240 and other less well known parameters.
The result is shown in Figure 2 B. In comparison, the net uncertainty (added
in quadrature) for A is minimum at 12 keV but the net uncertainty for B) is at
a minimum at 17 keV. In A) the oxygen uncertainty dominates and we might
benefit from selecting a beam energy even smaller than 12 keV.

Of course, the quadrature metric is only one of many possible metrics that
can be used to optimize the measurement process. If your primary interest is a
single trace element, then you may choose to optimize on this element and the
process would likely be influenced by the generating a sufficient overvoltage to
strongly ionize the line of interest.

3.2 Mass Absorption Coefficients

Figure 3 reveals a lot about the relationship between the uncertainty in the
input parameters and the resulting uncertainty in the output parameters. The
figure represents a subset of the full correlation matrix but focuses on the rela-
tionship between input and output variable. The figure is color coded to reveal
the Pearson’s correlation coefficient that describes the relationship between the
two random variables under consideration. The absolute value of the correla-
tion coefficient quantifies how much information knowledge about one variable
reveals about the other. The sign determines how multiplying and dividing
the variables will influence the resulting uncertainty. Dividing positively corre-
lated variables will have reduced uncertainty relative to uncorrelated variables
while multiplying positively correlated variables will have increased uncertainty.
On the other hand, dividing negatively correlated variables will increase uncer-
tainty relative to uncorrelated variables while multiplying negatively correlated
variables will have decreased uncertainty.

Consider the relevant example of a matrix matched standard. The matrix
correction factor of two similar material will be positively correlated and close
to unity. Taking the ratio will reduce the uncertainty of the resulting value
leading to accurate measurements that don’t have a strong dependence on the
matrix correction factors. Contrary to common perception, it isn’t the fact that
the magnitude of the matrix correction are similar that is critical. It is the fact
that the matrix correction factors are highly correlated that ultimately reduces
the resulting uncertainty.

Consider the top set of rows representing the absorption correction terms
in Figure 3. In general, each absorption correction output is correlated with
the uncertainty in the beam energies and take-off angles at which the standard
and unknown were collected but not the beam energies or take-off angles at
which other standards were collected. This output is also weakly correlated with
the mean ionization potential for all elements as the stopping power depends
on other elements. The absorption correction terms are also correlated with
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Figure 4: The calculated mass absorption coefficients (MACs) for K240 glass
and the mass-fraction weighted elemental MACs. The Mg K-L3 transition is
seen to be predominantly absorbed by barium due to the proximity of the Ba
L-edges and despite the proximity of the titanium K-edge, the O K-L3 is almost
equally absorbed by all the elements.

the mass absorption coefficients for the measurement’s characteristic X-ray for
all the elements present in the material. The terms are more correlated with
elements that are stronger absorbers. Like the beam energy and take-off angle,
the absorption term is only correlated with the surface roughness associated
with the sample and the standard. The ionization cross section is also diagonal.
The rows at the bottom of Figure 3 represent the atomic number correction.
The atomic number correction is seen to correlate with the beam energy of the
standard and unknown. It also correlates with the mean ionization potential.
However, there is no relationship between the atomic number correction and
the take-off angle, mass absorption coefficients, surface roughness or ionization
cross-section. The rows in the middle of Figure 3 represent the total matrix
correction, the product of the Z, A and F-terms. As one would expect, the
product inherits correlation relationships from both the atomic number and
absorption terms.

We can dig further into the relationship between the absorption correction
and the mass absorption coefficients (MACs). Consider Figure 4. These plots
show the elemental mass absorption coefficients and the computed effective mass
absorption coefficient for K240 glass (red). The horizontal axis represents energy
and the vertical axis represents the strength of the absorption coefficient in
cm2/g. The magnitude of the elemental MACs are scaled by the elemental
mass fraction in K240 glass to represent each element’s contribution to the
material MAC. The general trends seen in the elemental MACs are those you
would expect. As X-ray energy increases, the MACs generally become smaller
as the material becomes more transparent. However, this trend is disrupted at
absorption edges. These edges are at the energy necessary to ionize a core shell
in the element. There is an abrupt increase in the MAC at the absorption edge
when it becomes energetically possible for an X-ray to ionize that shell. Thus
the relationship between a characteristic X-ray’s energy and the ionization edge
energies of the other elements in the material often determines the importance
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Simple BaTi(Si3O9)

A dA dA/A A dA dA/A [dA/A]s
[dA/A]c

A[Ba L3-M5] 1.015 0.001 0.11% 0.986 0.000 0.03% 4.28
A[O K-L3] 0.761 0.065 8.61% 1.021 0.071 6.93% 1.24
A[Si K-L3] 0.611 0.014 2.29% 0.997 0.003 0.33% 6.86
A[Ti K-L3] 0.948 0.001 0.09% 0.986 0.000 0.02% 3.60
A[Mg K-L3] 0.389 0.040 10.23% 0.389 0.040 10.23% 1.00
A[Zn K-L3] 0.977 0.001 0.12% 0.977 0.001 0.12% 1.00
A[Zr L3-M5] 0.746 0.064 8.58% 0.746 0.064 8.58% 1.00

Table 5: Comparing how the uncertainty in the absorption correction changes
when simple standards (pure elements or simply stoichiometric compounds)
are replaced with a standard material similar to the unknown, K240. For
the columns labeled “Simple”, the standards were pure elements except for
O and Ba which were SiO2 and BaF2 respectively. For the columns labeled,
“BaSi(Ti3O9)”, “BaSi(Ti3O9)” was used as a standard for Ba, Si, Ti, and O.
The right-most column represents the ratio of the uncertainty for the simple
standard relative to the similar standard. The use of a similar standard im-
proved the uncertainty of the absorption correction by a factor of 1.2 to 6.9 for
those elements. As expected, the elements for which pure elements were used
in both measurements, the uncertainty was unchanged.

of the absorption correction term. The energies of the characteristic X-rays
used in this calculation are shown as vertical lines labeled O, Mg, Si, Ba and
Ti. Zn K-L3 and Zr L3-M5 are above the range of energies displayed and are
not visible.

The least energetic X-ray involved in the measurement process is the O
K-L3. The MAC for O K-L3 is the largest in K240. The energy of the O
K-L3 X-ray is just below the O K-edge and just above the Ti L-edges. Ba,
Ti, Zr and Si all contribute almost equally to the total MAC. The proximity
to the Ti L-edges is likely to increase the total uncertainty of the material
MAC. When we look at Figure 3, we see that the absorption correction is most
significantly negatively correlated with the Ti elemental MAC followed by a
significant positive correlation with the Si elemental MAC.

The next least energetic X-ray is the Mg K-L3. As Figure 4 shows, the Ba
elemental MAC is the dominant contribution to the K240 material MAC and
Figure 3 shows that the absorption correction is strongly negatively correlated
with the Ba elemental MAC.

3.3 Standard Selection

The use of standards with a composition similar to the unknown is a common
tactic for improving the accuracy of a compositional measurement. When the
standard and unknown are identically compositions, the matrix correction will
be unity with zero uncertainty ((x+ ε)/(x+ ε) = 1 except forx± ε = 0). There
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Figure 5: The total uncertainty measuring the elements in K240 glass for two
different selections of standards. A) Simple standards BaF2 for Ba L3-M5,
SiO2 for O K-L3 and pure elements for the remainder. B) Similar standards
BaTiSi3O9 for Ba L3-M5, Ti K-L3, Si K-L3 and O K-L3 and pure elements
for the remainder. Using similar standards is seen to improve the uncertainty
budget for Si, Ti, O and less so Ba, the elements that the standard and un-
known have in common. The improvement increases with beam energy as the
absorption correction becomes more significant.
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will continue to be uncertainty from other uncontrolled factors like the beam
energy and surface roughness. The classic strategy has been to select a material
that produces a correction factor close to unity. However, a matrix correction
factor near unity is necessary but not sufficient for improved accuracy. It is
entirely possible to have matrix correction factors which are coincidentally close
to unity even when the uncertainties remain large.

Table 5 compares the absorption correction when measuring K240 glass us-
ing simple pure element or binary stoichiometric compounds with measuring it
using a similar material Benitoite (BaTi(Si3O9). The similar standard lack the
elements Mg, Mn and Zr so we continue to use pure elements for these. The
magnitude of the absorption correction generally is closer to unity for the simi-
lar standard than the simple standards. For example, there is a 24 % correction
for O using a SiO2 standard but a 2 % correction using Benitoite. Furthermore,
when we compare the ratio of the fractional uncertainty for simple vs similar
standards we see that the uncertainty is improved by a factor of between 1.2 for
oxygen and 6.9 for silicon using a similar standard.

The uncertainty is reduced because of the correlations between the matrix
correction factors associated with the unknown and the standard. When the
unknown and standard are identical, the correlation coefficient is unity and
magnitudes are equal so the uncertainties cancel in a ratio. More often, there is
partial cancellation. At a minimum, the numerator and denominator share the
MAC associated with the characteristic X-ray in its source element. The more
elements that are shared and the closer the mass fractions of these elements
are, the more common MACs are shared between the unknown and standard.
Similarly, the stopping power and backscatter corrections will share more input
parameters when the elements and their mass fractions are similar.

For a specific measurement, you could apply these calculations and applying
them to all relevant standard materials available in your lab to determine the
optimal standards for each element in the unknown. You will need an estimate
of the composition of the unknown but a standardless quantification would
probably be adequate for this purpose.

Figure 5 compares the fractional and absolute uncertainty for a measurement
of K240 glass at various different beam energies for simple standards and similar
standards. In general, we see that the uncertainty in the measurements are seen
to increase with beam energy for most elements (O, Mg, Si, Zr) and decrease
for a few (Ti, Ba and Zn). This difference largely reflects the difference between
strongly absorbed elements for which the absorption correction increases with
increasing beam energy and those with low absorption and lower overvoltage.
The MACs for these elements in K240 is tabulated in Table 4. For O, Mg,
Si and Zr, the MACs are between 5800 cm2 g−1 and 1500 cm2 g−1. For Ti, Ba
and Zn, the MACs are between 104 cm2 g−1 and 225 cm2 g−1 so the absorption
correction is diminished by an order-of-magnitude or more for these elements.
Furthermore, the edge energy for Zn K is 9.7 keV so the overvoltage at 12 keV
is minimal and any uncertainty in the beam energy is amplified.
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Figure 6: The total uncertainty measuring the elements in K240 glass for two
different selections of standards. A) Simple standards BaF2 for Ba L3-M5, SiO2

for O K-L3 and pure elements for the remainder. B) A standard with identical
composition to the unknown. Since the compositions are identical, nominally
the matrix corrections are unity and the matrix correction uncertainty is zero.
However, the remaining uncertainty is due to uncorrelated uncertainties in beam
energy, take-off angle and the measured k-ratios between standard and unknown.

33



1 10 100 1000
0.001

0.01

0.1

1

O

Mg

Si

Ti

Zn

Zr

Ba

Roughness (nm)

U
n

ce
rt

a
in

ty
 (

m
a

ss
 fr

a
ct

io
n

)

Figure 7: The total uncertainty in the measured mass fraction as a function
of surface roughness shown on a log-log plot. The softer X-ray lines show the
influence of roughness much before the harder X-ray lines. Oxygen is already
showing the influence at 10 nm while zinc is almost uneffected well above 100 nm.

3.4 Surface Roughness

It is well known that careful surface preparation is critical for accurate com-
position measurements. However, there is very little guidance about what con-
stitutes adequate surface preparation. This is largely because the question is
very dependent on the sample and the design of the measurement. While it
is possible to model complex sample geometries using some Monte Carlo sim-
ulators ([Llovet et al., 2005; Ritchie & Scott, 2006; Ritchie, 2005; Salvat et al.,
2006], it is very time consuming to run the number of models to adequately
sample a single roughness. Furthermore, roughness is very difficult to quantify
as there are so many different ways for a surface to be rough. However, if we
give up on developing the perfect model and are willing to accept a crude model
of surface roughness like that proposed herein, we can provide general guidance
and a rough estimate of the consequences of poor surface preparation. Even a
crude model is a large step in the right direction. Since many occasional users
of X-ray microanalysis are not familiar with the influence of surface prepara-
tion, a simple model will provide them with much more information than they
would otherwise have. Based on a simple question about approximate surface
roughness scale, these models can provide an estimate of the uncertainty and
also an estimate of how much better then uncertainty would be if the sample is
better prepared.

While it is possible to model the effect of surface roughness on both the
sample and the unknown, we will present an example based on K240 glass which
only consider roughness on the unknown. A moderate beam energy of 15.0 keV
provides an overvoltage of at least 1.5 for all measured lines. Figure 7 clearly
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shows that adequate surface preparation is very element dependent. As you’d
expect, the uncertainty in the light elements is largest overall but also the knee
at which surface roughness becomes significant occurs at lower roughnesses. For
example, the estimated uncertainty in O is more than 1 % and the knee occurs
around 10 nm. The uncertainty for Ba is also significant but the knee occurs at
near 100 nm. For Si and Mg, the knee occurs a little above 10 nm. Soft X-rays
generally require a better surface preparation than hard X-rays because of larger
mass absorption coefficients. Fortunately, since the uncertainty monotonically
decreases with improved surface preparation, selecting the surface preparation
for the most challenging element will be adequate for all elements.

4 Conclusions

An uncertainty model can be implemented in a similar manner for any of the
many other matrix correction models. While the various different matrix correc-
tion models are known to give slightly different results, the overall uncertainty
calculation is likely to give substantially the same results as the XPP model.
This is because 1) uncertainty calculations are by their nature crude; and 2)
while the details may differ, the dependence on the various input parameters
and physical processes is likely to show similar dependence model-to-model.
This does point out one shortcoming of this approach to developing an uncer-
tainty budget: it doesn’t account for the reality that there are better models
and worse matrix correction models and that even the best model has uncer-
tainty that goes beyond simply the selection of input parameter values. For
one, the shape of the ansatz (Equation 5) does not reflect the true shape of the
φ(ρz) curve. Monte Carlo modeling and a handful of measurements show that
the ansatz is reasonable and among the more realistic. Armstrong proposed an
orthogonal approach to matrix model uncertainty[Armstrong et al., 2013]. His
approach is to calculate the same matrix correction problem using a variety of
different matrix correction models and look at the inter-model variability. This
approach assumes that the model is the source of the error and the input pa-
rameters are not. The optimal implementation of Armstrong’s approach would
use a handful of equally credible models. However, in practice, Armstrong’s
implementation mixes crude Z ·A · F -models with more credible φ(ρz)-models.
It, therefore, probably overestimates the model uncertainty for the more credi-
ble matrix correction models. Regardless, this approach is valuable because it
acknowledges that the models are not perfect and will contribute to the overall
uncertainty budget.

It is common to think of uncertainty calculations as largely an academic
exercise and only of interest to the expert. However, this perspective overlooks
the way in which uncertainty calculations can be used to assist the analysts to
make better measurements.

Imagine microanalysis software that would guide a novice (or, for that mat-
ter, an expert) through the measurement process. Through a combination of
interviewing the analyst about the sample and the measurement, extracting in-
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formation from scanning electron microscope (SEM) images and acquiring quick
test spectra, the software could draw some preliminary conclusions about the
composition and morphology of the sample (e.g. The size and homogeneity of
the region to be analyzed). From these, the software could estimate the conse-
quences of non-ideal measurement parameters. Commonly these could include
sample inhomogeneity, sample preparation, poor choice of beam energy, probe
current and acquisition time and choice of elemental standards. The analyst
could be informed of these consequences and provided with a ranked list of
suggestions to improve the measurement. The analyst gets to decide how to
proceed. If the measurement is intended to be “quick-and-dirty” then they
might not change anything and accept the base-level consequences. However, if
the application demands more accuracy and precision, the analyst could choose
from the list of suggestions those that best achieved the desired goal. While
typically there is only one way to make the optimal measurement, there may be
a handful of alternatives to make a “good enough” measurement. The software
could further query the analyst about which measurement parameters are costly
or impractical to change and which aren’t. The measurement could then be re-
optimized based on the analysts choices. Much of this would be transparent
to the analyst who would be asked to answer a handful of straightforward and
easy-to-answer questions.

Clearly, this vision remains distant. Hopefully, readers of this paper see
how the calculations described herein bring us a little bit closer. All the other
components are feasible with currently available technology. We could imagine
using computer vision including, potentially, convolutional neural networks to
interpret SEM images (particularly backscattered electron images) and extract
estimates of morphological and other sample related parameters. This informa-
tion could inform an intelligent actor that could probe the sample using X-ray
measurements to collect additional information. Much of this would replicate, in
silico, the actions and though-processes of an experienced analyst. The results
would be a system that helps the analyst to make informed decisions based on
quantitative inputs to produce data, in a cost-effective manner, that is likely to
be fit for purpose. Sounds like a bright future for e--beam X-ray microanalysis.
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