
Reappraising the appropriate calculation of a common
meteorological quantity: Potential Temperature
Manuel Baumgartner1,2, Ralf Weigel2, Allan H. Harvey3, Felix Plöger4,5, Ulrich Achatz6, and
Peter Spichtinger2

1Zentrum für Datenverarbeitung, Johannes Gutenberg University Mainz, Germany
2Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Germany
3Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, USA
4Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-7), Jülich, Germany
5Institute for Atmospheric and Environmental Research, University of Wuppertal, Wuppertal, Germany
6Institut für Atmosphäre und Umwelt, Goethe-Universität Frankfurt, Frankfurt am Main, Germany

Correspondence: Manuel Baumgartner (manuel.baumgartner@uni-mainz.de)

Abstract. The potential temperature is a widely used quantity in atmospheric science since it is conserved for dry air’s adiabatic

changes of state. Its definition involves the specific heat capacity of dry air, which is traditionally assumed as constant. However,

the literature provides different values of this allegedly constant parameter, which are reviewed and discussed in this study.

Furthermore, we derive the potential temperature for a temperature-dependent parameterisation of the specific heat capacity of

dry air, thus providing a new reference potential temperature with a more rigorous basis. This new reference shows different5

values and vertical gradients, in particular in the stratosphere and above, compared to the potential temperature that assumes

constant heat capacity. The application of the new reference potential temperature is discussed for computations of the Brunt-

Väisälä frequency, Ertel’s potential vorticity, diabatic heating rates, and for the vertical sorting of observational data.

1 Introduction

According to the book Thermodynamics of the Atmosphere by Alfred Wegener (1911), the first published use of the expression10

potential temperature in meteorology is credited to Wladimir Köppen (1888)1 and Wilhelm von Bezold (1888), both following

the conclusions of Hermann von Helmholtz (1888) (see also Kutzbach, 2016). Even prior to the introduction of the entropy,

Poisson (1833) and Thomson (1862) used the “adiabatic equation”, the basis of what is understood today as “potential tem-

perature”2, to describe adiabatic processes, e.g., the coincident variation of temperature and pressure on the movement of air,

which is “independent of the effects produced by the radiation or conduction of heat” (Thomson, 1862)3. Approximately 2615

years later, von Helmholtz perceived that within the atmosphere the heat exchange between air masses of different tempera-

tures, which are relatively moved, is insufficiently explained by heat transfer due only to radiation and convection. He argued

1Wegener mentioned a talk given by Köppen in a footnote on page 111. In the publication year (1911) of Wegener’s book, Köppen’s daughter Else got

engaged to Alfred Wegener (Reinke-Kunze, 2013) and they married in the year 1913 (Hallam, 1975).
2Cf. Bauer (1908) where, for the first time, the potential temperature and the entropy are set in a relationship.
3These early applications of entropy in meteorology are also documented in Marquet (2019).
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that wind phenomena (e.g., the trade winds), storm events, and the atmospheric circulation were more intense, of larger extent,

and more persistent than observed if the air’s heat exchange within the discontinuity region (the friction surface of the different

air masses) was not mainly due to eddy-driven mixing. On his way to analytically describe the heat exchange of different air20

masses within the atmosphere, in May of 1880, von Helmholtz introduced the air’s immanent heat while its absolute tempera-

ture changes with changing pressure (von Helmholtz, 1888). In essence, von Helmholtz concluded that the temperature gained

by a volume of dry air due to its adiabatic descent from a certain initial pressure level (p) to ground pressure (p0) corresponds

to the air’s immanent heat. In November of the same year, in agreement with von Helmholtz and probably inspired by a presen-

tation that was given in June by Köppen (1888), this property was renamed and reintroduced as the air’s potential temperature25

(θ in the following) by von Bezold (1888) with the following definition for strictly adiabatic changes of state:

θ = T

(
p0
p

) γ−1
γ

, (1)

where T and p are the absolute temperature and pressure, respectively, of an air parcel at a certain initial (pressure-) altitude

level. The quantities θ and p0 are corresponding values of the same air parcel’s absolute temperature and pressure if the air was

exposed to conditions at ground level. The dimensionless coefficient γ, nowadays called the isentropic exponent, was specified30

as 1.41 (von Bezold, 1888).

Moreover, in the same publication, von Bezold concluded that for moist air’s adiabatic changes of state, its potential temper-

ature remains unchanged as long as the change of state occurs within dry-adiabatic limits; and further, if there is condensation

and precipitation, the potential temperature changes by a magnitude that is determined by the amount of water that falls out

of the air parcel. From a modern perspective, it is clear that the air parcel is an isolated thermodynamic system, and adiabatic35

processes correspond to processes with conserved entropy (i.e., isentropic processes). The description of the immanent heat

is then equivalent to the thermodynamic state function entropy, which corresponds to potential temperature of dry air in a

one-to-one relationship.

In general, the potential temperature has the benefit of providing a practicable vertical coordinate (equivalent to the pressure

level or the altitude above, e.g., sea level) to visualise and analyse the vertical distribution and variability of (measured) data40

related to any type of atmospheric parameter. Admittedly, the use of the potential temperature as a vertical coordinate is initially

less intuitive than applying altitude or pressure coordinates. Indeed, the potential temperature bears a certain abstractness to

describe an air parcel’s state at a certain altitude level by its imaginary dry-adiabatic descent to ground conditions. However,

one major advantage of using the potential temperature as a vertical coordinate is that the (measured) data are sortable with

respect to the entropy state at which the atmospheric samples were taken. Thus, comparing repeated measurements of an45

atmospheric parameter on an isentropic surface or layer excludes any diabatic change of the probed air mass.

Apart from characterising the isentropes, the vertical profiles of the potential temperature (θ as a function of height z)

are used as the reference for evaluating the atmosphere’s actual vertical temperature gradient, which allows characterising its

static stability. Notably, von Bezold (1888) already proposed the potential temperature as an atmospheric stability criterion.

In its basic formulation, the potential temperature exclusively refers to the state of dry air, and thus the potential temperature50

characterises the atmosphere’s static stability with respect to vertical displacements of a dry air parcel. In meteorology, the
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static stability parameter is expressed in terms of the (squared) Brunt-Väisälä frequency N , often written in the form

N2 =
g

θ

∂θ

∂z
, (2)

where g = 9.81m s−2 is the gravitational acceleration. The potential temperature twice enters the formulation of the stability

parameter, as the denominator (θ−1) and as the vertical gradient ∂θ
∂z . In the research field of dynamical meteorology, the55

potential vorticity (PV) is often used (Ertel, 1942; Hoskins et al., 1985; Schubert et al., 2004). The PV is proportional to

the scalar product of the atmosphere’s vorticity (the air’s local spinning motion) and its stratification (the air’s tendency to

spread in layers of diminished exchange). More concretely, the PV is the scalar product of the absolute vorticity vector and the

three-dimensional gradient of θ, i.e., not only the potential temperature’s vertical gradient but also its partial derivatives on the

horizontal plane add to the resulting PV, although, particularly at stratospheric altitudes, the vertical gradient constitutes the60

dominant contribution. For the analytical description of a fluid’s motion within a rotational system, as is the atmosphere, the

PV provides a quantity that varies exclusively due to diabatic processes. Frequently, the PV is used to define the tropopause

height (usually at 2 PV units, see, e.g., Gettelman et al., 2011) or the edge of a large-scale cyclone such as the polar winter

vortex on specific θ levels (cf. Curtius et al., 2005).

While for a dry atmosphere (i.e., with little or no water vapour) the potential temperature is the correct conserved quantity65

(corresponding to entropy) for reversible processes, for an atmosphere containing water in two or more phases (vapour, liquid,

and/or solid phases) energy transfers due to phase changes play a major role. Thus, the formulation of the potential temper-

ature has to be extended since entropy is still the right quantity for reversible processes, including phase changes. Starting

from the equation for the moist specific entropy, as derived from the first law of thermodynamics and the Gibbs equation,

further extensions of the dry air potential temperature have been developed (Hauf and Höller, 1987; Emanuel, 1994; Marquet,70

2011; Marquet and Geleyn, 2015) to account for phase changes and deviations from thermodynamic equilibrium, e.g., by irre-

versible processes. By assuming only reversible processes (i.e., conserved entropy), approximate formulas can be derived (e.g.,

Emanuel, 1994). However, in the case of large hydrometeors, liquid or solid particles are removed due to gravitational accel-

eration, leading to an irreversible process, hence the formulas based on the assumption of a reversible process are no longer

applicable. Sometimes for this situation a so-called pseudo adiabatic potential temperature is defined, assuming instantaneous75

removal of hydrometeors from the air parcel; usually, meaningful approximations to this quantity are given, since generally it

cannot be derived from first principles. Equivalent potential temperature including phase changes for vapour and liquid water is

often used for the determination of convective instabilities. The general formulation can be easily adapted for an ice equivalent

potential temperature, i.e., for reversible processes in pure ice clouds (see, e.g., Spichtinger, 2014). Although the latent heat of

sublimation is larger than the latent heat of vaporisation, the absolute mass content of water vapour decreases exponentially80

with decreasing temperature, leading to only small corrections due to phase changes in pure ice clouds.

At altitudes above the clouds’ top, within the upper troposphere and across the tropopause, the air is substantially dried

out compared to tropospheric in-cloud conditions. Therefore, above clouds and further aloft, e.g., within the stratosphere, the

conventional dry-air potential temperature may suffice to provide a meaningful vertical coordinate. Moreover, the potential

temperature or the virtual potential temperature, which includes water vapour, are commonly used as prognostic variables in85
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numerical models for the formulations of the energy equation (e.g., Skamarock et al., 2005; Skamarock and Klemp, 2008;

Zängl et al., 2015; Borchert et al., 2019). Thereby, very often both variants, the potential temperature as well as the equivalent

potential temperature, are involved to account for dry air situations and cloud conditions.

In any case, the use of the potential temperature requires the following preconditions to be fulfilled:

1. θ should be based on a rigorous derivation to ensure its validity as a function of atmospheric altitude in order not to90

corrupt its character as a vertical coordinate that allows for appropriately comparing (measured) atmospheric parameters,

and

2. θ should approximate to the greatest possible extent the true entropy state of a probed air mass and should preferably

account for the implied dependencies on atmospheric variables, even under the assumption that air behaves as an ideal

gas,95

with the aim that the potential temperature behaves as a rational physical variable. Thus, still abiding by the ideal gas as-

sumption, a re-assessment of the fundamental atmospheric quantity θ is suggested, which is based on the state-of-knowledge

of air’s thermodynamic properties, and this re-assessed θ is comprehensively examined concerning its ability to hold also for

atmospheric conditions above the troposphere.

In principle, the concept of the potential temperature is transferable to all systems of thermally stratified fluids such as a100

planetary gas atmosphere or an ocean, to investigate heat fluxes (advection or diffusion) or the static stability of the fluid. In

astrophysics, the potential temperature is used almost identically as in atmospheric sciences to describe dynamic processes and

thermodynamic properties (e.g., static stability or vorticity) in the atmosphere of planets other than the Earth. Here, the same

value p0 = 1000hPa, as applied to the Earth’s atmosphere, is frequently used as a reference pressure for the atmosphere of

other planets (Catling, 2015, Table 4), whereby the formulations of the specific heat capacity require adaptations to account105

for the individual gas composition of the respective planetary atmosphere. In order to simulate the weather in the atmosphere

of other planets, the Weather Research and Forecasting model (WRF) was extended to ”planetWRF” (Richardson et al., 2007)

and the governing equations considered within the WRF model include a prognostic equation for the potential temperature

(Skamarock et al., 2005; Skamarock and Klemp, 2008). However, the temperature dependency of the isobaric heat capacity cp

is not generally negligible, especially when taking “deep atmospheres, such as on Venus” (Catling, 2015, p. 436) into account110

or the temperature lapse rates on other planets (Li et al., 2018). The atmosphere of Saturn’s moon Titan, the only known moon

with a substantial atmosphere, was comprehensively studied with frequent application of the potential temperature based on

profile measurement of temperature and pressure in Titan’s atmosphere by the Huygens probe (Müller-Wodarg et al., 2014).

Moreover, the potential temperature is a frequently used quantity in oceanography (e.g., McDougall et al., 2003; Feistel,

2008), while here the consideration of sea water’s salinity and its impact on the specific heat capacity of sea water implies115

additional complexity. In particular, McDougall et al. (2003) suggests a re-assessment of the potential temperature as applied

in oceanography to approximate the adiabatic lapse rate, thus this study bears certain parallels to the present investigation

aiming at the reappraisal of the potential temperature for atmosphere-related purposes. These studies from other disciplines

motivate the need for a re-assessment of the potential temperature for the atmospheric sciences. Thus, the approach provided
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herein proposes a modified calculation of the widely used quantity of the potential temperature by additionally accounting for120

the current state of knowledge concerning air’s properties.

The study is organised as follows: The derivation of the potential temperature for an ideal gas with constant specific heat

capacity cp is recalled in Section 2. In Section 3 the assumption of a constant cp is discussed together with a synopsis of various

cp values as provided in the literature. The temperature dependency of cp is examined in Section 4 and a parameterisation is

given. Section 5 is devoted to the definition and computation of a new reference potential temperature θref based on the125

temperature-dependent specific heat capacity, while Section 6 focuses on the influence of real-gas effects on the resulting

potential temperature. Section 7 presents some implications of the use of θref and concluding remarks are given in Section 8.

2 Derivation of the potential temperature for an ideal gas

The Gibbs equation (see, e.g., Kondepudi and Prigogine, 1998) is a general thermodynamic relation to describe the state of a

system with m components and reads as130

T dS = dH −V dp−
m∑
k=1

µk dMk, (3)

where T denotes the absolute temperature in K, S the entropy in J K−1, H the enthalpy in J, V the volume in m3, µk the

chemical potential of component k in J kg−1, Mk the mass of component k in kg, and p the static pressure in Pa. Assuming

no phase conversion or chemical reaction within the system, the mass of each component does not change, hence dMk = 0 for

each component k.135

In the following, dry air is assumed to be the single component in the system. Expressing the Gibbs equation in its specific

form (i.e., division by the total mass Ma of dry air; note, lowercase letters indicate specific variables, e.g., h=H/Ma, etc.)

leads to

T ds= dh− V

Ma
dp ⇔ ds=

1

T
dh− V

MaT
dp. (4)

Furthermore, approximating dry air as an ideal gas leads to the following simplifications:140

– The ideal gas law

pV =MaRaT (5)

can be applied with the specific gas constant Ra of dry air, which is

Ra =
R

Mmol,a

=
8.31446261815324J mol−1K−1

0.0289586kg mol−1± 0.0000002kg mol−1

∈
[
287.11350J kg−1K−1, 287.11748J kg−1K−1

]
,

(6)
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with the molar gas constant R in J mol−1K−1 (Tiesinga et al., 2020; Newell et al., 2018) and Mmol,a the molar mass of145

dry air (Lemmon et al., 2000), composed of nitrogen N2, oxygen O2, and argon Ar.

– The specific enthalpy is given by

dh= cpdT (7)

with cp the specific heat capacity of dry air.

Based on these assumptions, the change of the specific entropy (within the fluid dry air) is given by150

ds=
cp
T

dT −Ra
dp

p
. (8)

For isentropic changes of state, i.e., ds= 0, equation (8) reduces to

cp
T

dT =Ra
dp

p
. (9)

Note that the assumption of dry air being an ideal gas does not imply that in (9) the specific heat capacity cp is constant. While

statistical mechanics excludes any pressure dependence in the ideal-gas heat capacity, the general derivation (cf. Appendix A)155

permits a temperature dependence of cp. However, usually the temperature dependence is neglected in atmospheric physics

and, instead, cp is assumed as constant (see, e.g., Ambaum, 2010, page 48/49, where vibrational modes of the air molecules

are neglected). Immediately below and in Section 3, the treatment of cp as a temperature-independent constant is discussed.

The introduction of the temperature dependence then follows in Section 4.

Treating cp as a constant, rearrangement of (9) leads to160

dT

T
=
Ra
cp

dp

p
. (10)

Integration of (10) over the range from ground-level pressure and temperature (p0, T0) to the pressure and temperature at a

specific height (p, T ) yields

ln

(
T

T0

)
=

T∫
T0

dT ′

T ′
=
Ra
cp

p∫
p0

dp′

p′
=
Ra
cp

ln

(
p

p0

)
, (11)

and, after another straightforward conversion, one arrives at165

ln

(
T0
T

)
=
Ra
cp

ln

(
p0
p

)
. (12)

With the definition θcp = T0, equation (12) is transformed into the commonly used expression for determining the potential

temperature

θcp = T

(
p0
p

)Ra
cp

, (13)
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for which the ground-level pressure p0 is arbitrary but usually set to p0 = 1000hPa. This choice coincides with the definition170

of the World Meteorological Organisation (WMO, 1966) and the standard-state pressure (Tiesinga et al., 2020), but should

not be confused with the standard atmosphere 101325Pa (Tiesinga et al., 2020). In the following, θcp denotes the potential

temperature based on a constant cp and, when a specific value of cp is applied, the subscript cp in the potential temperature’s

notation is replaced by the corresponding cp value.

3 Examining the assumption of constant cp for dry air175

The general theory of thermodynamics, assuming dry air as an ideal gas, gives the expression

cp =

(
1 +

f

2

)
Ra (14)

for the constant specific heat capacity, which is based on the results of statistical mechanics and the equipartition theorem (e.g.,

Huang, 1987). In (14), the parameter f = ftrans + frot + fvib is equal to the total number of degrees of freedom of the gas

molecules of which dry air consists. The individual contributions to f comprise the degrees of freedom of translation ftrans,180

rotation frot, and vibration fvib. Assuming further that dry air exclusively consists of the linear molecules N2 and O2 (implying

ftrans = 3 and frot = 2, while the contribution of Ar remains disregarded) and additionally neglecting the vibrational degrees

of freedom (fvib = 0), the general relation (14) reduces to

cp =

(
1 +

3 + 2

2

)
Ra =

7

2
Ra. (15)

Although the neglect of vibrational excitation, particularly at very low temperatures, seems plausible and appropriate, errors185

are already introduced by this assumption for the temperature range relevant in the atmosphere.

In atmospheric sciences, for the majority of computations that require the specific heat capacity of dry air, a constant value

of cp may be appropriate. According to the WMO (1966), the recommended value for cp of dry air is 1005J kg−1K−1 and,

furthermore (ibid.), it is defined that γ =
cp
cv

= 7
5 = 1.4, cf. (1). This definition is consistent with the general thermodynamic

theory together with all aforementioned additional assumptions and results in (15) as well.190

Even assuming a universally valid constant cp, a single consistently used value of cp was not found. Instead, the specified

values of cp vary among different textbooks and other sources. In Table 1, some of the available values of constant specific heat

capacity for dry air are compiled, indicating a variability of cp that ranges from 994J kg−1K−1 to 1011J kg−1K−1. However,

the extremes in Table 1 are from old references of historical interest only; to reflect recently stated values the narrower range

1000J kg−1K−1 to 1010J kg−1K−1 is considered.195

These different values of constant cp scatter within a small range (below ±1.1%) around the WMO’s recommendation

1005J kg−1K−1, which may seem negligible if cp contributes only as a linear coefficient within an equation (e.g., in the

expression of a correction factor, cf. Weigel et al., 2016). However, in the formulation of the potential temperature θcp , cf. (13),

the specific heat capacity cp does not contribute linearly but rather as the denominator in the exponent. Thus, the variety of

different cp values, although scattering within a small range, impact the resulting θcp significantly. To illustrate this impact, a200
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constant dry air’s

specific heat capacity

cp in J kg−1K−1

literature source

994 Wegener and Wegener (1935, converted from units other than SI)

1000 Roedel and Wagner (2011, page 66)

1003 “minimum of range of actual values” (WMO, 1966)

Tripoli and Cotton (1981, the appendix therein)

1004 Holton (2004, page 491)

Wallace and Hobbs (2006, page 75)

Schumann (2012)

Wendisch and Brenguier (2013, page 24)

Liou (2002, appendix F)

Ambaum (2010, table “Useful Data”)

1004.8 Pruppacher and Klett (2010, converted from units other than SI; p. 489)

1004.86 Curry and Webster (1998, page 62)

1005 recommended by WMO (1966)

Bohren et al. (1998, page 384)

Houghton (2002, page 275)

Zdunkowski and Bott (2003, page 705)

Brasseur and Solomon (2005, page 426)

Seinfeld and Pandis (2006, page 1178)

Cotton et al. (2011, table 2.1)

1005.7± 2.5 Bolton (1980)

Emanuel (1994, appendix 2)

1006 Wendisch and Brenguier (2013, page 69)

Stamnes et al. (2017, page 14)

1010 Chang et al. (2006)

Tiwary and Williams (2019, beneath eq. 8.8; possibly a typo, as indicated by

inconsistencies on reproducing their conclusions based on this value)

Brusseau et al. (2019, page 59)

1011 “maximum of range of actual values” (WMO, 1966)
Table 1. Synopsis of temperature-independent constant values given mainly in textbooks for the specific heat capacity cp of dry air from

various sources (non-exhaustive). Note, the WMO (1966) indicates a minimum and maximum “range of actual values” together with their

recommended value cp = 1005J kg−1K−1.
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Figure 1. Vertical profiles of (a) atmospheric pressure and (b) temperature as functions of height, corresponding to the US Standard Atmo-

sphere.
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Figure 2. Computed vertical course of the potential temperature θcp based on the two extremes of constant values for the specific heat

capacity cp provided in the literature including the historical extreme values (panel (a); cf. Table 1), and (b) the absolute differences ∆θcp =

θ994− θ1011 and ∆θcp = θ1000− θ1010 between the two resulting curves of θcp . The absolute difference ∆θcp = θ1003.5− θ1006.5 is also

shown (green curve), corresponding to a more realistic interval of cp values.
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computation of θcp by using (13) was based on the values of static pressure (p, cf. Figure 1a) and absolute temperature (T , cf.

Figure 1b) corresponding to the US Standard Atmosphere (United States Committee on Extension to the Standard Atmosphere,

1976). From the list of the different cp in Table 1, the extreme values were selected in order to initially illustrate the sensitivity

of the resulting θcp to variations in cp in the range of ∼ 1%, as seen in the literature. In Figure 2a, the individual profiles of

θcp are shown for the extremes of the historic cp values (Table 1), while Figure 2b illustrates the absolute differences ∆θcp =205

θ994− θ1011 (red curve), ∆θcp = θ1000− θ1010 (blue curve), and ∆θcp = θ1003.5− θ1006.5 (green curve). The absolute error

exhibited with the blue curve in Figure 2b is based on the extremes of most recently referred cp values in the literature (Table

1). At an altitude of 8.5km, the difference ∆θcp already exceeds 1K (blue curve). The values of ∆θcp reach approximately

1.2K at 10km and rise further, above 4K, with increasing altitude up to 20km. At 50km, approximately where the stratopause

is located, which is the chosen upper height limit for this investigation, the computed ∆θcp reaches 43K. The green curve210

corresponds to the more realistic cp interval 1005J kg−1K−1± 1.5J kg−1K−1 as recommended by the WMO; the difference

reaches approximately 13K at the stratopause.

Figure 2 illustrates the possible spread of θcp based on a range of cp values from different literature references; hence, if one

uses a different value for cp from the literature than that defined by WMO (1966), the difference θ1005−θcp might be significant.

Since the cp values provided by some literature references are close to the value cp = 1005J kg−1K−1 recommended by the215

WMO (1966), the subsequent comparisons will be made to θ1005. The θcp based on cp values other than 1005J kg−1K−1 are

only used to illustrate respective deviations. Although the curves in Figure 2b depict extremes in the deviation of potential

temperatures, as they are based on the extremes of cp values (cf. Table 1), they nevertheless illustrate the sensitive response of

θcp to even small variations in cp, on the order of 1%. Further proof of this sensitivity from the mathematical perspective is

provided in Appendix B. The impact of this sensitivity becomes important at altitudes of ∼ 10km and above, thus, where the220

use of the potential temperature becomes increasingly meaningful. Here, and in particular above the cloud tops, the small-scale

and comparatively fast tropospheric dynamics (causing vertical transport and implying diabatic processes) become diminished,

while further above, towards the stratosphere, an increasingly layered vertical structure of the atmosphere is taking over.

As indicated above, the reason for this sensitivity to small variations of air’s specific heat capacity is that it affects the

exponent of the equation for θcp . The studies of Ooyama (1990, 2001) document an interesting attempt to formulate, e.g.,225

the energy balance equations for the moist atmosphere, wherein entropy replaces the more common formulation using the

potential temperature. This substitution avoids the use of the potential temperature, which “is merely an exponential transform

of the entropy expressed in units of temperature” (Ooyama, 2001), thus, within this equation, air’s specific heat capacity is

implied exclusively as a linear coefficient. Consequently, a parameterisation for the temperature dependence of the specific

heat capacity (cp(T ), cf. Section 4) may be easily adopted. However, the crucial drawback of the entropy-based equations is230

that to gain a numerical model for, e.g., weather forecast purposes, the parameterisations of most of the physical processes

within the atmosphere would require a reformulation.

It should be noted that not only do literature values of air’s specific heat capacity cp vary, but also the values of the gas

constant Ra vary slightly due to different historical approximations for the molar gas constant4 R and for the composition of

4The value of R is now defined exactly, cf. Tiesinga et al. (2020); Newell et al. (2018) and is used in Equation (6).
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dry air. The variation of values for Ra is typically only on the order of 0.1J kg−1K−1, whereas the variability in cp is on the235

order of a few J kg−1K−1 (cf. Table 1). Therefore, within the exponent of the expression (13) for θcp , the variability of cp has

by far a stronger impact on the resulting θcp value than the variability of Ra.

However, accepting for a moment the WMO’s definition (15) of cp (WMO, 1966), the variability of air’s cp should naturally

be constrained to certain limits. With the specific gas constant Ra = 287.05J kg−1K−1 (WMO, 1966), the WMO’s definition

leads to cp = 1004.675J kg−1K−1. In contrast, taking into account the uncertainty introduced in Ra by the molar mass of dry240

air, cf. Equation (6), the resulting range for air’s specific heat capacity is 1004.897J kg−1K−1 ≤ cp ≤ 1004.912J kg−1K−1.

It may be surmised that the rounded value cp = 1005J kg−1K−1 as recommended by the WMO (1966) had the main goal to

simplify certain calculations, which at the time may have been mostly done by hand.

4 Accounting for the temperature dependence of air’s specific heat capacity

Next, while retaining the ideal-gas assumption, we consider the dependence of air’s cp on temperature, mainly over the atmo-245

spherically relevant range (180K to 300K). The temperature dependence of cp is, of course, not a new finding. Experimental

approaches for determining the calorimetric properties of air and the temperature dependence of a fluid’s specific heat capacity

are described by Witkowski (1896), who investigated the change of the mean cp as a function of temperature intervals between

room temperature (as a fixed reference) and various warmer and colder temperatures, for atmospheric pressures and slightly

beyond. Despite the potentially high uncertainty of the experimental results from these times, Witkowski (1896) already in-250

dicated that with decreasing temperature the experimentally determined cp values initially decline, then pass a minimum, and

subsequently increase again at lower temperatures (T < 170K). The description of refined experiments and ascertainable data

of air’s cp(T ) for temperatures below 293K is summarised by Scheel and Heuse (1912), Jakob (1923), and Roebuck (1925,

1930), illustrating in comprehensive detail the experimental effort and providing the resulting data. The review by Awano

(1936) compiled and compared the data of cp(T ) of dry air (“air containing neither carbon-dioxide nor steam”, Awano, 1936)255

and he attested—at that time—the previously mentioned studies to constitute “the most reliable experiments”. During the

decades following these experiments, further insights were gained and landmarks were reached which are summarised in the

comprehensive survey by Lemmon et al. (2000) of the progress of modern formulations for the thermodynamic properties of

air and about the experiments the previous formulations were based on.

Figure 3 illustrates the range of suggested constant values for the specific heat capacity as indicated in Table 1 (dashed260

curves) together with the measurements that were made to obtain air’s behaviour as a function of temperature and pressure.

Note, Figure 3 includes data at other atmospheric pressures, indicated by squares, diamonds, and triangles. In the same figure,

calculated values of cp(T ) of dry air are displayed resulting from the equation of state which was derived from experimental p,

V , and T data by Vasserman et al. (1966), who provided an extensive review of previous experimental and theoretical works

and of the state of knowledge at that time. In addition, Figure 3 exhibits two different parameterisations, by Lemmon et al.265

(2000) and by Dixon (2007, see page 376 in his book, the accuracy is “within 0.1% from 200K to 450K”), which account for

the temperature dependence of the specific heat capacity cp(T ). The parameterisation by Lemmon et al. (2000), to be discussed
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Figure 3. Variety of suggested values for the specific heat capacity of air. Ranges of constant values for cp (including the historical) together

with the recommended value by the WMO (1966) are displayed as given in Table 1 (dashed lines). The parameterisations of air’s c0p(T ),

assuming dry air as an ideal gas, accounting for its temperature dependence by Lemmon et al. (2000, solid magenta curve) and by Dixon

(2007, solid cyan curve) are displayed. Discrete measurement and literature data at about 1000hPa (i.e., as often specified, at about one

atmosphere) are indicated by dots. In addition, the studies by Awano (1936) and Vasserman et al. (1966) provide data at other atmospheric

pressures, as indicated by squares, diamonds, and triangles.
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in detail in Section 4.2, is valid for dry air assumed as an ideal gas whereas this distinction is not explicitely made in Dixon

(2007). Moreover, Figure 3 contains discrete values of dry air’s cp(T ) extracted from the database REFPROP (Reference Fluid

Thermodynamic and Transport Properties Database by NIST, the National Institute of Standards and Technology, Lemmon270

et al., 2018), which is based on parameterisations resulting from thermodynamic considerations discussed later.

The measurement data, as well as the parameterisations, clearly indicate a dependence of air’s specific heat capacity on the

temperature. At temperatures above 300K, the data points by Jakob (1923) are surprisingly well captured by the parameteri-

sations, while below 270K the course of the parameterised and measured cp(T ) diverge significantly. Possible reasons for this

include:275

– the measurements of cp(T ) have a precision likely no better than 1% (in particular the historical measurements), and

there could be systematic errors, especially at low temperatures;

– the measured data reflect the true thermodynamic behaviour of the real gas, rather than that of an ideal gas.

However, it is immediately obvious from Figure 3 that a good agreement among (i) the experimentally determined cp(T ) data,

(ii) a constant cp (e.g., 1005J kg−1K−1; WMO (1966)), and (iii) the parameterised cp(T ) is found only for a temperature280

interval ranging from 270K to 300K. For air temperatures below 270K, the constant value cp = 1005J kg−1K−1 is only

comparable with the values from Vasserman et al. (1966), but fails to coincide with other parameterised or experimentally

determined values of cp(T ).

4.1 The temperature dependence of the ideal-gas specific heat capacity

As already indicated by the data depicted in Figure 3, the specific heat capacity cp depends on the gas temperature. With regard285

to measured values, the lack of constancy may be due to real-gas effects or to a dependence of the ideal-gas heat capacity on

temperature. In this section, we focus on the latter effect, denoting the ideal-gas isobaric specific heat capacity by c0p(T ), where

the superscript 0 indicates the underlying ideal-gas assumption. For an individual gas, there is always a contribution from the

three translational degrees of freedom, c0p,trans = 5
2Ri, where Ri is the specific gas constant of the gas. If the molecule is

assumed to be a rigid rotor, there is also a rotational contribution given by290

c0p,rot =

Ri, for linear (e.g., diatomic) molecules,

3
2Ri, for nonlinear molecules.

(16)

As mentioned previously, at finite temperatures molecules also have contributions to c0p(T ) from intramolecular vibrations

(and, at high temperatures, excited electronic states). To arrive at a temperature-dependent parameterisation for the ideal-

gas specific heat capacity of dry air, the compounds’ individual contributions, considering all degrees of freedom, need to

be parameterised and then combined according to each compound’s proportion in the mixture. For the following, dry air is295

considered a three-component mixture: the diatomic gases nitrogen (N2) and oxygen (O2) and the monatomic gas argon (Ar).
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To determine the contribution of N2 to c0p(T ), both Bücker et al. (2002) and Lemmon et al. (2000) use the ideal-gas heat

capacity from the reference equation of state of Span et al. (2000) that compares well with the findings from other studies

within an uncertainty ∆c0p of less than 0.02%.

For the contribution of O2, Lemmon et al. (2000) use the formulation given by Schmidt and Wagner (1985). Alternatively,300

Bücker et al. (2002) provide a slightly different formulation from the International Union of Pure and Applied Chemistry (IU-

PAC, Wagner and de Reuck, 1987), after refitting it to more recently obtained data, thereby achieving an overall uncertainty

∆c0p of less than ±0.015% for O2 (Bücker et al., 2002). However, the difference in the resulting specific heat capacity contri-

bution by O2 between the two approaches (Lemmon et al. (2000) or Bücker et al. (2002)) is comparatively small. The recent

work of Furtenbacher et al. (2019) leads to values of c0p for O2 with even smaller uncertainties, but the differences from the305

values used here are negligible in our context.

For a monoatomic gas such as Ar, vibrational and rotational contributions to the heat capacity do not exist, and Bücker et al.

(2002) consider that argon’s excited electronic states are relevant only at temperatures above 3500K. Hence, the contribution

of Ar to the specific heat capacity of air reduces to c0p = 5
2RAr.

The approach by Bücker et al. (2002) additionally considers the contribution of further constituents of air, such as water,310

carbon monoxide, carbon dioxide, and sulfur dioxide. These authors provide an analytical expression for specific heat capacity,

accounting for this more complex but proportionally invariant air composition which is specified to deviate from the used

reference by ∆c0p ≤±0.015% in the temperature range of 200K≤ T ≤ 3300K. At atmospheric altitudes above the clouds’

top, i.e., on average above ∼ 11km, the air is assumed to have lost most of its water and is deemed as dry. Furthermore, for the

following, trace gases that contribute to air’s composition by molar fractions of less than that of Ar are neglected.315

4.2 NIST’s parameterisation of c0p(T )

Besides a comprehensive survey of the available experimental data for the specific heat capacity of air, Lemmon et al.

(2000) also provide state-of-the-art knowledge for other thermodynamic properties (isochoric heat capacity, speed of sound,

vapour-liquid-equilibrium, etc.). Additionally, they give two approaches to derive air’s thermodynamic properties, including

the vapour-liquid equilibrium:320

1. an empirical model-based equation of state for standard (dry) air considered as a pseudo-pure fluid, and

2. assembly of a mixture model from equations of state for each pure fluid.

Each approach allows calculating the thermodynamic properties, e.g., cp, of gas mixtures such as dry air, and both are real-

gas models with the ideal-gas behaviour as a boundary condition. The major difference between the models is that the first

approach considers air as a pseudo-pure fluid while the second, more rigorous approach treats air as a mixture composed of N2,325

O2, and Ar, in molar fractions of 0.7812, 0.2096, and 0.0092, respectively, following Lemmon et al. (2000, their table 3). This

fractional composition of dry air is assumed to be constant from ground level up to 80km height (United States Committee on

Extension to the Standard Atmosphere, 1976) and its fractional composition would have to be shifted significantly to cause a

serious deviation of the resulting potential temperature. The contribution to the composition by carbon dioxide (CO2) and of
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any other trace species was assumed to be negligible. The validity of both approaches is specified for various states of dry air,330

from its solidification point (59.75K) up to temperatures of 1000K, and for pressures up to 100MPa and even much further

beyond the pressure range that is relevant for atmospheric investigations. Both the pseudo-pure fluid model and the mixture

model are implemented in NIST’s REFPROP database (cf. https://www.nist.gov/srd/refprop) for various physical properties of

fluids over a wide range of temperatures and pressures.

Both the pseudo-pure fluid model and the mixture model of Lemmon et al. (2000) use the same expression for the ideal-gas335

heat capacity, which is rigorously given as a sum of the pure-component contributions:

C0
p(T )

R
= xN2

(
C0
p(T )

R

)
N2

+xAr

(
C0
p(T )

R

)
Ar

+xO2

(
C0
p(T )

R

)
O2

,

(17)

where xi denotes the molar fraction of species i, and C0
p as well as the molar gas constant R are given in units of J mol−1K−1.

Like Bücker et al. (2002), Lemmon et al. (2000) use the expression of Span et al. (2000) for the contribution of N2 to the

heat capacity and adopt C0
p = 5

2R for Ar. Together with the contribution by O2 according to the formulation by Schmidt and340

Wagner (1985), the expression provided by Lemmon et al. (2000, equation 18 therein) for the ideal-gas heat capacity of dry air

is
C0
p(T )

R
=N1 +N2T +N3T

2 +N4T
3 +N5T

− 3
2

+N6
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9

T 2 exp
(
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)(
exp
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)
− 1
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10
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(
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11
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(
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2
3 exp

(
−N11

T

)
+ 1
)2 ,

(18)

with the scalar coefficients Ni for dry air (ibid.),

N1 = 3.490888032, N2 = 2.395525583 · 10−6,

N3 = 7.172111248 · 10−9, N4 =−3.115413101 · 10−13,

N5 = 0.223806688, N6 = 0.791309509,

N7 = 0.212236768, N8 = 0.197938904,

N9 = 3364.011, N10 = 2242.45,

N11 = 11580.4,

(19)345

which is specified as valid for temperatures from 60K to 2000K. Because the underlying calculations are based on rigorous

statistical mechanics and accurate spectroscopic data,
C0
p(T )

R should be accurate to within 0.01% throughout this range, as

discussed by Span et al. (2000).

The parameterisation (18) provides the isobaric specific heat capacity of dry air, considered as a mixture of ideal gases. This

represents a more rigorous and accurate behaviour than assuming it to be a constant.350
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4.3 The parameterisation of c0p(T ) from an engineer’s perspective

The parameterisation from Dixon (2007)

cp(T ) = 1002.5 + 275 · 10−6 · (T − 200)
2 (20)

for 200K≤ T ≤ 450K is not explicitly described to be based on particular assumptions or data sets. The author indicates his

suggested parameterisation to hold within 0.1% for temperatures between 200K and 450K. For elevated air temperatures,355

the deviation between the ideal-gas limit c0p(T ) (Lemmon et al., 2000) and Dixon’s parameterisation substantially increases.

This is most likely due to the chosen type of polynomial approximation (Dixon, 2007), which increasingly departs from the

reference c0p(T ) for gas temperatures exceeding 450K.

Concerning the thermophysical properties of humid air, the study by Tsilingiris (2008) provides further insight. Its purpose

was to evaluate the transport properties as a function of different levels of the relative humidity and as a function of temperature360

(from 273K to 373K) for the gas mixture of air with water vapour at a constant pressure (1013hPa). The atmospherically

relevant pressure range below 1013hPa and temperatures smaller than 273K were not considered. Although this study focused

on providing a comprehensive account of moisture within air, mainly for technical purposes and engineering calculations, the

possible usefulness of these findings to atmospheric investigations is also apparent. However, the impact of water vapour on

the resulting gas mixture’s cp(T ) is significantly larger (cf. Tsilingiris, 2008) than the uncertainty of dry air’s cp(T ) that is365

discussed in the present work. Furthermore, the consideration of water vapour as a component of air requires very individual

and case-specific computations of cp(T ) of moist air, as water vapour is among the most variable constituents of the atmosphere.

The effort required to produce an analytical formulation for gas properties which best reflects the true gas behaviour may

indicate that for engineering purposes (pneumatic shock absorbers, engines’ combustion efficiency, improvements of turbofan/-

prop propulsion, aerodynamics, material sciences, etc.), especially where pressures exceed atmospheric, the assumption of370

ideal-gas behaviour introduces excessive uncertainty.

5 The θcp(T ) from the temperature-dependent specific heat capacity of air

Previously introduced approaches for computing the specific heat capacity of dry air call for a brief discussion on how to use

the obtained cp(T ) to derive the potential temperature. In the following, θcp(T ) denotes the derived potential temperature that

accounts for the temperature dependence of dry air’s specific heat capacity. Furthermore, it should be noted that simply substi-375

tuting any cp(T ) value into the conventionally used and defining equation (13) for θcp (WMO, 1966) may appear tempting but

definitely leads to results inconsistent with θcp(T ) that is based on the reference parameterisation of dry air’s cp(T ). Therefore,

the thermodynamically consistent use of cp(T ) in the derivation of θ is described in the following.

5.1 Derivation of θcp(T ) based on the temperature-dependent specific heat capacity of dry air

In the derivation of the potential temperature (cf. Section 2), we note that, until reaching the expression for isentropic changes380

of state (9), no assumption was made about the specific heat capacity. As soon as the temperature dependence of the specific
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heat capacity comes into play, the re-assessment of (9) leads to

cp(T )

T
dT = Ra

dp

p
. (21)

Integration of (21) from the basic state (p0, θcp(T )) to any other state (p, T ) yields

Ra ln

(
p

p0

)
=Ra

p∫
p0

dp′

p′
=

T∫
θcp(T )

cp(T
′)

T ′
dT ′, (22)385

where θcp(T ) is the desired potential temperature.

The rearrangement of (22) makes evident that the desired potential temperature is a zero of the function F (x), given by

F (x) =

T∫
x

cp(T
′)

T ′
dT ′−Ra ln

(
p

p0

)
. (23)

To arrive at the desired potential temperature θcp(T ) for any given temperature and pressure, the equation 0 = F (x) must be

solved for the variable x, which is the desired θcp(T ). Equation (23) has at most only one real zero, since its integrand is strictly390

positive which means F (x) is strictly monotonic.

In the following, the ideal-gas reference potential temperature θref is introduced, based on the formulation of the ideal-gas

limit of dry air’s specific heat capacity c0p(T ) in accordance with (18) as formulated by Lemmon et al. (2000). This reference

potential temperature θref represents the zero of F (x) in (23), wherein cp(T ′) is to be replaced by c0p(T
′), i.e. for given p, T

the reference potential temperature θref solves the equation395

0 = F (θref) =

T∫
θref

cp(T
′)

T ′
dT ′−Ra ln

(
p

p0

)
. (24)

The parameterisation of c0p(T
′) is stated to give accurate values for temperatures from 60K to 2000K (cf. Section 4.2), thus

values of θref should not exceed 2000K, since otherwise c0p(T
′) within the integrand in (23) is evaluated outside of its range

of validity. However, due to the division by T ′, the value of the integrand
c0p(T

′)

T ′ may be expected to give nevertheless a good

approximation even if the accuracy of c0p(T
′) is decreased, hence values θref > 2000K should not be discarded.400

It may be noted that further variants of a reference potential temperature are derivable by replacing cp(T ′) in (23) by any other

expression of the specific heat capacity of air which may appear sufficiently accurate. The steps to compute or approximate the

zero of the function (23), described in this study, are independent of the chosen heat capacity formulation.

Unfortunately, for a straightforward solution of the integral (23), the suggested parameterisation of cp is too complex and

an analytically insolvable nonlinear equation 0 = F (x) could result. Thus, an approximation of the equation’s desired zero is405

required. Newton’s method (cf., e.g., Deuflhard, 2011) provides a standard approach to numerically approximate the zero of

a nonlinear equation. Proceeding from an initial guess x0, Newton’s method constructs a sequence {xk}k∈N defined by the
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recursion

xk+1 = xk −
F (xk)

F ′(xk)
= xk −

F (xk)

− cp(xk)xk

=
xk

cp(xk)
[cp(xk) +F (xk)]

=
xk

cp(xk)

cp(xk)−Ra ln

(
p

p0

)
+

T∫
xk

cp(T
′)

T ′
dT ′

 .
(25)

The constructed sequence {xk}k∈N converges to the equation’s desired zero. For the computations described here, the iteration410

is stopped as soon as the absolute difference |xk+1−xk| of two consecutive iterations falls below 10−8 K.

For the reference of air’s specific heat capacity, c0p(T ), the integral (23) turns out not to be explicitly solvable. Therefore, with

each iteration, the solution of the integral
T∫
xk

c0p(T
′)

T ′ dT ′ is approximated by subdividing the entire integration range, [xk, T ],

into intermediate intervals with respective size of at most 0.1K, and by applying Simpson’s rule on each subinterval.

As a first guess x0 for the Newton iteration, the conventional definition of θcp based on a constant specific heat capacity415

(WMO, 1966) is inserted:

x0 = T

(
p0
p

) Ra
1005J kg−1K−1

= θ1005. (26)

In the course of Newton’s method, the sequence {xk}k∈N will converge to the unique zero for any initial guess x0 due to the

monotonicity of F (x). However, the right choice of the initial guess x0 substantially decreases the error of the first iteration x1,

speeding up convergence to the desired zero of the function F (x). Therefore, it seems wise to use the conventional definition420

of θcp as the first guess for the Newton iteration (25).

Solving the previously described root-finding problem by Newton’s method over the comprehensive range of iteration steps

(until the set requirement, i.e., |xk+1−xk|< 10−8 K, is fulfilled) finally leads to the reference potential temperature θref . This

θref is based on the ideal-gas limit of dry air’s specific heat capacity c0p(T ), which refers to the current thermodynamic state-

of-knowledge and, thus, we use θref as our reference for the potential temperature in the following. For evaluating the results,425

the air temperature and pressure from the US Standard Atmosphere are used once more to set up the vertical profiles of the

potential temperature. Figure 4a exhibits the resulting reference profile, i.e., θref (red curve). Additionally, for comparison with

the reference, further potential temperature profiles θcp are shown based on the two (historical) extremes cp = 994J kg−1K−1

and cp = 1011J kg−1K−1 (dashed curves), and based on the range limits of more recent values cp = 1000J kg−1K−1 and

cp = 1010J kg−1K−1 (solid green and magenta curves) of given constant values of air’s specific heat capacity (cf. Table 1).430

Clearly, in particular at elevated altitudes, the courses of θ1000 and θ1010 significantly deviate from the reference. To quantita-

tively evaluate the match between the different profiles, the relative difference of the profiles based on a constant cp, with respect

to the reference, i.e., ∆θ/θref =
(
θcp − θref

)
/θref , is depicted in Figure 4b. The comparison demonstrates that the θcp profiles

significantly depart from the reference by about∼ 300K at 50km altitude, corresponding to a relative difference of about 16%.

With both extremes of the recent constant values cp ∈
{

1000J kg−1K−1, 1010J kg−1K−1
}

, the relative error level of 0.1% is435
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Figure 4. (a) Reference potential temperature θref together with the potential temperatures θ994, θ1000, θ1010 and θ1011 relying on constant cp

values (the dashed lines depict the historical extremes for cp, cf. Table 1). (b) Relative differences
(
θcp − θref

)
/θref for the same choices cp ∈{

994J kg−1K−1, 1000J kg−1K−1, 1010J kg−1K−1, 1011J kg−1K−1
}

as in the left panel between the reference potential temperature

and the potential temperatures relying on constant cp values. For comparison, the relative difference (θ1005− θref)/θref is displayed, for

which cp = 1005J kg−1K−1 corresponds to the WMO recommendation. In addition, also comparisons with θ1003.5, θ1004, θ1006.5 are

included. All profiles are based on the values for temperature and pressure according to the US Standard Atmosphere. Note the linear

axis-scaling inside and the logarithmic scaling outside of the grey-shaded area in panel (b).

exceeded at altitudes about 5km. While θ1000 continues to increasingly deviate from the reference, θ1010 re-enters and crosses

the 0.1% relative error interval (grey-shaded area) at altitudes between ∼ 19km and 21km, before it reaches similar errors to

the other θcp profiles that are based on a constant cp. Although the extreme values cp ∈
{

1000J kg−1K−1, 1010J kg−1K−1
}

appear in recent literature, these values may be considered unrealistic. For this reason, Figure 4b also shows the relative de-

viations for the values cp ∈
{

1003.5J kg−1K−1, 1004J kg−1K−1, 1005J kg−1K−1, 1006.5J kg−1K−1
}

, which include the440

recommended value of the WMO (1966) and a more realistic range, i.e. cp = 1005J kg−1K−1± 1.5J kg−1K−1. Notably, up

to an altitude of 15km, the reference potential temperature is comparably well matched by both the recommended θ1005 and

θ1004 (based on the frequently used alternative cp = 1004J kg−1K−1, cf. Table 1). Until 15km altitude, both constant cp val-

ues lead to errors of calculated θcp which remain comparatively small within the 0.1% relative error interval. However, above

∼ 17.5km, both θ1004 and θ1005 exceed the 0.1% relative error interval, and further aloft their relative error with respect to the445

reference θref increases rapidly.

In the context of numerical models of the atmosphere, the energy balance equation is occasionally formulated based on the

potential temperature θ, thus θ constitutes a prognostic model variable. In such a case, the temperature T needs to be calculated

from a given pair of values of pressure p and potential temperature θ. Using once more the defining equation (22), for given θ
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a zero of the function450

0 =−
θ∫

T

cp(T
′)

T ′
dT ′−Ra ln

(
p

p0

)
(27)

is to be computed. Since (27) corresponds to the function F defined in (23) with the exception of a negative sign, the identical

approximation procedure as outlined above in this section for the calculation of (T, p) 7→ θ may be applied mutatis mutandis

to calculate the transformation (θ, p) 7→ T .

In any case, a certain effort is required to implement the new formulation of the potential temperature in an atmospheric455

model, as this equation should be based on the implicit definition (22), and such a goal may be the subject of future endeavours.

5.2 Approximations of the reference potential temperature

Of course, the previously described procedure to compute the potential temperature may appear to be anything but practical.

Indeed, due to the complications inherent with:

– the requirement to numerically solve the integral in the function F (x) and460

– the need to use Newton’s method for an iteration sequence to approach the zero of F (x),

a convenient approach to re-assess the conventional definition of the potential temperature is not provided at all. This mo-

tivates the development of a more practical approximation of the reference potential temperature. To arrive at a practicable

approximation procedure, the two principal steps in the suggested procedure are briefly outlined in the following, whereas the

comprehensive details and intermediate derivation steps are found in Appendix C.465

Proceeding from the definition (23) of the function F (x), the computation of the integral
T∫
x

c0p(T
′)

T ′ dT ′ becomes the first

obstacle to a practical approximation. Therefore, a plausible initial step is to replace the integral by an expression that is easier to

treat. This expression may be proposed as f(T )−f(x), where the function f is defined as f(x) = b0+b1 ln(x− b2)+b3x+b4x
2

and which is recognisable as an approximated primitive of
c0p(T

′)

T ′ , see Appendix C1. The choice of the functional form of f is

motivated by the exact primitive of the integral in the case of a constant cp.470

As previously discussed (cf. Section 5.1), the formulation of a new expression for the potential temperature based on the

temperature-dependent specific heat capacity cp(T ) requires finding the zero of the equation 0 = F (x), where the function

F (x) is defined in (23). Replacing the exact integral in (23) by the difference f(T )− f(x) means that F (x) is substituted by

the function

F̂ (x) = f(T )− f(x)−Ra ln

(
p

p0

)
. (28)475

Consequently, the resulting approximated reference potential temperature, i.e., the respective zero of the function F̂ (x), is

denoted as θapproxref .

The difference between the approximation result and the reference, i.e.,

θref − θapproxref , (29)
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is then referred to as the basic error of the approximation. Note that the replacement of the function F by F̂ only circumvents480

the integration in F ; the root-finding problem 0 = F̂ (x) for the approximated reference potential temperature θapproxref remains

analytically not solvable.

Therefore, the second move towards a practical approximation procedure is to construct approximations θ(k) to the zero of

F̂ (x) by using Newton’s method, see Appendix C2. Newton’s method is an iterative procedure; the notation θ(k) refers to the

k-th computed iterate. Hence, θ(k) constitutes an approximation to θapproxref , and, in the limit k→∞, the approximation error485

θapproxref − θ(k) (30)

vanishes. Two formulations of Newton’s method are distinguished in Appendix C2, i.e., the principal application of Newton’s

method, and its further derivative, called Householder’s method. Both formulations require the stipulation of one of the iterates

θ(k) as sufficient to obtain a result of appropriate accuracy. The higher the number of iterations, of course, the smaller is the

error (30), whereas the basic error (29) remains unaffected by the number of iterations. Hence, in any case, the basic error (29)490

is to be accepted as at least implied in the final approximation, even though a well-chosen θ(k) could result in an approximation

error θref − θ(k) that is smaller than the basic error.

The various errors implied in the proposed approximation procedure combining for the approximation’s total error, as well

as accompanying details, are discussed in Appendix D. In brief, Figure 5a illustrates the basic error (29) based on the pressure

and temperature profiles of the US Standard Atmosphere, as these provide atmospherically meaningful averages of realistic495

temperature-pressure data pairs. Based on the parameters of the US Standard Atmosphere, the basic error inherent with the

approximation remains below 1.25K up to altitudes of 50km. Thus, regarding the subsequent iteration process, a substantial

improvement of the error compared to ∼ 1.5K is not to be expected for the total error of approximating the reference potential

temperature.

An error analysis exclusively based on the US Standard Atmosphere is constrained to specific combinations of the air’s500

pressure and temperature, potentially suppressing latent errors that may emerge if certain fluctuations of the real atmosphere’s

temperature and pressure profiles are considered. Thus, the error analysis is extended to an atmospheric pressure (p) and tem-

perature (T ) range, from 1000hPa to 0.5hPa and from 180K to 300K, such that the conditions within the entire troposphere

and stratosphere, including the stratopause, are covered. Figure 5b illustrates the absolute basic error (29) for the extended

ranges of pressure and temperature while Figure 5c illustrates the relative basic error |θref − θapproxref |/θref . The contours in505

Figures 5b and 5c mainly highlight two regions: at∼ 100hPa where ∆θ never rises above 0.75K which corresponds to a max-

imum relative basic error of 0.15%, and in a pressure range from ∼ 5hPa to 1hPa where a ∆θ of 1.25K is never exceeded,

corresponding to relative errors of at most 0.1%. Note that the entire ∆θ scale ranges up to 3K, which may only be reached at

pressures below 0.8hPa combined with temperatures above 280K.

As previously discussed, the basic error is unavoidable and is to be accepted when applying the suggested substitution for the510

integral in the definition of the function F (x) in (23). However, as outlined in Appendix C2, the second iterate θ(2) of Newton’s

method (principal application), may thoroughly suffice for the final approximation to the reference potential temperature θref ,

as this iteration level already features an approximation error (30) which is negligibly small. Figure 6a illustrates the total
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Figure 5. Absolute basic error ∆θ = θref −θapproxref , cf. (29), from approximating the reference potential temperature along the US Standard

Atmosphere (a) and for the extended pressure range 1000hPa to 0.5hPa and temperature range 180K to 300K (b). For orientation, the

white solid line indicates the p-T -profile from the US Standard Atmosphere. The relative basic error |∆θ|/θref is shown in panel (c) for the

extended pressure and temperature range. 22
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Figure 6. (a) Relative error ∆θ/θref =
∣∣∣θ(2)− θref ∣∣∣/θref of the second iterate θ(2), obtained with Newton’s method for the ranges of

pressure and temperature from 1000hPa to 0.5hPa and from 180K to 300K, respectively. Panels (b) and (c) exhibit the difference ∆θ =

|θ1005− θref | and relative difference ∆θ/θref , respectively, on a logarithmic scale between the reference potential temperature θref and the

potential temperature θ1005 based on a constant specific heat capacity (cp = 1005J kg−1K−1). For orientation, the white solid line indicates

the p-T -profile from the US Standard Atmosphere.
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relative error of the suggested approximation θ(2) with respect to the ultimate reference θref for the extended ranges of pressure

and temperature. Indeed, the contour pattern in Figure 6a and the basic relative approximation error shown in Figure 5c are515

remarkably similar. Thus, the iteration process itself imparts only a minor contribution to the total error compared to the basic

approximation error.

The total approximation error, which is

θref − θ(2) = (θref − θapproxref ) +
(
θapproxref − θ(2)

)
, (31)

is dominated by the unavoidable basic error (first bracket) and augmented by a negligible error inherent to the iteration (second520

bracket), also supporting the conclusion that the second iterate of Newton’s method is an appropriate approximation procedure.

Figure 7 presents step-wise instructions for the computation of the second iterate approximation to the reference potential

temperature, and may serve as a guide to follow the numerous equations and intermediate analytical steps described throughout

the derivations in Appendix C.

For completeness, Figures 6b and 6c exhibit a final comparison by means of the logarithmic difference and the logarithmic525

relative difference between the reference potential temperature θref and the conventional definition θcp (WMO, 1966) based

on a constant specific heat capacity cp = 1005J kg−1K−1. Notably, over a wide altitude range within the troposphere (i.e.,

for atmospheric pressures greater than ∼ 100hPa), the absolute error ∆θ = |θ1005− θref | remains below 1K, cf. Figure 6b,

corresponding to a relative error ∆θ/θref of at most 0.1%. However, in the pressure range below ∼ 100hPa, deviations of

the real atmospheric conditions from those of the US Standard Atmosphere could increase the absolute error ∆θ from a few530

K to up to 10K, corresponding to an increase of the relative error to 1%. Further critical pressure levels are at ∼ 20hPa

and ∼ 5hPa, where the error’s magnitude increases to several tens and several hundreds of K, respectively. At a pressure of

0.5hPa, an absolute error ∆θ of up to 500K is reached, which corresponds to a relative error of 10% or even more.

5.3 Implementation aspects

The use of the new reference potential temperature θref in a numerical model requires additional computational effort to535

perform corresponding calculations. Hereafter, two aspects are briefly discussed: (i) the formulation of the model equations,

which include θref and (ii) the calculation of θref .

Although it is beyond the scope of the present study to provide a general derivation of an appropriate energy equation based

on θref for atmospheric models, a formulation of the total derivative of θref is given by

cp(θref)
dθref
θref

= cp(T )
dT

T
−Ra

dp

p
, (32)540

where the details of its derivation are given in Appendix E. The total derivative of θref may be useful, since the governing

equations are commonly formulated as differential equations.

The calculation of both the reference potential temperature θref and its approximation θapproxref on the basis of given val-

ues of pressure p and temperature T requires an iterative procedure. The additional computational effort inherent with these

calculations depends on the number of iterations. If, however, the second iteration θ(2) already represents an appropriate ap-545

proximation of θref (cf. Section 5.2), then the flowchart in Figure 7 immediately conveys the additional computational effort to
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Compute x0 = θ1005 from equation (26).

Compute the quantities

f(x0) = b0 + b1 ln(x0− b2) + b3x0 + b4x
2
0

f(T ) = b0 + b1 ln(T − b2) + b3T + b4T
2

f ′(x0) =
b1

x0− b2
+ b3 + 2b4x0

by using the previously obtained x0 and the coefficients (C4).

Compute the first iterate x1 using (C5) with k = 0, i.e.

x1 = x0−
Ra ln

(
p
p0

)
− f(T ) + f(x0)

f ′(x0)
.

Compute

f(x1) = b0 + b1 ln(x1− b2) + b3x1 + b4x
2
1

f ′(x1) =
b1

x1− b2
+ b3 + 2b4x1

by using the previously obtained x1 and the coefficients (C4).

Compute the second iterate x2 using (C5), with k = 1 and the obtained x1, i.e.

x2 = x1−
Ra ln

(
p
p0

)
− f(T ) + f(x1)

f ′(x1)
.

Set θ(2)i = x2 as the final approximation to the reference potential temperature θref of the ideally behaving air.

Figure 7. Flowchart guiding through the process of computing the approximation θ(2) by using Newton’s formulation (C5) until its second

iteration, wherein T (in K) and p (in hPa) are the atmospheric air conditions in terms of temperature and pressure, respectively, and p0 is set

to 1000hPa (WMO, 1966). Table C1 collects values of θref and the approximation θ(2) together with intermediate results for selected pairs

of temperature and pressure to verify a computation according to this instruction.
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be expected. The calculation of the starting value x0 is identical to computing θ1005. An additional effort results from the eval-

uation of the functions f (three times) and f ′ (two times), respectively, and the combination (two times) of obtained values to

determine x1 and x2. Since each of these evaluations causes additional numerical steps, the computational effort to obtain θ(2)

is in total about seven times more than the calculation of the conventional θ1005, while the algorithmic complexity is constant.550

6 The potential temperature for air as a real gas

To account for real-gas effects (that cause a behaviour other than that of an ideal gas cf. Section 4) on the potential temperature,

we use the model embedded in REFPROP (Lemmon et al., 2018), a standard reference database from NIST. This model treats

air as a mixture and employs state-of-the art reference equations of state for pure nitrogen (Span et al., 2000), oxygen (Schmidt

and Wagner, 1985), and argon (Tegeler et al., 1999). The mixing rule and binary interaction parameters are taken from the555

GERG-2008 model (Kunz and Wagner, 2012). From its definition in terms of an isentropic process, the potential temperature

θreal(T, p) is defined implicitly by

s(θreal, p0) = s(T, p), (33)

where s is the specific entropy. Calculating θreal(T, p) is a two-step process. First, the specific entropy s is computed at

temperature T and pressure p. Then, the temperature θreal is found that gives the same entropy s at the ground pressure p0.560

This is an iterative calculation, but it is accomplished automatically within the REFPROP software (Lemmon et al., 2018).

One caveat should be mentioned regarding the computed potential temperatures. The range of validity of the equations of

state for the air components (Span et al., 2000; Schmidt and Wagner, 1985; Tegeler et al., 1999) extends only up to 2000K. At

very high altitudes, computed values of θreal exceed this limit. While all the equations extrapolate in a physically realistic way,

their quantitative accuracy is less certain above 2000K. This caveat also applies to the ideal-gas calculations; the correlations565

for c0p(T ) for N2 and O2 are extrapolations beyond 2000K. However, since the same ideal-gas values are used in the real-gas

calculations, any inaccuracy in c0p(T ) will cancel when evaluating the difference between ideal-gas and real-gas values of θ.

Figure 8 illustrates the comparison between the real-gas potential temperature θreal and the ideal-gas reference potential

temperature θref . Figure 8a shows the difference θreal− θref along the p-T -profile of the US Standard Atmosphere and Figure

8b accounts for any p-T -combination of extended range but shows the relative difference instead. The difference between θreal570

and θref never exceeds 0.1K for the absolute difference or 30 ·10−5 = 0.03% for the relative difference. As may be anticipated

from the deviation of c0p shown in Figure 3 at low temperatures both from the experimentally determined values (which may

be inaccurate) as well as from the REFPROP data, the real-gas effect on the specific heat capacity of dry air tends to increase

towards the coldest gas temperatures. However, the difference between the real- and ideal-gas approaches results in essentially

no substantial difference between the resulting θ’s, neither at ground conditions (for any temperature at ∼ 1000hPa) nor at575

very high altitudes (at pressures below ∼ 1hPa). While the negligible difference between θreal and θref near ground levels is

less surprising, the diminished difference at higher altitudes reflects that in this region the potential temperature reaches such

high values that the difference between the real-gas and the ideal-gas specific heat capacity becomes insignificant. Within the
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Figure 8. Difference θreal− θref reflecting the deviation of the potential temperature θreal, based on the properties of air behaving as a real

gas under variable temperature and pressure, from the herein derived potential temperature expression θref for the ideal-gas limit of the air’s

specific heat capacity c0p(T ). (a) Difference along the profile of the US Standard Atmosphere. (b) Relative difference in p-T -coordinates

covering any combination of atmospherically relevant temperatures and pressures.

intermediate (stratospheric) region, the low pressures (and thus the low air densities) cause the ideal-gas assumption to be an

accurate approximation even at low temperatures. In general, the degree to which a gas can be treated as ideal is primarily a580

function of the (molar) density. For an ideal gas, the density is proportional to the quotient p
T ; this is almost true also for real

air. Hence, declining pressures together with rising temperatures both make the air’s behaviour increasingly close to ideal.

7 Implications on the use of the potential temperature

As previously shown, the newly defined reference potential temperature θref deviates most from the WMO-defined potential

temperature θ1005 at stratospheric altitudes and above (cf. Figure 6). More particularly, not only do the values from both θ585

definitions differ, but also their vertical derivatives, i.e., ∂θref∂z and ∂θ1005
∂z . Whether such deviations have a significant effect on
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an application is very case-dependent and requires detailed examination and specific appraisal. Below, four typical applications

of the potential temperature were selected and are examined regarding the quantitative effect on the results due to deviations

of the introduced reference potential temperature compared to the conventional and commonly used θ1005. The purpose of this

examination is to document the magnitude of errors to allow a well-founded, individual decision for each application of the590

potential temperature whether it is worth applying the more rigorous calculation in the particular context.

7.1 The Brunt-Väisälä frequency

The formula for the (squared) Brunt-Väisälä frequency N2 is often given in the form of (2), i.e., a formula involving the

potential temperature θ. The substitution of θ in equation (2) by the new reference potential temperature θref may be tempting,

but it is erroneous and the resulting quantity is denoted as N2
false. The Brunt-Väisälä frequency is not defined by equation (2),595

since this formula results from various simplifications in its derivation, e.g., by assuming hydrostatic conditions and a constant

specific heat capacity. Consequently, the substitution of θref in equation (2) leads to a wrong formula for the Brunt-Väisälä

frequency that does not correctly consider the temperature dependence of dry air’s specific heat capacity.

The Brunt-Väisälä frequency is the oscillation frequency of an air parcel due to a local density perturbation (see, e.g.,

Durran and Klemp, 1982; Marquet and Geleyn, 2013; Wallace and Hobbs, 2006; Ambaum, 2010). Retaining the assumption600

of hydrostatic conditions, the defining formula yields

N2 =
g

T

(
∂T

∂z
+

g

cp(T )

)
(34)

where the temperature-dependent specific heat capacity cp(T ) was implied, and which quantifies the balance between the

actual temperature stratification ∂T
∂z and the dry adiabatic lapse rate − g

cp(T ) (e.g., Holton, 2004).

To illustrate the deviation of N2
false from N2, vertical profiles of both variables were calculated based on the temperature605

profiles shown in Figure 9a. The temperature data are taken from the Upper Atmosphere Research Satellite Reference Atmo-

sphere Project (URAP, see Swinbank and Ortland, 2003) data and are assumed as typical at mid-latitudes during June and

December. The temperature profiles extend up to altitudes of 85km and thus cover the entire stratosphere and most of the

mesosphere. The hydrostatic assumption allowed for computing pressure profiles along the URAP values for the vertical tem-

perature distribution. Subsequently, the reference potential temperature θref and its vertical derivative were calculable. The610

resulting vertical profiles for N2
false and the true Brunt-Väisälä frequency N2 are shown in Figure 9b. Evidently, the values

of N2
false (dashed lines) deviate significantly from N2 (solid lines) and increasingly so towards higher altitudes above 15km.

However, the absolute deviation |N2−N2
1005|, using N2

1005 as calculated with θ1005 in accordance with Equation (2), does not

exceed 1.6 · 10−6 s−2 (not shown), indicating that N2
1005 is a good representation of N2 along these temperature profiles.

For equations involving the potential temperature, however, it should be emphasised that the substitution of θ by θref rarely615

succeeds and that instead the entire derivation of the equations requires careful consideration of the assumptions, such as the

constancy of cp, to avoid aberrations and erroneous conclusions.
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Figure 9. Vertical profiles of (a) the temperature up to 85km altitude as typical for mid-latitudes in June (red curve) and December (blue

curve). (b) Resulting wrong Brunt-Väisälä frequency N2
false (dashed lines) and the true Brunt-Väisälä frequency N2 (solid lines) for the two

temperature profiles from panel (a).

7.2 The Potential Vorticity

Ertel’s potential vorticity (e.g., Ertel, 1942; Hoskins et al., 1985; Schubert et al., 2004; Holton, 2004) may be defined as the

potential vorticity of the dry air potential temperature by620

PV (θ) =
1

ρ
(2Ω +∇×u) · ∇θ. (35)

In this definition, 2Ω+∇×u is the absolute vorticity, Ω denotes Earth’s angular velocity, u the three-dimensional wind vector,

and ρ the air density (see, e.g., Hoskins et al., 1985; Cotton et al., 2011; Marquet, 2014). Since (35) represents the defining

equation for Ertel’s potential vorticity, the two potential vorticities

PVref = PV (θref),

PV1005 = PV (θ1005)
(36)625

based on the new reference potential temperature θref and θ1005, respectively, are considered. To provide a first comparison of

these potential vorticities, u= 0 is assumed, i.e., an atmosphere at rest. Additionally, the potential temperature is assumed as

horizontally constant. Consequently, (35) reduces to

PV (θ) =
2sin(φ)

ρ

2π

tE

∂θ

∂z
(37)

for a position on Earth with geographical latitude φ and tE = 24h, the duration of one rotation of the Earth.630
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Figure 10. (a) Vertical profiles of the potential vorticitiy PVref computed with θref (solid lines), and PV1005 computed with θ1005 (dashed

lines), for an atmosphere at rest along the temperature profiles from Figure 9a for June (red lines) and December (blue lines). Since the

temperature profiles are representative for mid-latitudes on the northern hemisphere, the geographical latitude in (37) was set to 52◦N. (b)

Relative deviation |PVref −PV1005|/PVref of the potential vorticity profiles from panel (a).

Using the temperature profiles from Figure 9a together with the values of the potential temperatures θref and θ1005, the

evaluation of the two potential vorticities (36) and (37) yields the potential vorticity profiles shown in Figure 10a while their

relative deviations are shown in Figure 10b. Since the temperature profiles are representative for the north-hemispheric mid-

latitudes, the geographical latitude φ in (37) was set to 52◦N. At tropospheric altitudes, the relative deviation between θref and

θ1005 is small and never exceeds ∼ 1%, while it continuously increases towards higher altitudes. According to these profiles,635

the relative deviation exceeds 10% at 30km and reaches 100% at the highest altitudes.

It is noteworthy, however, that the computations of both N2 (cf. Section 7.1 and Figure 9b) and PV (Figure 10b) are based

on the specific temperature profiles from URAP (cf. Section 7.1 and Figure 9a) and thus are not of general validity. The

selection of these temperature profiles was entirely arbitrary and exclusively aimed at illustrating possible implications of the

use of the developed reference potential temperature. The resulting and indicated deviations are ultimately subject to individual640

assessment on applying θref .

7.3 Vertical sorting of data

For atmospheric investigations, e.g., in the region of the upper troposphere and lower stratosphere (UT/LS), it is common

practice to set vertical profiles of atmospheric parameters in relation to the potential temperature as vertical coordinate. This

way, the increasingly isentropic stratification of the atmosphere above the UT is taken into account. The transport of an air mass645
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along isentropic surfaces, i.e., surfaces of constant potential temperature and entropy, is to be regarded as adiabatic. Hence, the

air’s composition and properties within the same isentrope interval, regardless of the observation location, is better comparable

than it would be if based on other isopleths (i.e., height or pressure coordinates). Investigations of air mass compositions over

time and from different regions at the same θ-level largely exclude that, during its transport history, the air had experienced

vertical displacement and/or diabatic processes (radiative heating, condensation/evaporation) which would result in energy650

conversion. The tropopause height is often used as a reference height in the θ coordinate system in connection with the vertical

sorting of observational data, whereby the assignment of tropospheric and stratospheric processes is made, or exchanges across

the tropopause are investigated (Holton et al., 1995; Stohl et al., 2003). Consequently, the tropopause height is also determined

by the potential vorticity (e.g., Gettelman et al., 2011, and cf. Section 7.2), if the conventional tropopause definitions (cold

point or lapse rate, WMO, 1957) do not allow for clearly determining the tropopause height, e.g., in the Asian Monsoon655

Anticyclone (cf. Höpfner et al., 2019) or in the polar winter vortex (Wilson et al., 1989; Weigel et al., 2014). The conventional

definition of θ implies a systematic error in the vertical sorting of observational data in the θ coordinate system, independent

of the measurement platform. Investigations with high-altitude research aircraft such as the G-550 HALO (e.g., Wendisch

et al., 2016; Voigt et al., 2017), the NASA WB-57 or ER-2 (e.g., Murphy et al., 2007; Dessler, 2002), the M-55 Geophysica

(Curtius et al., 2005; Borrmann et al., 2010; Frey, 2011), balloon-borne platforms (Lary et al., 1995; Vernier et al., 2018), or660

satellite-based vertical profiles (e.g., Davies et al., 2006; Spang et al., 2005), require consideration of the systematic error in θ

if calculated as θcp in compliance with the definition by the WMO (1966). The possibly inconsistent use of a constant cp value

of 1004J kg−1K−1 or 1005J kg−1K−1 (or any other) in different and compared data sets, which could be due to different

literature references for this value (cf. Table 1), will not be explored here. At altitudes between 15 and 20km (ceiling of high-

altitude research aircraft), an overestimation by about 0.1− 0.5% is to be expected for the potential temperature according665

to the conventional definition, cf. Figure 4b. At altitudes of 30− 35km, an overestimation by up to 2− 5% results. Whether

this error is significant or small compared to the uncertainty of ambient temperature and pressure measurement aboard the

respective aircraft is left to individual judgement in the course of data processing. In the case of spacecraft-bound vertical

soundings (e.g., from ASTROSPAS, SCIAMACHY, or ENVISAT), the error in the potential temperature determined by θcp
exceeds 10% at altitudes above 40km, as shown in Figure 4b. Finally, we note that the specified errors apply exclusively along670

the vertical profile of the US standard atmosphere, and that deviations of the actual temperature profile from the US standard

atmosphere, e.g., warmer temperatures, could lead to larger errors (cf. Figure 6).

7.4 Diabatic heating rates

Diabatic heating rates refer to the rate of energy dq
dt supplied to a given air parcel, e.g., by radiative heating, and are given in

units of J kg−1s−1. This energy supply causes a temperature change of an air parcel at a rate which hereafter is referred to as675
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the absolute heating rate,

AHRref

(
dq

dt

)
=

dT

dt
=

1

c0p(T )

dq

dt
,

AHR1005

(
dq

dt

)
=

dT

dt
=

1

1005J kg−1K−1
dq

dt
.

(38)

Again, the distinction was made between the temperature-dependent c0p(T ) and the constant cp = 1005J kg−1K−1 specific heat

capacity. From the defining equations (38), the relative difference between these absolute heating rates, where x designates an

arbitrary diabatic heating rate, is680

AHR1005(x)−AHRref(x)

AHRref(x)
=

c0p(T )

1005J kg−1K−1
− 1. (39)

Apart from the absolute heating rates for the change of absolute temperature, the change of potential temperature due

to a diabatic heating rate dq
dt is of interest. For example, it is the change of potential temperature that modifies the altitude

of modelled trajectories in Lagrangian chemical transport models based on isentropic coordinates rather than the change in

absolute temperature (e.g., the SLIMCAT (Chipperfield, 2006) or CLaMS model (Pommrich et al., 2014)).685

Taking the relation T ds= dq for the specific entropy into account, Gibbs’ equation (8) may be rewritten as

dq

T
=
cp(T )

T
dT −Ra

dp

p
. (40)

Comparing the right-hand side of this equation to the total derivative of the new reference potential temperature θref (see

Appendix E for the detailed computation and Equation (E6) for the result) equation (40) amounts to

dq

T
= cp(θref)

dθref
θref

. (41)690

Consequently, the following two diabatic heating rates

dθref
dt

=
θref

c0p(θref)T

dq

dt
= HRref

(
dq

dt

)
,

dθ1005
dt

=
θ1005

(1005J kg−1K−1) ·T
dq

dt
= HR1005

(
dq

dt

) (42)

for the potential temperatures θref and θ1005 may be defined. Denoting again by x an arbitrary diabatic heating rate, the relative

difference between the heating rates (42) is

HR1005(x)−HRref(x)

HRref(x)
=
θ1005
θref

c0p(θref)

1005J kg−1K−1
− 1. (43)695

In order to judge the magnitudes of the relative differences (39) and (43), the monthly averaged temperature profiles from

ERA-Interim (Dee et al., 2011) data for 52◦N geographical latitude are used, see Figure 11a. The relative differences of the

absolute heating rates (39) are shown in Figure 11b and the difference appears to be small. However, the relative differences of

the heating rates (43) in Figure 11c are much larger, as relative deviations exceeding 50% are reached in the upper stratosphere
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Figure 11. (a) Monthly averaged temperatures profiles for 52◦N. (b) The relative differences between the absolute heating rates, defined

in (39). (c) The relative differences between the heating rates (43) for the potential temperatures θ1005 and θref . (d) The resulting potential

temperatures θ∗1005, θ∗ref after 24h of heating with constant diabatic heating dq
dt

and the resulting heating rates HRref ,HR1005 at constant

pressure.
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and lower mesosphere (at pressures below 1hPa). Additionally, the temperatures were computed that resulted after 24h of700

heating with a constant heating rate dq
dt as given in the (averaged) dataset, where a constant pressure is assumed for simplicity.

As may be anticipated from the small deviations in Figure 11b, the difference in the final absolute temperatures by using the

absolute heating rates AHR1005 or AHRref are smaller than 0.044K. However, the differences in the potential temperatures

θ∗1005, θ
∗
ref , computed with the heating rates HRref ,HR1005, are much larger (Figure 11d), and amount to about 3% at 10hPa

and about 15% at 1hPa. For transport calculations done in isentropic coordinates, these differences are of the same order of705

magnitude as the deviations resulting from the use of the temperature-dependent instead of the constant cp. It remains to be

decided on individual application whether this additional effect in the calculation is significant.

A standard diagnostic for the speed of the stratospheric circulation is the time lag of the upward propagating seasonal signal

in tropical stratospheric water vapour (the so-called tape recorder, Mote et al., 1996). Here, differences between calculations

(done in isentropic coordinates) based on different current meteorological reanalysis data sets amount to about 10− 30%710

for the signal’s upward propagation below about 10hPa (Tao et al., 2019), such that the additional deviation from using the

temperature-dependent cp is comparably small. However, in cases of smaller inter-model differences the additional cp-related

uncertainty needs to be assessed.

Note, the determination of absolute temperatures T ∗1005, T
∗
ref which correspond to the resulting potential temperatures

θ∗1005, θ
∗
ref after 24h differ by less than 0.014K (not shown).715

8 Summary and Conclusions

Under the assumption that dry air is an ideal gas, a re-assessment of computing the potential temperature was introduced that

accounts for the hitherto unconsidered temperature dependence of air’s specific heat capacity. The new reference potential

temperature θref was introduced, which is thermodynamically consistent and based on a state-of-the-art parameterisation of

the ideal-gas specific heat capacity of dry air from the National Institute of Standards and Technology (NIST). This reference720

potential temperature was compared to a potential temperature θreal wherein the real-gas behaviour of dry air is considered.

In the range of temperatures from 180K to 300K and the range of pressures from 1000hPa to 0.5hPa, covering the atmo-

spheric conditions of roughly the entire troposphere and stratosphere, the relative differences between θref and θreal are smaller

than 0.03% and may be considered negligible. Consequently, θref even provides a reasonable approximation to the potential

temperature of the real gas.725

The difference between the newly derived reference potential temperature θref and the conventionally determined potential

temperature θcp (with constant cp = 1005J kg−1K−1, as recommended by the World Meteorological Organisation, WMO,

1966) increases with altitude, e.g., ∆θ ≥ 1K at pressures p≤ 60hPa.

Derivation of a potential temperature that is consistent with thermodynamics and that accounts for the ideal-gas properties

of dry air requires the integration of Gibbs’ equation and the subsequent solution of the resulting nonlinear equation. With730

a constant cp, both analytical steps are straightforward, resulting in the conventional expression (13) as suggested by WMO

(1966). However, if instead the temperature dependence of air’s specific heat capacity cp(T ) is considered, the integrals as
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well as the equations are not analytically solvable and, thus, the solution must be approximated. Both approximations were

performed and described in detail. The integral was treated with the basic approximation and the solution of the nonlinear

equation was approximated by the second iterate of Newton’s method. As an alternative to Newton’s classical method, a735

modified formulation of Householder’s iteration method is provided, featuring accelerated convergence properties.

The suggested approximation steps to obtain a reference potential temperature have two main sources of error: the error

θref − θapproxref inherent in the integral’s basic approximation and the error θapproxref − θ(k) of the k-th Newton iterate. The latter

error approaches zero as k→∞, whereas the error resulting from the basic approximation remains well below 0.1% (along

the US Standard Atmosphere) for values of θref of up to ∼ 2000K, hence up to stratopause altitudes. To keep this low error740

level also for θref > 2000K, the approximation may require an extension by means of a higher-order polynomial.

One of the foremost implications of the re-assessed potential temperature’s definition concerns the use of θ as a vertical co-

ordinate for the sorting, grouping, and comparison of (measured) data, e.g., along or across isentropes. Thereby, the re-assessed

potential temperature constitutes a more accurate consideration of the air’s actual properties. This particularly concerns, e.g.,

the specific heat capacity which is conventionally assumed as constant and for which various values are given depending on745

the textbook consulted (offering a range from 1000J kg−1K−1 to 1010J kg−1K−1, see Table 1).

Significant errors and biases may arise if, for instance, the conventional derivation of θ (WMO, 1966) is used together

with values for air’s specific gas constant (Ra) or air’s specific heat capacity (cp) which better comply with the most recent

state-of-knowledge. Moreover, the use of the standard pressure 1013.25hPa instead of 1000hPa as defined by WMO (1966)

and consistently used herein as ground level pressure (p0) may cause an additional deviation of the resulting θ. Thus, the750

re-assessment of θ’s definition could largely diminish such errors and biases and improve the comparability of data.

In addition to the vertical sorting of data, implications of the new reference potential temperature were discussed for several

other applications in which the potential temperature is used. On the one hand, results may appear mostly unaffected by using

θref instead of the convential θ1005, such as the values of the Brunt-Väisälä frequency or the temperature change of air parcels

due to diabatic heating. On the other hand, it was illustrated that any formula which involves the potential temperature needs755

to be carefully reviewed to see if its derivation relies on the assumed constancy of the specific heat capacity. If this is the case,

substituting θref for all occurrences of θ within the particular formula may lead to a wrong computation.

In contrast, examples were shown where the computation of Ertel’s potential vorticity and the rate of change of potential

temperature in response to diabatic heating yields different results by the use of θref instead of θ1005. The differences increased

with altitude, hence they become more important for applications within the stratosphere and above.760

It should be emphasised that all these examples were based on assuming particular profiles of temperature and pressure

together with other assumptions. Moreover, only a limited number of examples could be investigated, while the applications of

potential temperature are numerous. Consequently, a well-founded, individual decision is required for each application of the

potential temperature as to whether it is worth applying the more rigorous calculation in the particular context.

On the one hand, such a re-assessment could take into account the current state of knowledge regarding the accuracy of765

thermodynamic variables and substance-related properties. On the other hand, this way, the conceptional abstractness already

inherent in θ is not further complicated by a misleading selection of parameters or reputed constants. There is no doubt
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that the conventional method is suitable for the description of most processes occurring within the troposphere. However,

at stratospheric or even mesospheric altitudes, the neglect of the temperature dependence of the ideal-gas heat capacity in

the conventional definition increasingly distorts the resulting absolute values as well as the vertical course of the potential770

temperature. Ultimately, it seems obvious to profit from the computing capacities available today and from the known higher

accuracy of physical variables and atmospheric parameters to carry out a reappraisal of the potential temperature, a useful (but

not always consistently used) meteorological quantity.

Appendix A: Derivation of the specific heat capacity from thermodynamics

In the following, the derivation of the air’s specific heat capacities CV , Cp (capital letters indicate molar units) at constant775

volume and pressure, respectively, is summarised, mainly following the textbook exposition by Kondepudi and Prigogine

(1998). We start with the ideal gas law

pV =NRT, (A1)

with p the pressure, V the volume of the system, N the amount of gas within the volume, T the temperature, and R the

universal gas constant. Additionally, the first law of thermodynamics is780

dU = dQ− pdV, (A2)

with the internal energy U of the system and dQ specifies the change of heat. Insertion of the total derivative of the internal

energy U in (A2), and assuming the system as thermodynamically closed, i.e., the molar amount N remains conserved (dN =

0), leads to

dQ− pdV =
∂U

∂T

∣∣∣∣
V,N

dT +
∂U

∂V

∣∣∣∣
T,N

dV, (A3)785

and subsequently

dQ=
∂U

∂T

∣∣∣∣
V,N

dT +

(
p+

∂U

∂V

∣∣∣∣
T,N

)
dV. (A4)

If the system’s volume is held constant, equation (A4) represents the definition of the constant-volume heat capacity CV in

molar units, i.e.,

dQ=
∂U

∂T

∣∣∣∣
V,N

dT = CV (p,T )dT. (A5)790

Alternatively, assuming the system’s pressure as constant, its volume is variable with total derivative

dV =
∂V

∂T

∣∣∣∣
p,N

dT +
∂V

∂p

∣∣∣∣
T,N

dp︸︷︷︸
=0

=
∂V

∂T

∣∣∣∣
p,N

dT (A6)
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and, therefore

dQ=
∂U

∂T

∣∣∣∣
V,N

dT +

(
p+

∂U

∂V

∣∣∣∣
T,N

)
dV

=
∂U

∂T

∣∣∣∣
V,N

dT +

(
p+

∂U

∂V

∣∣∣∣
T,N

)(
∂V

∂T

∣∣∣∣
p,N

dT

)

=

[
∂U

∂T

∣∣∣∣
V,N

+

(
p+

∂U

∂V

∣∣∣∣
T,N

)
∂V

∂T

∣∣∣∣
p,N

]
dT

= Cp(p,T )dT,

(A7)

defining the isobaric molar heat capacity Cp. In general, this quantity depends on pressure as well as on temperature. However,795

if the gas is assumed as ideal, an important conclusion from the statistical description of an ideal gas is the fact that the internal

energy U must be independent of the pressure (see, e.g., Fay, 1965).

Using this result, together with (A7) and the ideal gas law (A1), it follows

Cp =
∂U

∂T

∣∣∣∣
V,N

+

(
p+

∂U

∂V

∣∣∣∣
T,N

)
∂V

∂T

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+ p
∂V

∂T

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+
∂

∂T
(pV )

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+
∂

∂T
(NRT )

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+NR.

(A8)

In the previous computations, there is no restriction on the temperature dependence of the internal energy U(T ). Therefore,800

even by assuming ideal-gas behaviour, the specific heat capacity Cp in (A8) is in general a function of temperature.

Appendix B: Sensitivity of the conventional definition of θ to perturbations of cp

This section explores, from a mathematical perspective, the sensitivity of the potential temperature formulation (13) based on

a constant specific heat capacity. Considering the specific heat capacity cp as a variable, the sensitivity of θcp (13) to a small

perturbation δ of cp is described by its Taylor expansion805

θcp+δ = θcp +
∂θcp
∂cp

δ+O
(
δ2
)

= θcp − θcp
Ra
c2p

ln

(
p0
p

)
δ+O

(
δ2
)
.

(B1)

For any constant value of the specific heat capacity cp and for a minor perturbation δ, the second summand within the expansion

(B1) remains small for small values of ln
(
p0
p

)
. If the interval between the two pressure levels is very narrow, i.e., p≈ p0, the
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expression ln
(
p0
p

)
approximately equals ln(1) = 0. Contrarily, if the pressure approaches very low values, i.e., p→ 0Pa, the

logarithmic expression diverges to negative infinity, i.e., ln
(
p0
p

)
→−∞, implying that the impact of the second summand810

intensifies with decreasing pressure, i.e., for increasing altitudes. Moreover, this may explain why the deviation between θ1000

and θ1010, as illustrated in Figure 2b, remains comparatively small within the troposphere and systematically increases with

rising altitude, i.e., decreasing pressure levels.

Appendix C: Approximate computation of the reference potential temperature

This section summarises the detailed steps of approximating the function F (x), defined in (23), by F̂ (x), defined in (28)815

(Section C1), as well as the approximations of the solutions of the resulting nonlinear equations by Newton’s method (Section

C2).

C1 Reformulating the function F (x)

Proceeding from the definition of a function h(x)

h(x) =

x∫
T1

cp(T
′)

T ′
dT ′, (C1)820

with T1 = 180K, the function F (x) may be rearranged as

F (x) =

T∫
x

cp(T
′)

T ′
dT ′−Ra ln

(
p

p0

)

= h(T )−h(x)−Ra ln

(
p

p0

)
.

(C2)

The advantage of this reformulation of F (x) is the inclusion of h(x), consisting of an integral with fixed lower bound and a

sole variable upper bound. This way, the function h(x) is numerically solvable, and subsequently h(x) can be substituted by

an approximation f(x) that is defined as825

f(x) = b0 + b1 ln(x− b2) + b3x+ b4x
2. (C3)

Notably, if cp is constant, this function reduces to an exact primitive of the integrand cp
T ′ with b3 = b4 = 0. Moreover, in this

case, the resulting root-finding problem 0 = F (x) is exactly solvable and finally leads to the known conventional definition

(13) of the potential temperature.

As a further step, the function h(x) is numerically approximated, while cp(T ) in (C1) is replaced by the ideal-gas limit of830

air’s specific heat capacity c0p(T ). The integration interval [T1, x] with T1 ≤ x≤ 2000K is traversed in steps of at most 0.001K

while each step of the integration process is carefully approximated by using Simpson’s rule.
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By solving a least-squares problem, the coefficients in (C3) for the approximation of h(x) by the function f(x) are estimated

as

b0 =−4072.2121328563667,

b1 = 797.09247926609601,

b2 = 29.587047521428016,

b3 = 0.41981158226925142,

b4 =−5.1008025097060311 · 10−5.

(C4)835

In Figure C1a the function h(x) is graphed together with the approximation f(x), as well as the respective deviations h(x)−
f(x) in Figure C1b. Evidently, the absolute error inherent to the approximations is comparatively small as, over the entire

temperature range above 190K, the approximation error never exceeds ±1J kg−1K−1. Exclusively at temperatures below

190K, the approximation error rapidly rises above 1J kg−1K−1, bearing in mind that such absolute temperatures are only

occasionally found in the atmosphere within a relatively narrow altitude interval at the cold point tropopause. Moreover, the840

difference between f(x) and h(x) appears negligible as the profiles almost ideally coincide (cf. Figure C1a).

C2 Finalised approximation of the reference potential temperature

As discussed in Section 5.1, the new formulation of the potential temperature based on the temperature-dependent specific heat

capacity cp(T ) requires solving the root-finding problem 0 = F (x), where the function F (x) is defined in (23). However, since

F (x) contains an integral that complicates the root-finding process, this integral is substituted by the difference f(T )− f(x),845

where f is given in Section C1. Therefore, F (x) is replaced by the function F̂ (x) as defined in (28) and the zero of the equation

0 = F̂ (x) is denoted as θapproxref .

The equation 0 = F̂ (x) is still not analytically solvable, so Newton’s method is once more required. Using again x0 = θ1005

as the initial guess, cf. (26), the iteration sequence for Newton’s method is given by the recursion

xk+1 = xk −
F̂ (xk)

F̂ ′(xk)
= xk −

f(T )− f(xk)−Ra ln
(
p
p0

)
−f ′(xk)

= xk −
Ra ln

(
p
p0

)
− f(T ) + f(xk)

f ′(xk)
.

(C5)850

Instead of this standard formulation of Newton’s method (C5), Householder’s formulation

xk+1 = xk −
F̂ (xk)

F̂ ′(xk)
− F̂ ′′(xk)

2F̂ ′(xk)

[
F̂ (xk)

F̂ ′(xk)

]2

= xk −
Ra ln

(
p
p0

)
− f(T ) + f(xk)

f ′(xk)

− f ′′(xk)

2f ′(xk)

Ra ln
(
p
p0

)
− f(T ) + f(xk)

f ′(xk)

2

(C6)
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Figure C1. (a) Numerically evaluated function h(x) together with its approximation f(x); (b) the absolute approximation error h(x)−f(x).

may be used, which allows for reducing the computation time due to its accelerated convergence speed. For completeness, the

required derivatives f ′, f ′′ in the recursion formulas (C5) and (C6) are

f ′(x) =
b1

x− b2
+ b3 + 2b4x,

f ′′(x) = 2b4−
b1

(x− b2)
2 .

(C7)855

The final step on the way to formulate a new expression for the potential temperature requires defining one of the iterates xk

as appropriate enough for the approximations that result from applying the different methods:

– the standard of Newton’s method (C5), simply referred to as Newton’s method in the sequel, or

– Householder’s method (C6).

While the mathematical expressions in (C5) and (C6) are of increasing complexity, the convergence rate of the approximating860

sequence increases with rising mathematical complication. The preferred method is determined by the accuracy required, i.e.,
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z in m T in K p in Pa θref in K θ(1) in K θ(2) in K θ
(1)
Householder in K

5500 252.4 50506.8 306.837 307.016 307.016 307.016

11000 216.65 22632.1 331.337 331.510 331.510 331.510

20000 216.65 5474.89 494.940 495.376 495.378 495.378

32000 228.65 868.019 855.324 855.172 855.656 855.660

47000 270.65 110.906 1637.052 1620.463 1637.726 1638.974

Table C1. Values of the new reference potential temperature θref , together with the first two iterates θ(1), θ(2) using Newton’s method and

the first iterate θ(1)Householder using Householder’s method for five pairs of temperature and pressure along the US Standard Atmosphere. The

computed values are rounded to three digits.

better accuracy is necessarily associated with elevated computational effort for the approximation method. A discussion of the

approximation errors is found in Appendix D.

Table C1 collects values of the new reference potential temperature θref , together with the first two iterates θ(1), θ(2) using

Newton’s method (C5) and the first iterate θ(1)Householder using Householder’s method (C6) for five pairs of temperature and865

pressure along the US Standard Atmosphere, cf. Figure 1, which allows verification of computations. The first height is chosen

midway along the linearly decreasing temperature profile within the troposphere, while the other heights correspond to the

kinks of the temperature profile.

Appendix D: Approximation error for the reference potential temperature

The following aims at a comprehensive investigation of the errors inherent with approximating the ultimate reference poten-870

tial temperature θref . As discussed in Section 5.2, the total error is a combination of the basic error θref − θapproxref and the

approximation error that results from the approximation sequence θapproxref − θ(k), where θ(k) denotes the k-th iterate of the

approximation sequence which is computed in accordance with either Newton’s or Householder’s method. The formulations of

Newton’s (C5) and Householder’s (C6) method require replacing the function F (x) by F̂ (x), and the approximation sequences

θ(k) converge to θapproxref for k→∞. Consequently, the approximation error θapproxref − θ(k) tends to zero for k→∞.875

The analysis of the approximation error is initially based on the pressure and temperature profiles of the US Standard At-

mosphere. Figure D1 shows the total relative errors
(
θref − θ(1)

)
/θref of the first iterate (Figure D1a) and

(
θref − θ(2)

)
/θref

of the second iterate (Figure D1b), computed with Newton’s or Householder’s method. The first iterate still causes the ap-

proximation to have significant errors, especially at altitudes above 35km. However, the second iterate with either Newton’s or

Householder’s method yields results with negligible approximation error. Hence, the total error of the approximation procedure880

is dominated by the unavoidable basic error, and may be deduced from the provided figures whenever the total error profile

nearly congruently follows the profile of the basic error (cf. Figures D1b and 5a).

It may be noted that Householder’s method achieves a significantly lower error level than Newton’s method due to its

accelerated rate of convergence. Compared to the first iterate approximations, computation up to the second iterate (cf. Figure
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Figure D1. Total relative error along the US Standard Atmosphere arising from the iteration process by declaring (a) the first iterate θ(1)

or (b) the second iterate θ(2) as the final approximation to the reference potential temperature θref . Red curves: iterates computed using

Newton’s method (C5); blue curves: iterates computed using Householder’s method (C6). Note the different range of the abscissae.

D1b) achieves, in general, a considerable improvement for both methods, and both second iterate approximations approach885

the basic error quite closely (cf. Figure D1b). As is also evident from Figure D1b, compared to Householder’s method, the

second iterate with Newton’s method results in a smaller total relative error
(
θref − θ(2)

)
/θref relative to the ultimate reference

potential temperature (indicated by a smaller distance to the dashed zero-line above 45km altitude). Nevertheless, the relative

approximation error,
(
θapproxref − θ(2)

)
/θref , is larger compared to the second iterate with Householder’s method. So, luckily,

the second iterate with Newton’s method provides a better approach to the reference potential temperature than that with890

Householder’s method.

As with the discussion of the basic error in Section 5.2, the analysis of the total error should include all possible combinations

of pressure and temperature in order to take into account fluctuations in the real atmosphere that deviate from the profile of the

US Standard Atmosphere. Therefore, the extended analysis of the approximation error is summarised in Figure D2. The upper

panels illustrate the total relative error of the second iterate for Newton’s (Figure D2a) and Householder’s method (Figure D2b).895
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Figure D2. Relative error of the second iterates θ(2) with (a) Newton’s method and (b) Householder’s method for the the ranges of pressure

and temperature from 1000hPa to 0.5hPa and from 180K to 300K, respectively. (c) The absolute error arising from the first iterate θ(1)

with Householder’s method. The white solid line indicates the p-T -profile from the US Standard Atmosphere. Note the different ranges of

the ∆θ scales.
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As previously shown, further iteration with either method does not improve the approximation quality. The contour patterns

in these panels show a remarkable similarity to the contours for the relative error of the basic approximation in Figure 5c.

Also here (upper panels of Figure D2), two regions are highlighted by the contours, i.e., at ∼ 100hPa and in a pressure range

from ∼ 5hPa to 1hPa, featuring the same impact on ∆θ/θref of identical strength as the basic error. This result may not be

surprising, since the second iteration step with both methods, Newton’s and Householder’s, was already proven to approach900

the approximation comparatively well, without worsening the total error level (cf. Figure D1b).

Consequently, concerning the required number of iterations and the method to use, the second iteration of Newton’s method

can be recommended to deliver appropriate results, with a relative error of less than 0.3%, up to the stratopause level (∼ 50km).

Householder’s method features an accelerated convergence rate, and its use up to its first iterate θ(1) may be already appropriate

for certain applications. According to the total error of Householder’s method up to its first iterate θ(1) (Figure D2c), the905

resulting relative error remains below 7% to a pressure level of ∼ 50hPa and ∆θ stays below 0.3% to pressures of ∼ 2hPa.

Thus, Figure D2 may serve as guidance to decide how many iterations with one or the other method best meets the individual

accuracy requirements.

Appendix E: The derivative of the reference potential temperature

As discussed in Section 5.1, the new reference potential temperature is defined as the zero of the function910

F (x, p, T ) =

T∫
x

cp(T
′)

T ′
dT ′−Ra ln

(
p

p0

)
(E1)

for given values of pressure p and temperature T , see Equation (23). More precisely, for varying p, T , a function (p, T ) 7→
θref(p, T ) is implicitly defined by the equation

F (θref(p, T ), p, T ) = 0. (E2)

According to the implicit function theorem (e.g., Protter and Morrey, 1985, chapter 7), equation (E2) is uniquely solvable for915

θref(p, T ), i.e., the function (p, T ) 7→ θref(p, T ) actually exists as a differentiable function of (p, T ), if the condition ∂F
∂θ 6= 0

holds. According to (E1), this partial derivative equals

∂F

∂θ
(θref , p, T ) =−cp(θref)

θref
, (E3)
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being strictly negative, since the specific heat capacity is always positive. Moreover, the implicit function theorem states that

the derivatives of the implicit function θref(p, T ) are given by920 [
∂θref
∂p

(p, T ),
∂θref
∂T

(p, T )

]
=−

(
∂F

∂θ
(θref , p, T )

)−1 [
∂F

∂p
(θref , p, T ),

∂F

∂T
(θref , p, T )

]
=

θref
cp(θref)

[
−Ra
p
,
cp(T )

T

]
=

[
− Ra
cp(θref)

θref
p
,
θref
T

cp(T )

cp(θref)

]
.

(E4)

Note, these partial derivatives coincide with the partial derivatives of θcp in the case of a constant specific heat capacity. Using

the partial derivatives (E4), the total differential of θref may be written as

dθref =
∂θref
∂p

dp+
∂θref
∂T

dT

=− Ra
cp(θref)

θref
p

dp+
θref
T

cp(T )

cp(θref)
dT

(E5)

or925

cp(θref)
dθref
θref

= cp(T )
dT

T
−Ra

dp

p
. (E6)
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