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Abstract—In this work, we present an orthogonal classifi-
cation of memory corruption bugs, allowing precise structured
descriptions of related software vulnerabilities. The Common
Weakness Enumeration (CWE) is a well-known and used list of
software weaknesses. However, it’s exhaustive list approach is
prone to gaps and overlaps in coverage. Instead, we utilize the
Bugs Framework (BF) approach to define language-independent
classes that cover all possible kinds of memory corruption
bugs. Each class is a taxonomic category of a weakness type,
defined by sets of operations, cause−→consequence relations,
and attributes. A BF description of a bug or a weakness
is an instance of a taxonomic BF class, with one operation,
one cause, one consequence, and their attributes. Any memory
vulnerability then can be described as a chain of such instances
and their consequence–cause transitions. We showcase that BF
is a classification system that extends the CWE, providing a
structured way to precisely describe real world vulnerabilities. It
allows clear communication about software bugs and weaknesses
and can help identify exploit mitigation techniques.

Keywords—Bug classification, bug taxonomy, software vul-
nerability, software weakness, memory corruption.

I. INTRODUCTION

Software bugs in memory allocation, use, and dealloca-
tion may lead to memory corruption and memory disclosure,
opening doors for cyberattacks. Classifying them would allow
precise communication and help us teach about them, under-
stand and identify them, and avoid security failures. For that,
we utilize the Bug Framework (BF) approach [1].

The Common Weakness Enumeration (CWE) [2] and the
Common Vulnerabilities and Exposures (CVE) [3] are well-
known and used lists of software security weaknesses and
vulnerabilities. However, the CWE’s exhaustive list approach
is prone to having gaps and overlaps in coverage, as demon-
strated by the National Vulnerability Database (NVD) effort
to link CVEs to appropriate CWEs [4]. Instead, we utilize the
BF approach to define four language-independent, orthogonal
classes that cover all possible kinds of memory related
software bugs and weaknesses: Memory Allocation Bugs
(MAL), Memory Use Bugs (MUS), Memory Deallocation
Bugs (MDL), and Memory Addressing Bugs (MAD). This
BF Memory Bugs taxonomy can be viewed as a structured
extension to the memory-related CWEs, allowing bug report-
ing tools to produce more detailed, precise, and unambiguous
descriptions of identified memory bugs.

Disclaimer: Certain trade names and company products are mentioned in the
text or identified. In no case does such identification imply recommendation
or endorsement by the National Institute of Standards and Technology
(NIST), nor that they are necessarily the best available for the purpose.

In this paper, we first summarize the latest BF approach
and methodology. Next, we analyze the types of memory
corruption bugs and define the BF Memory Bugs Model.
Then, we present our BF memory bugs classes and showcase
they provide a better, structured way to describe CVE entries
[3]. We identify the corresponding clusters of memory cor-
ruption CWEs and their relations to the BF classes. Finally,
we discuss the use of these new BF classes for identifying
exploit mitigation techniques.

II. BF APPROACH AND METHODOLOGY

BF’s approach is different from CWE’s exhaustive list
approach. BF is a classification. Each BF class is a taxonomic
category of a weakness type. It relates to a distinct phase of
software execution, the operations specific for that phase and
the operands required as input to those operations.

We define a software bug as a coding error that needs
to be fixed. A weakness is caused by a bug or ill-formed
data. A weakness type is also a meaningful notion, as
different vulnerabilities may have the same type of underlying
weaknesses. We define a vulnerability as an instance of a
weakness type that leads to a security failure. It may have
more than one underlying weaknesses linked by causality.

BF describes a bug or a weakness as an improper state
and its transition. The transition is to another weakness
or to a failure. An improper state is defined by the tuple
(operation, operand1, · · · , operandn), where at least
one element is improper. The initial state is always caused by
a bug; a coding error within the operation, which if fixed will
resolve the vulnerability. An intermediate state is caused by
ill-formed data; it has at least one improper operand. Rarely
an intermediate state may also have a bug, which if fixed
will also resolve the vulnerability. The final state, the failure,
is caused by a final error (undefined or exploitable system
behavior), which usually directly relates to a CWE [2]. A
transition is the result of the operation over the operands.

BF describes a vulnerability as a chain of improper
states and their transitions. Each improper state is an instance
of a BF class. The transition from the initial state is by
improper operation over proper operands. The transitions
from intermediate states are by proper operations with at least
one improper operand.

In some cases, several vulnerabilities have to be present
for an exploit to be harmful. The final errors resulting from
different chains converge to cause a failure. The bug in at
least one of the chains must be fixed to avoid that failure.

We call a BF class the set of operations, the valid
cause−→consequence relations for these operations, their at-
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tributes, and sites. The attributes are qualifiers for the opera-
tions and the operands that help understand how severe a bug
is. The sites show where in code a bug might occur. The BF
classes are orthogonal by design; their sets of operations do
not overlap.

The taxonomy of a particular bug or weakness is based
on one BF class. Its description is an instance of a taxonomic
BF class with one cause, one operation, one consequence, and
their attributes. The operation binds the cause→consequence
relation – e.g., deallocation via a dangling pointer leads to a
final error known as double free [5].

The methodology for developing a BF class is as fol-
lows: (1) Identify the phase specific for a kind of bugs. (2)
Identify the operations for that phase. (3) Define a BF bugs
model showing operations flow. (4) Identify all causes. (5)
Identify all consequences that propagate as a cause to a next
weakness. (6) Identify all consequences that are final errors.
(7) Identify attributes useful to describe such a bug/weakness.
(8) Identify possible sites in code.

III. MEMORY BUGS MODEL

Each memory related bug or weakness involves one
memory operation. Each operation is over a region of mem-
ory or over the address needed to reach it. That memory is
used for storing data and has an important property: it is
finite. It has boundaries and it has size. We call this piece
of memory, with a well-defined size, an object. It is used to
store a primitive data or a data structure. The memory address
should be held by at least one pointer or determined as an
offset on the stack, otherwise the object will be unreachable.
The object and the pointer are the operands of that memory
operation (see definitions in Table III).

Memory bugs could be introduced at any of the phases
of an object’s lifecycle: address formation, allocation, use,
and deallocation. The BF Memory Bugs Model helps iden-
tify where in these phases bugs could occur (Fig. 1). The
phases correspond to the BF memory bugs classes: Memory
Addressing Bugs (MAD), Memory Allocation Bugs (MAL),
Memory Use Bugs (MUS), and Memory Deallocation Bugs
(MDL). All possible memory operations are grouped by
phase. The presented operations flow helps in identifying
possible chains of bugs/weaknesses.

The operations under MAD (Fig. 1) are on forming
or modifying a pointer: Initialize, Reposition, and Reassign.
Bugs in pointer initialization could result in pointers to mean-
ingless objects. Moving a pointer via a bugged Reposition
could get it pointing outside the object bounds. Bugs in
Reassign could connect a pointer to a wrong object. See
definitions of MAD operations in Table Ia.

The operations under MUS are on reading or writing the
content of an object through one of its pointers: Initialize,
Read, Write, Clear, and Dereference. Bugs in object initial-
ization could lead to use of random or malicious data. Bugs
in write could alter data wrongly. Bugs in Clear could leak
confidential information such as passwords and cryptographic
private keys. Bugs in Dereference are practically unsuccessful
reading or unsuccessful writing. See definitions of MUS
operations in Table Ic.

The operations under MAL are on creating an object or
extending it through one of its pointers: Allocate, Extend,
and Reallocate–Extend (see definitions in Table Ib). The
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Fig. 1: The BF Memory Bugs Model. Comprises four phases,
corresponding to the BF classes MAD, MAL, MUS, and
MDL. Shows the memory operations flow: blue arrows – the
main flow; green arrows – flow for allocation at a specific
address; red – extra flow in case of reallocation.

operations under MDL are on destroying or reducing an
object through one of its pointer: Deallocate, Reduce, and
Reallocate–Reduce (see definitions in Table Id). Both MAL
and MDL operations affect the boundaries and the size of the
object. Bugs in Reallocate may concern multiple pointers to
the same object. Allocation in excess or failure to deallocate
unused objects could exhaust memory. Excessive reduction
of allocated memory could lead to an object that is too little
for the data it needs to store.

The possible flow between operations from different
phases is depicted on Fig. 1 with colored arrows: blue is for
the main flow; green is for allocation requested at a specific
address; red is for the extra flow in case of reallocation.

Following the blue arrows, the very first operation is
MAL Allocate an object. Following the green arrows, the
first operation is MAD Initialize a pointer. Next operation,
following the blue arrows, should be MAD Initialize the
pointer to the address returned by Allocate. While, following
the green arrows, next operation should be MAL Allocate an
object at the address the pointer holds.

After an object is allocated and its pointer is initialized,
it can be used via MUS Read or MUS Write. The boundaries
and the size of an object are set at allocation, then they can
be changed by any MAL or MDL operation.

If an object is owned by more than one pointer, Reallo-
cate (in MAL or MDL) should be followed by Reposition
over all these owners. A Deallocate an object operation
should properly be followed by Reassign of all its pointers
to either NULL or another object.

IV. BF MEMORY BUGS CLASSES

We define the BF Memory Bugs classes as follows:

2



TABLE I: Operations

(a) MAD (Memory Addressing)

Operation
Value

Definition

Initialize
(pointer)

The first assign of an object address to a pointer; positions
the pointer at the start of the object.

Reposition Changes the pointer to another position inside its object.
Reassign Changes the pointer to a different object.

(b) MAL (Memory Allocation)

Operation
Value

Definition

Allocate Reserves space in memory for an object; defines its initial
boundaries and size.

Extend Allocates additional memory for an object in the same space;
redefines its boundaries and size.

Reallocate–
Extend

Allocates a new larger piece of memory for an object at a
new address, copies the object content there, reassigns its
pointer, and deallocates the previous piece of memory.

(c) MUS (Memory Use)

Operation
Value

Definition

Initialize
(object)

The first write into an object, after it is allocated.

Read Gets content from an object.
Write Puts content into an object.
Clear The very last write into an object, before it is deallocated.
Dereference Overreaches Initialize, Read, Write, and Clear, focus is on

object access, no matter if it’s for reading or for writing.

(d) MDL (Memory Deallocation)

Operation
Value

Definition

Deallocate Releases the allocated memory of an object.
Reduce Deallocates part of the object memory; redefines its bound-

aries and size.
Reallocate–
Reduce

Allocates a new smaller space in memory for an object at a
new address, copies part of the object content there, reassigns
the pointer, and deallocates the previous piece of memory.

Memory Addressing Bugs (MAD) – The pointer to
an object is initialized, repositioned, or reassigned to an
improper memory address.

Memory Allocation Bugs (MAL) – An object is allo-
cated, extended, or reallocated (while extending) improperly.

Memory Use Bugs (MUS) – An object is initialized,
read, written, or cleared improperly.

Memory Deallocation Bugs (MDL) – An object is deal-
located, reduced, or reallocated (while reducing) improperly.

Each of these classes represents a phase, aligned with the
Memory Bugs Model, and is comprised of sets of operations,
cause−→consequence relations, and attributes. Fig. 2, Fig. 3,
Fig. 4, and Fig. 5 show the specific sets for memory address-
ing, allocation, use, and deallocation bugs, respectively. Only
the values listed on the corresponding figure should be used
to describe that kind of bugs or weaknesses.

A. Operations
All BF classes are being designed to be orthogonal; their

sets of operations should not overlap. The operations in which
memory bugs could happen are defined in Table I.

The MAD operations are: Initialize (Pointer), Reassign,
Reposition. They reflect improper formation of an address.
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Fig. 2: The Memory Addressing Bugs (MAD) class.
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Fig. 3: The Memory Allocation Bugs (MAL) class.

The MAL operations are: Allocate, Extend, and Reallo-
cate–Extend. They reflect improper formation of an object.
The MUS operations are: Initialize (Object), Dereference,
Read, Write, Clear. They reflect improper use of an ob-
ject. The MDL operations are: Deallocate, Reduce, Real-
locate–Reduce. They reflect improper release of an object.
MAD Initialize and MUS Initialize are not overlapping, as
the former is about the address, the latter is about the object.

B. Causes
A cause is either an improper operation or an improper

operand. The values for improper memory operations are:
Missing, Mismatched, and Erroneous. See definitions in Ta-
ble II. The operands of a memory operation are pointer and
object. See definitions in Table III. All values for improper
operands of a memory operation are defined in Table IV.

An improper pointer could be a reference. Comments
could be used to provide details, such as the pointer or
reference identifier. An improper object could be a primitive
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Fig. 4: The Memory Use Bugs (MUS) class.
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Fig. 5: The Memory Deallocation Bugs (MDL) class.

TABLE II: Improper Operations

Value Definition Example
Missing The operation is absent. Missing object ini-

tialization.
Mismatched The deallocation function

does not match the alloca-
tion function used for the
same object.

Use of free() on
an object allocated
with new.

Erroneous There is a bug is in the
implementation of the op-
eration.

Allocation with
malloc() returns a
non existing address.

data type or a data structure. Comments could be used to
provide details, such as the object data type and identifier.

All possible causes for memory bugs are defined in
Table II and Table IV. However, refer Fig. 2, Fig. 3, Fig. 4,

and Fig. 5 for causes applicable to each class.
When describing a chain of bugs/weaknesses, the pointer

and the object should be analyzed carefully, as they may
be different for each improper state. The description should
reflect the changes and provide details in the comments.

C. Consequences
A consequence is either an improper operand or a

final error. As a consequence, an improper pointer or an
improper object would become a cause for a next weakness.
These consequence–cause transitions explain why these two
kinds of consequences have the same possible values as the
corresponding kinds of causes (see Table II and Table IV).

All possible memory errors are defined in Table V.
The only kind of MAD consequences is Improper

Pointer, which means a MAD bug or weakness is always
followed by another memory weakness, such as of MAL,
MUS, or MDL. The only kind of MUS consequences is
Memory Error, which means MUS always ends in a failure.

All possible consequences for memory bugs are defined
in Table IV and Table V. However, refer Fig. 2, Fig. 3, Fig. 4,
and Fig. 5 for consequences applicable to each class.

D. Attributes
An attribute provides additional useful information

about the operation or its operands. All possible attributes
for memory bugs are defined in Table VI.

All Memory Bugs classes have the following attributes:
Source Code, Execution Space, and Location. They explain

TABLE III: Operands

Concept Definition
Object A memory region used to store data.
Pointer A holder of the memory address of an object.

TABLE IV: Improper Operands

(a) Improper Pointer

Value Definition
NULL Pointer Points to the zero address, a specific invalid address.
Wild Pointer Points to an arbitrary address, because it has not been

initialized or an erroneous allocation routine is used.
Dangling
Pointer

Still points to the address of its successfully deallo-
cated object.

Over Bounds Points over the bounds of its object.
Under Bounds Points under the bounds of its object.
Untrusted
Pointer

The pointer is modified to an improperly checked
address.

Wrong
Position

Points to a miscalculated position inside object
bounds.

Hardcoded
Address

The pointer points a wrong specific address.

Casted Pointer The pointer does not match the type of the object, due
to wrong type casting.

Forbidden Ad-
dress

The pointer points to an OS protected or non-existing
address.

Single Owner
of Object

The only pointer of an already allocated object is used
to allocate a new object.

(b) Improper Object

Value Definition
Not Enough
Allocated

The allocated memory is too little for the data it should
store.

Wrong Size
Used

The value used as size does not match the real size of
the object.

4



TABLE V: Memory Errors

Value Definition Risk
Memory
Overflow

More memory requested
than available.

Stack/heap exhaustion.

Memory
Leak

An object has no pointer
pointing to it.

Resource exhaustion.
Application crash. DoS.

Double Free Attempt to deallocate a
deallocated object or via
an uninitialized pointer.

Arbitrary code execution.

Object Cor-
ruption

Object data is unintention-
ally altered.

Wrong/unexpected
results.

Uninitialized
Object

Object data is not filled in
before use.

Controlled or left over
data.

Not Cleared
Object

Object data not overwrit-
ten before deallocation.

Information exposure
(e.g. private keys).

NULL
Pointer
Dereference

Attempt to access an ob-
ject for read or write
through a NULL pointer.

Program crash.
Arbitrary code execution
(in some OSs).

Untrusted
Pointer
Dereference

Attempt to access an ob-
ject via an altered pointer
(not legitimate derefer-
ence of tainted pointers).

DoS.
Arbitrary code execution.

Type Confu-
sion

Pointer and object have
different types.

Vtable corruption.
Hijack.

Use After
Free

Attempt to use a deallo-
cated object.

Arbitrary code execution.

Buffer Over-
flow

Read or write above the
object upper bound.

Arbitrary code execution.
Information exposure.

Buffer
Underflow

Read or write below the
object lower bounds.

Arbitrary code execution.
Information exposure.

Unitialized
Pointer
Derefereance

An attempt to access an
object for read or write via
an uninitialized pointer.

Control flow hijack.

where a bug is in three dimensions: where is the operation in
the program, where its code is running, and where the object
is stored in memory. See definitions of values in Table VIa.

All Memory Bugs classes have also the operation at-
tribute Mechanism, but with different possible values.

For MAD and MUS Mechanism qualifies an operation
as Direct or Sequential, depending on if an object element is
accessed directly or after going through previous elements.
See definitions of values in Table VIb.

For MAL and MDL Mechanism qualifies an operation
as Implicit or Explicit. For MAL, Implicit means automatic
compile-time allocation. Improper results from implicit allo-
cation are not enough memory allocated or too much memory
requested, overflowing the stack (e.g., via a recursion). For
MDL, Implicit means automatic deallocation at the end of
scope. Bugs in automatic memory allocation or deallocation
are rare (e.g., the gcc compiler bug [6]). For MAL, Explicit
means dynamic run time allocation (e.g. using malloc()
or new). For MDL, Explicit means dynamic run time deal-
location (e.g. using free() or del).

MAL and MDL have also the pointer attribute Owner-
ship. It shows how many pointers point to an object: None,
Single, and Shared. See definitions of values in Table VIc. For
MAL, it shows how many pointers hold the allocated object.
For MDL, if an object has no pointer pointing to it, it will
be unreachable for deallocation in an environment without a
garbage collector. Multiple pointers to the same object could
lead to race conditions and dangling pointers.

MUS has also the pointer attribute Span. It shows how
many bytes are being used: Little, Moderate, Huge, depending
on if those are a few, more than a few and less than one KB,

TABLE VI: Attributes

(a) MAD, MAL, MUS, MDL Attributes

Name Value Definition

So
ur

ce
C

od
e Codebase The operation is in programmer’s code – in the

application itself.
Third Party The operation is in a third party library.
Standard
Library

The operation is in the standard library for a
particular programming language.

Language
Processor

The operation is in the tool that allows execu-
tion or creates executable (compiler, assembler,
interpreter).

E
xe

cu
tio

n
Sp

ac
e Userland The bugged code runs in an environment with

privilege levels, but in unprivileged mode (e.g.,
ring 3 in x86 architecture).

Kernel The bugged code runs in an environment with
privilege levels with access privileged instruc-
tions (e.g., ring 0 in x86 architecture).

Bare-Metal The bugged code runs in an environment with-
out privilege control. Usually, the program is
the only software running and has total access
to the hardware.

L
oc

at
io

n
1 Stack The object is a non-static local variable (defined

in a function, a passed parameters, or a function
return address).

Heap The object is a dynamically allocated data struc-
ture (e.g., via malloc() and new).

(b) MAD and MUS Attributes

Name Value Definition
M

ec
ha

ni
sm

Direct The operation is performed over a particular
object element.

Sequential The operation is performed after iterating over
the object elements.

(c) MAL and MDL Attributes

Name Value Definition

M
ec

ha
ni

sm

Implicit The operation is performed without a function
call.

Explicit The operation is performed by a function/
method) call.

O
w

ne
rs

hi
p None The object has no owner.

Single The object has one owner.

Shared The object has more than one owner.

(d) MUS Attributes

Name Value Definition

Sp
an

Little A few bytes of memory are accessed.
Moderate Several bytes of memory are accessed, but less

than 1 KB.
Huge More than 1 KB of memory is accessed.

or more than one KB. See definitions of values in Table VId.

E. Sites

MAD sites are any changes to a pointer via assignment
(=) or repositioning via an index ([]) or pointer arithmetics
(e.g., p++ and p--).

1Other proper values should be used for different kinds of memory layout.
For example, Uninitialized Data Segment, Data Segment, and Code Segment
layout should be added for C language layout [7].
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MAL sites are any allocation routine (e.g., malloc())
or operator (e.g. new), declaration of a variable with im-
plicit allocation, OOP constructor, or extension routine (e.g.,
realoc()) or adding elements to a container object.

MUS sites are any dereference operators in the source
code (*, [], ->, .).

MDL sites are any deallocation routine (e.g., free())
or operator (e.g. del), end of scope for implicit allo-
cated variables, OOP destructor, or reduction routine (e.g.,
realoc()) or removing elements from a container object.

V. THE BF MEMORY CLASSES AS CWE EXTENSION

BF Memory Bugs taxonomy can be used by bug re-
porting tools, as it is a structured extension over memory-
related CWEs [2]. All Memory Error consequences from the
BF classes (Table V) relate to one or more CWEs.

We have generated a digraph (Fig. 6) of all memory-
related CWEs to show how they correspond to the possible
BF Memory Error consequences (Table V). An edge starts at
a parent CWE and ends at a child CWE. The outline style of
a CWE node indicates the CWE level of abstraction: pillar,
class, base, or variant. Bug reporting tools would use base or
variant CWEs, but they may also use higher abstraction level
CWEs if there is not enough specific information about the
bug or if there is no related base CWE.

The digraph helped us identify clusters of memory-
related CWEs. All these CWEs can be tracked as children
of the pillar CWE-664, with the only exception of CWE-476
(NULL Pointer Dereference). The largest cluster comprises
CWE-118 and the children of CWE-119, which are weak-
nesses associated with reading and writing outside the bound-
aries of an object. The second cluster comprises the children
of CWE-400 and CWE-665, which are mainly weaknesses
related to memory allocation and object initialization. The
children of CWE-404, which are weaknesses associated with
improper memory cleanup and release, form the third cluster.
The smallest cluster comprises CWE-704, CWE-588 and
CWE-843, which are memory use or deallocation weaknesses
due to the mismatch between pointer and object types.

The color of a CWE node (Fig. 6) indicates the BF
memory class associated with that CWE. A BF class is
associated with a CWE if the BF class has a Memory Error
consequence covered by the CWE description. CWEs related
to the BF MUS memory errors are presented in blue, CWEs
related only to MAL are presented in pink, and CWEs related
to both MAL and MDL are presented in green.

Most of the BF MUS Memory Error consequences
(Fig. 4) relate to CWEs from the CWE-118 cluster. The
Memory Error consequences from BF MAL and BF MDL
(Fig. 3 and Fig. 5) relate to CWEs across clusters. Note
that the BF MAD class (Fig. 2) has no Memory Error
consequences, so it does not directly relate to any CWE.

The BF Memory Bugs model (Fig. 1) reflects the life-
cycle of an object. While the pillar CWE-664 reflects the
“lifetime of creation, use, and release” of a resource, it is
quite broad. It is the parent of many CWEs that are not strictly
memory-related. We use asterisks (*) to denote CWEs that are
about any resource. CWE-704 is not a memory-related CWE,
but is visualized on the digraph to show all the parent-child
relationships.
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456
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588
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761
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806

Fig. 6: A digraph of all memory related CWEs. Triple line –
variant, double line – base, single line – class, and thick red
line – pillar. BF class correspondence: pink is only for MAL,
green is for both MDL and MAL, and blue is for MUS.
−→ Click on an ID to open the CWE entry.

The identified clusters of memory CWEs do not strictly
correspond to the phases of address formation, allocation,
use, and deallocation. CWEs related to a phase appear in
more than one cluster. In addition, CWE-118 and CWE-119
are strictly about memory but cover more than one phase.

Viewed as a structured extension, the BF Memory Bugs
classes relate to CWEs through particular Memory Error
consequences. For BF MAL: Memory Overflow – relates to
CWEs: 400*, 770*, and 789; Memory Leak – to CWEs: 401,
404*, 771*, and 772*; Double Free – to CWE-415; Object
Corruption – to CWEs: 404*, 590, 761, 762, and 763.

For BF MUS: Uninitialized Object – relates to CWEs:
456, 457, 665*, 908*, and 909*; Not Cleared Object – to
CWEs: 226*, 244, and 459*; NULL Pointer Dereference –
to CWE-476; Untrusted Pointer Dereference – to CWEs: 119
and 822; Type Confusion – to CWEs: 588 and 843*; Use
After Free – to CWEs: 119, 416, and 825; Buffer Overflow
– to CWEs: 118, 119, 120, 121, 122, 123, 125, 126, 466,
805, 806, 787, and 788; Buffer Underflow – to CWEs: 118,
119, 122, 123, 124, 125, 127, 466, 786, 787, 805, and 806;
Unitialized Pointer Dereference – to CWEs: 119 and 824.
There are no related CWEs to BF MUS Object Corruption.

For BF MDL: Memory Leak – relates to CWEs: 401,
404*, and 771*; Double free – to CWE-415; Object Corrup-
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tion – to CWEs: 404*, 761, 762, and 763.

VI. SHOWCASES AND DISCUSSION

In this section, we use the new BF Memory Bugs classes
for precise descriptions of real world software vulnerabilities.
We also provide the real world fixes of each bug.

A. CVE-2018-20991 – Rust SmallVec Iterator Panic
This vulnerability is listed in CVE-2018-20991 and

discussed in [8]. The source code could be found at [9]. In
Rust, a panic is an unrecoverable error that terminates the
thread, possibly unwinding its stack (calling destructors as if
every function instantly returned) [10].

a) Brief Description: Rust is a multi-paradigm
programming language focused on safe concurrency. It has
a similar syntax to C++ and offers features to deal with
dynamic memory allocation, such as smart pointers [11]. In
general, a Rust programmer does not need to keep track
of memory allocation and deallocation, as the language is
designed to be memory safe this way.

b) Analysis: The versions before Rust 0.6.3 have
a bug in the lib.rs file. The insert_many() method
in the SmallVec class has two parameters: an iterable
I and an index. The method inserts all elements in the
iterable I at position index, shifting all the following
elements backwards. In the SmallVec class, if an iter-
ator passed to SmallVec::insert_many() panics in
Iterator::next, the destructor is called while the vector
is in an inconsistent state, possibly causing double free
(deallocation via references to same object). Fig. 7 presents
the BF taxonomy for this vulnerability.

c) The Fix: To fix the bug, the Rust commu-
nity opted to set the SmallVec length to index, call
insert_many(), and then update the length. With this
fix, if an iterator panics, a memory leak occurs [12]. The
developers downgraded the bug to avoid double free as a
consequence, which could lead to arbitrary code execution.
Now they have a memory leak. Fig. 8 presents the BF
taxonomy for the new bug.
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Mechanism:
• Explicit

Source Code:
• Standard Library

(lib.rs)

Execu�on Space:
• Userland

Ownership:
• Shared

Loca�on:
• Heap

ConsequenceCause

Improper Pointer:
Dangling Pointer (to SmallVec)

Memory Error:
Double Free

MUS Opera�on

Deallocate

Fig. 7: BF for CVE-2018-20991 – Rust Iterator Panic
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Fig. 8: BF for the Bug in the Fix of CVE-2018-20991

B. CVE-2014-0160 – Heartbleed Buffer Overflow

This vulnerability is listed in CVE-2014-0160 and dis-
cussed in [13]. The source code could be found at [14].

a) Brief Description: Heartbleed is a vulnerability
due to a bug in the OpenSSL – a crypto library for the
Transport Layer Security (TLS) and Secure Sockets Layer
(SSL) protocols. Using the heartbeat extension tests in TLS
and Datagram Transport Layer Security (DTLS) protocols,
a user can send a heartbeat request to a server. The request
contains a string and a payload unsigned integer, which
value is expected to be the string size. The server responds
with the same string. However, due to the bug, a malicious
user could set the payload as big as 65535 and the server
would read out of bounds. This could expose confidential
information that was not cleared before release.

b) Analysis: The TLS and DTLS implementa-
tions in OpenSSL 1.0.1 before 1.0.1g have a bug in
the d1_both.c and t1_lib.c files. In the Heartbleed
attack, the software stores the user data in an array
s−>s3−>rrec.data[0]. The size of that array is much
less than the huge 65535 bytes payload. The software does
not check the size of the data (s−>s3−>rrec.length)
towards the value of the payload. It assumes these numbers
are equal and using memcpy() reads payload consecutive
bytes from the array, beginning at its first byte, then sends
them to the malicious user. Fig. 9 presents the BF taxonomy
for this vulnerability.
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Fig. 9: BF for CVE-2014-0160 – Heartbleed Buffer Overflow

c) The Fix: To fix the bug the openSSL team added
a bound check for the array size [15]. We should note that
in Fig. 9 the Wrong Size Used cause is a consequence from
a missing Verify operation of a preceding Data Verification
Bug (DVR) [1], which is beyond the scope of this paper.
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C. Discussion
The BF taxonomy of a vulnerability can help identify

exploit mitigation techniques for a particular weakness types.
For that we should connect the BF taxonomy to an appropri-
ate attack model.

For memory bugs, we can use the classic memory
corruption attack model of Szekeres et al. [16] that system-
atizes the memory protection techniques. The model has six
steps towards the ultimate goal of an attacker. Its very first
level is on memory safety, where an attacker can start an
exploitation with an invalid pointer dereference. This kind of
invalid pointer corresponds to the improper pointer states that
define some of the causes for the BF Memory Bugs classes
(Table IVa).

Using the BF description of a vulnerability and follow-
ing the attack model we can identify effective mitigations
against possible attacks. Let’s take, for example, a Buffer
Overflow that is caused by Read Over Bounds. Following the
Szekeres et al. model, such a bug would allow an attacker to
access program data, leading to information leakage.

To make use of the collected data, the attacker should
be able to interpret it. Probabilistic methods such as data
space randomization (DSR) could mitigate the attack, while
an address space location randomization (ASLR) will not
do it [17]. The values of the Location and Execution Space
attributes of the object help identify where in the memory
layout the mitigation technique should be put in place.

The Szekeres et al. model, however does not cover bugs
related to some BF memory operations, such as allocation,
reallocation, and initialization. It does not cover any memory
addressing bugs (MAD) and it is not concerned describing
how a pointer becomes invalid. A key point here is that
Szekeres et al. look at memory corruption bugs from attacks
perspective, while we focus on systematizing information that
is sufficient to fix a bug.

VII. CONCLUSION

In this paper, we introduce four new BF classes: Memory
Addressing Bugs (MAD), Memory Allocation Bugs (MAL),
Memory Use Bugs (MUS), and Memory Deallocation Bugs
(MDL). We present their operations, along with the possible
causes, consequences, attributes, and sites.

We analyze particular vulnerabilities related to these
classes and provide precise BF descriptions. The BF struc-
tured taxonomies of memory corruption vulnerabilities show
the initial error (the bug) providing a quite concise and still
far more clear description than the unstructured explanations
in current repositories, advisories, and publications.

Linking the BF Memory Bugs model and taxonomy to
an attack model (e.g. Szekeres et al. model) would provide
the means of covering the memory corruption vulnerabilities
landscape. For example, the first layer of the Szekeres model
could connect with the BF causes defined in Section IV-B.
As part of that, the notion of invalid pointer should not be
restricted to dangling pointers and out of bounds pointers;
refinement to the causes in Table IVa should be considered.

The BF Memory Bugs taxonomy can be used by bug
reporting tools, as it can be viewed as a structured extension
over the memory related CWEs [2]. Furthermore, the BF de-
scriptions of particular vulnerabilities can be used to identify
exploit mitigation techniques.
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