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Abstract

Accurate, optics-based measurement of feature sizes at deep sub-wavelength dimensions has been conventionally
challenged by improved manufacturing, including smaller linewidths, denser layouts, and greater materials com-
plexity at near-atomic scales. Electromagnetic modeling is relied upon heavily for forward maps used to solve
the inverse problem of optical measurements for parametric estimation. Machine learning (ML) approaches are
continually under consideration, either as a means to bypass direct comparison to simulation or as a method
to augment nonlinear regression. In this work, ML approaches are investigated using a well-characterized ex-
perimental data set and its simulation library that assumes a 2-D geometry. The benefits and limitations of
ML for optical critical dimension (OCD) metrology are illustrated by comparing a straightforward library look-
up method and two ML approaches, a data-driven surrogate model for nonlinear regression using radial basis
functions (RBF) and multiple-output Gaussian process regression (GPR) that indirectly applies the simulated
intensity data. Both RBF and GPR generally improve accuracy over the conventional method with as few as 32
training points. However, as measurement noise is decreased the uncertainties from RBF and GPR differ greatly
as the GPR posterior estimate of the variance appears to overestimate parametric uncertainties. Both accuracy
and uncertainty must be addressed in OCD while balancing simulation versus ML computational requirements.

1. INTRODUCTION

Inexpensive, non-destructive, and relatively fast optical approaches permeate overlay metrology,1,2 defect inspec-
tion,3,4 and critical dimension (CD) metrology5 in advanced semiconductor manufacturing. Unlike defect and
overlay metrologies, optical CD (OCD) metrology has been strongly dependent upon electromagnetic simulations
to yield forward maps for the inverse problem of determining CDs and optical properties from intensity measure-
ments. The downward scaling of semiconductor features has prompted not only improvements in electromagnetic
simulations6 but also reductions in measurement wavelength7 and the rigorous incorporation of prior knowledge
(e.g., hybrid metrology8–12) to extend the continued utility of OCD even as dimensions are deep sub-wavelength
and approaching near-atomic scales.

The clear goal of OCD of sub-wavelength features is determining the set of parameters, p = {p1, . . . pT }, where
T is the number of free parameters in the simulation, that best represent the measurand. Generally, optical data
are collected for combinations of several measurement conditions (e.g., angle, wavelength, polarization, etc.) that
can be labeled as ω1, . . . ,ωt, where t is the total number of conditions. The optical data collected at each ωi

can be classified as I = (I1, . . . , It)
ᵀ

and the simulated data are fI(ω,p) = [f(ω1,p), . . . , f(ωt,p)]
ᵀ
. Most often,

nonlinear regression is utilized to determine the estimate p̂ from the relationship

I = fI(ω,p) + ε, (1)

where ε is an error term.

To improve OCD further, researchers and technologists are contemplating the use of artificial intelligence
(AI) and machine learning (ML) towards determining p̂ with two divergent approaches emerging: First, one
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could abandon the long-held practice that experimental data need to be connected directly to simulation data.
In simplest terms, the measurements I could be fed directly into ML to yield p̂. Second, ML could be centered
on improving existing regression approaches for solving Eq. 1. In selecting between these two approaches for
metrology, it is crucial that ML needs to yield not only p̂ but also the variances σ2

p̂ = {σ2
p̂1
, . . . , σ2

p̂T
}. Of the first

approach, Bischoff et al. reported fitting of 0.25 µm patterns using neural networks, but no uncertainties were
reported.13 Robert et al. reported an estimation of values using neural networks and also variance estimation
using a second neutral network, but they clarify ”variables are assumed to be not correlated”. Rana et al.
indicated industrial viability with reports of uncertainty using neural networks but without specific derivation.14

The second approach, the use of ML approaches to augment regression, has recently gained attention. Ham-
merschmidt et al. employed a Bayesian approach with a Newton-like method to quantify the parameters.15

Heidenreich et al. reported a polynomial chaos based surrogate model for EUV scatterometry measurements
with errors determined from Markov-Chain Monte Carlo sampling of the posterior distribution.16 Later, Ham-
merschmidt et al. reported the use of Gaussian processes in Bayesian optimization, also referred to as Gaussian
process regression in that work, using a Taylor expansion to quantify uncertainties in scatterometry.17 In each
of the works, results for the values were comparable with prior approaches at fitting.

In this work, previously published data are reprocessed to consider the challenges and opportunities of both the
first and second approaches. The implementation of Gaussian process regression (GPR) presented here (unlike in
Refs.17,18) circumvents direct application of Eq. 1 to proceed straight from I to p̂ through ML, although the ML
training and validation are completely informed by rigorous electromagnetic simulations. GPR is a well-studied
ML approach notable in that GPR can simultaneously calculate both a mean and a variance using multiple
outputs (here, geometrical parameters) even with correlation.19 Alternatively, radial basis functions (RBF) are
trained and validated to augment the solution of Eq. 1 to yield improved values for the parametric means and
variances.20 These two approaches will be compared against a straightforward application of a conventional
library look-up method. For the ML approaches, the complexity and computational expense of modern OCD
modeling will be considered through the lens of data scarcity, a reduction in the number of training points, or
nTP, that are available in the existing library. Comparisons will show that even with smaller values of nTP, both
GPR and RBF yield generally good values for p̂, that RBF yields relatively small uncertainties based on its
variance, but that this GPR method as presented appears to overestimate parametric uncertainties.

2. EXPERIMENTAL TECHNIQUE AND SAMPLE DETAILS

The experimental data used in this work were collected from scatterfield microscopy measurements in an angular
scan mode. Scatterfield microscopy combines sophisticated illumination engineering in a high-magnification
imaging platform with optimized information collection about targets of interest from the full 3-D electromagnetic
scattered field. Overviews of the method are available as Ref.22,23 Similar approaches have been deemed ”micro-
scatterometry”.24,25 Specifically, using Köhler illumination as illustrated in Fig. 1, an aperture in the conjugate
to the back focal plane of the objective lens leads to an angularly resolved illumination beam (illumination NA

Figure 1. Angularly resolved scatterfield microscopy. (left) Schematic showing angularly resolved illumination. (right) Angle-scanning
capabilities due to an aperture in the conjugate to the back focal plane (CBFP). Reprinted from Ref.21



Figure 2. L100P300 Parameterized geometry and example data set. Measured intensities as functions of incident polarization and
scan direction, with X, Y defined relative to line direction. Intensity here is unitless after normalization by the incident intensity
I0 ≡ 1. Error bars are 1σ uncertainties in the measured values. After Ref.27

≈ 0.13) at the sample plane. This light is either reflected or scattered depending on the characteristics of the
sample. The large collection NA ≈ 0.95 allows the capture of scattered light between φ = −72◦ to 72◦. For these
experiments, the field-of-view of collection path was focused solely on the target of interest, a periodic array of
patterned lines. The experimental wavelength is λ = 450 nm

The patterned structures under test are three scatterometry targets patterned using a focus/exposure matrix
to yield variations in linewidth. The specific target is the ”L100P300” target produced by SEMATECH,26

with the notation implying a nominal line width of 100 nm and a period of 300 nm. These data have been of
great utility, having been reported for initial demonstrations of Scatterfield Microscopy,22 in pioneering work
on hybrid metrology,10,11 as well as in a recent investigation of the treatment of potential experimental bias.27

In these works, the geometry has been parameterized using a dual trapezoid model yielding three floating
parameters, with a fixed height. Dimensional measurements from this sample have been reported from scanning
electron microscopy (SEM)22 and from atomic force microscopy (AFM).8 Although its dimensions far exceed
those of current technology nodes, comparisons can be made among the ML results as well as these prior data.
Furthermore, with a large library of over 2000 simulated fI(ωi,p) in-hand, multiple realizations of sub-sampling
of that library have been performed to yield additional rigor to the observed trends in accuracy and uncertainty.

3. METHOD DERIVATIONS

In this section, summaries describing the estimation of the parametric values p̂ and their uncertainties σp̂ are
presented. Other sources cover the derivation of the RBF and GPR approaches more thoroughly (see the
documentation for Ref.20 and Ref.,19 respectively).

3.1 Commonalities between Library look-up and RBF

Both library look-up and RBF utilize a weighted least squares fit. The weights are based on the known mea-
surement errors, σmeas,i, at each of the ωi, i = 1, 2, · · · , t for the measurements Ii. In this work, T = 84 by
concatenating the four angle scans in Fig. 2 into a single vector. This approach leads to the function

χ2(p) =

t∑
i=1

1

σ2
meas,i

|f(ωi,p)− Ii|2, (2)

the weighted χ2 (chi-square) function, which can also be expressed as:

χ2(p) = [fI(ω,p)− I]
ᵀ

V−1 [fI(ω,p)− I] , (3)

with
fI(ω,p) = [f(ω1,p), f(ω2,p), . . . , f(ωt,p)]

ᵀ
, I = (I1, I2, · · · , It)ᵀ (4)



and for this work,

V−1 =

(
δij

1

σ2
meas,i

)
i,j=1,...,t

∈ Rt×t, (5)

and as uncorrelated errors are assumed here V−1 is a diagonal matrix.

In addition, it can be shown that the uncertainties in p̂ can be calculated using the covariance matrix

Σ =
(
Jᵀ

fI
V−1JfI

)−1
, (6)

where JfI is the Jacobian of the model function. It is through Eqs. 5 and 6 that Library Look-up and RBF are
both sensitive directly to measurement noise.

3.2 Library look-up

In the library look-up scheme, χ2 is evaluated at a subset of fI(ωi,p) for which p are aligned on a grid such
that for a given pj there exists nearest neighbors (NN−) and (NN+) such that pj(NN−) < pj < pj(NN+) with
pi6=j being equal. The value of p which yields the smallest χ2 is in this scheme the best fit p̂. The Jacobian is
approximated using

JfI =

(
∂fi
∂pj

)
i=1,...,t,j=1,...,T

∈ Rt×T ,
∂fi
∂pj
≈ ∆fi

∆pj
≈
fi(NN+) − fi(NN−)

pj(NN+) − pj(NN−)
. (7)

Using additional nearest neighbors (if available) may improve this ratio through averaging of fi, but here these
simple approximations are used to quickly assess p̂ and σp̂.

3.3 Radial Basis Function Interpolation

Library look-up does not interpolate the function among points in the simulation domain, and for modern
OCD such an extensive library seems impractical. One solution is to avoid evaluating the function directly
by interpolating on a grid of already calculated values. Again, the RBFs are calculated using a subset of the
entire library made up of nTP entries where TP represents ”training points”; this nomenclature comes from the
ML community and shall be used for both RBF and GPR. The parameters for which fI (ω,p) is evaluated are
pi = (pi1, pi2, . . . , piT ) , i = 1, . . . , nTP with

Π =

 p1

...
pnTP

 ∈ RnTP×T , fI (Π) = Φ =

 fI (p1)
ᵀ

...
fI (pnTP

)
ᵀ

 ∈ RnTP×t, (8)

where T remains the number of parameters and t the number of measurement conditions, i.e., the length of an
individual measurement vector.

The interpolation problem then amounts to find an approximation f̃I to the function fI such that

f̃I (p,Π,Φ) ≈ fI (p) . (9)

For the sake of clarity we will write f̃I (p) for the function in Eq. 9 if it is clear what library {Π,Φ} is being
used.

Assume we have a set of functions ρi : RT → R, i = 1, . . . , N , such that for all j ∈ {1, · · · , t}, we can
approximate the j-th component of fI, i.e. the scalar function fj (p) by

fj (p) ≈
N∑
i=1

ajiρi (p) . (10)



In the RBF approach specific functions are utilized that depend only on the distance of the parameter vector p
from the different grid points pi, and an additional hyperparameter r as

ρi (p, r) = ρ (‖p− pi‖, r) , i = 1, . . . , nTP, (11)

hence N = nTP in Eq. 10. Specifically, the multiquadratic radial basis functions,

ρi (p, r) =
√
‖p− pi‖2 + r2, i = 1, . . . , nTP (12)

have been utilized with the hyperparameter r determined from leave-one-out cross-validation (LOOCV)28 and
the optimal hyperparameter r̂ found using a particle-swarm optimization (PSO) algorithm, see Ref.29 The
matrix A (derived elsewhere20), consisting of the t coefficient vectors ai = (ai1, . . . , ainTP

)
ᵀ ∈ RnTP determined

from Eq. 10, given as
A = (a1, · · · ,at)

ᵀ ∈ Rt×nTP , (13)

is also optimized using PSO. Using A we can calculate the approximation of all t entries to the model function
for an arbitrary parameter vector p by

f̃I (p) = A ·P (p) , with P (p) = [ρ1 (p) , . . . , ρnTP
(p)]

ᵀ ∈ RnTP . (14)

To quickly summarize, the training step for RBF solves for r̂ and A that are used in the determination of f̃I (p)
which can be shown to yield

p̂ = argmin
{[

f̃I (p)− y
]ᵀ

V−1
[
f̃I (p)− y

]}
, (15)

where y is a general form, and is I specifically here as in Eq. 3. The derivation of the Jacobian of f̃I (p), Jf̃I
, can

be found elsewhere,20 but as with the library look-up, the parametric mean and uncertainty are both directly
tied to the measurement uncertainty through V−1.

3.4 Gaussian Process Regression

In this implementation of Gaussian process regression, which has followed the derivation set forth by Liu et
al.,19 we rethink the relationships between the geometry and its scattering and attempt a vastly different ML
approach. Instead of trying to establish a functional relationship between the geometry parameters and the
optical response, i.e., trying to find the function

fI : p 7→ fI (p) , (16)

and minimize the difference between a particular measurement y and the function value to determine the optimal
value of geometry parameters, we want to establish a direct relationship between measured intensities and
geometry parameters, i.e., find a function such that

g : I 7→ gp (I) , (17)

informed by observed measurements and/or simulated values I at various measurement conditions ω1, . . . ,ωt.

In order to keep the notation simple we will in the following assume that we only want to determine a single
parameter value p instead of a vector of parameter values p, before giving a brief explanation on how to address
the latter with a multi-output Gaussian process (MOGP). Similar to the previous approach we assume that the
observations, that are now the values of the parameter of interest, are noisy realizations of the underlying model,
such that

p = gp (I) + εs, εs ∼ N
(
0, σ2

s

)
. (18)

Note, that there is no relationship between εs in Eq. 18 and ε in Eq. 1, nor is there a relationship between σs
and the measurement noise σmeas in Eq. 2.

In Gaussian process regression the target function in Eq. 18 is approximated by interpreting it as a probability
distribution in a function space, more precisely as a collection of random variables, such that any finite number



of which have a joint Gaussian distribution. As such it is completely defined by its mean function m (I) and the
covariance function k (I, I′). We can therefore write a Gaussian process as

gp (I) ∼ GP [m (I) , k (I, I′)] , (19)

and furthermore, w.l.o.g., assume the mean function to be zero. In order to reduce the complexity of the problem
the choice of the covariance function is limited to a certain class of functions that can be characterized by a few
parameters.

In this study, a simple exponential (SE) kernel has been applied, defined here as

kSE
(
I, I′

)
= σ2exp

(
−||I− I′||

2l

)
, (20)

where the signal variance σ2 represents an output scale amplitude and l represents a characteristic length scale.
Here, σ and l are the hyperparameters ω for this kernel that must be fitted in order to realize the optimal GPR.
Indeed, not only is this similar to RBF, but this kernel is itself a radial basis function also.

Because of the Euclidian norm in Eq. 20, a function of the vector difference between two intensity vectors
with t elements is reduced to a scalar value. This is both a benefit (by speeding up the calculation) and a
challenge (by removing information from the regression). Contrast this with the RBF interpolation, which in
Eqn. 11 reduces a function of two vectors of length nTP into a scalar value also. Alternative kernels including
non-radial kernels should be explored further for use in GPR-based OCD metrology.

Thus, in the context of Eq. 17, there exists a set of training points I = {I1, . . . , InTP
} from the input

domain with associated output observations P = {p (I1) , . . . , p (InTP
)}, that we can arrange in a vector p =

[p (I1) , . . . , p (InTP
)]
ᵀ
. Assume now that I need not (as defined above) be from simulation but rather comes

instead from experiment as y. Again following Ref.19 and since a Gaussian process is a stochastic process
wherein a finite subset of random variables follows a joint Gaussian distribution, the joint prior distribution of
the observations p together with gp (y) is[

p
gp (y)

]
∼ N

([
0
0

]
,

[
K (I, I) + σ2

sEnTP
k (I,y)

k (y, I) k (y,y)

])
, (21)

where K (I, I) ∈ RnTP×nTP is the symmetric and positive semi-definite covariance matrix with the element
Kij = k (Ii, Ij), k (I,y) ∈ RnTP denotes the vector of covariances between the nTP training points and the test
point y, and EnTP

is the identity matrix in RnTP×nTP . Be aware that we understand the term point in a topological
sense, since both the training points and the test point are vector quantities.

It can be shown that for a single-output Gaussian process regression, the prediction mean ĝp (y) and prediction
variance σ2

p (y) are

ĝp (y) = K (y, I)
ᵀ

[K (I, I) + σ2
sEnTP

]−1p, (22)

and
σ2
p (y) = k (y,y)−K (y, I)

ᵀ
[K (I, I) + σ2

sEnTP
]−1K (y, I) . (23)

To use Eqs. 22 and 23 for prediction, we need to infer the hyperparameters θ in the covariance function k by
minimizing the negative log marginal likelihood (NLML) as

θopt = argθmin NLML, (24)

where

NLML = −log π (p|I,θ) =
1

2
pᵀ[K (I, I) + σ2

sEnTP
]−1p +

1

2
log|K (I, I) + σ2

sEnTP
|+ nTP

2
log 2π. (25)

After inferring θ, GPR can be applied to test data sets.



For brevity, we also state without additional derivation the formulation of a multi-output GPR in which we
want to determine a T -dimensional parameter vector. We will assume that we have observations of the multiple
parameters that share the same underlying set of training points, i.e., we have one set I = {I1, . . . , InTP

} from
the input domain and n sets of corresponding output observations Pi = {pi (I1) , . . . , pi (InTP

)}, each of which
organized in a vector pi = [pi (I1) , . . . , pi (InTP

)]
ᵀ
, and define the concatenated vector p = [pᵀ

1 , . . . ,p
ᵀ
T ]

ᵀ
. For

the MOGP we will furthermore assume that we have a single kernel function k that accounts for the different
parameters by different coefficients aii for the different output parameters. Furthermore using a single underlying
kernel function allows us to take correlations between the different output parameters into consideration by
defining:

KM (I, I) = A⊗K (I, I) =

a11 ·K (I, I) · · · a1T ·K (I, I)
...

. . .
...

aT1 ·K (I, I) · · · aTT ·K (I, I)

 ∈ RnTP·T×nTP·T , (26)

with K (I, I) as in the single-output GPR. In this case the prediction mean and variance are given as

ĝp (y) = KM (y, I)
ᵀ

[KM (I, I) + Σs]
−1p, (27)

and
Σ (y) = KM (y,y)−KM (y, I)

ᵀ
[KM (I, I) + Σs]

−1KM (y, I) , (28)

respectively. Here
Σs = σ2

sEnTP
⊗ET ∈ RnTP·T×nTP·T ,

and KM (y,y) and KM (y, I) are defined analogous to the single-output case taking into account Eq. 26. Note
that in the learning phase of the MOGP we therefore need to determine the entries {aij}i,j=1,...,T of the matrix
A in addition to the kernel’s hyperparameters θ. However, requiring the matrix to be symmetric and positive
semi-definite helps to reduce the total number of floated variables.

4. TRAINING AND VALIDATION DATA

4.1 Methodology

For the two ML approaches, RBF and GPR, the simulation data will be treated as if these data are compu-
tationally expensive, while utilizing over 1000 library points on a grid in library look-up as a comparison. For
the ML approaches, this data scarcity will appear similar to Fig. 3, except that at each nTP the actual points
in the parameter space will be varied at each realization. Specifically, for nTP = 16, 32, . . . , 128 there are 112
realizations for each of five values of the simulated ”measurement” noise σnoise = 10i, i = {−6, . . . ,−2} where the
incident intensity I0 ≡ 1. For nTP = 256, the number of realizations is smaller, between 64 and 80. In training
and validation, σmeas ≡ σnoise. For all methods, this noise is applied to the validation data while for RBF and
library-look up, it is also used in the formation of the matrix V−1.

As can be inferred from the small markers in Fig. 3, the simulation data library is not equally distributed
throughout the simulation domain. In each realization, the validation set is indexed randomly while the nTP

Figure 3. Examples of data scarcity in the simulation space. Validation, training points vary among nTP except in Sec. 4.4

.



training data are selected through draws of random values for the parameters, normally distributed about the
center of the simulation domain. With each triplet of values drawn, the closest library entry is indexed. If
the candidate index matches the validation point or is repeated, a new candidate is drawn until nTP points are
determined.

Two key metrics are required to evaluate these approaches. It is clear that the parametric uncertainties of each
parameter must be compared against each other, as well as the parametric values. A single value for comparing
the accuracy among the methods can be taken from the GPR literature,19 the relative average absolute error
(RAAE). The RAAE is defined for a general function f(x) and its expectation value f̂ as

RAAE =
ΣnTP

i=1|f(xi)− f̂(xi)|
nTP × σ(ftrain(x))

, (29)

where σ(ftrain(x)) is the standard deviation of the training data.

In the analysis that follows, the RAAE and parametric uncertainties are compared after hundreds of realiza-
tions. Fig. 4 illustrates one such metric, the uncertainty in p2 computed using all entries in the library look-up at
σnoise = 10−3. To compare among the different approaches, bar and whisker plots will illustrate the distribution
of the RAAE and uncertainty from the training and validation steps and the parametric values from RBF and
GPR in the testing step.

Figure 4. (top) Histogram of uncertainty values from library look-up for σnoise = 10−3. (bottom) Example box-and-whisker plot for
quickly conveying the distribution from these multiple realizations. In this work, lower and upper box edges show the 25th and 75th
percentiles respectively (q25, q75); narrowest notch point is the median (50th percentile); minimum whisker length extends to the
outermost data point beyond the box (see left side) while maximum whisker length is 1.5 × (q75 − q25) (see right side); each outlier
beyond the whisker range is shown individually using a symbol.

4.2 Accuracy

The accuracy of the library look-up mode is illustrated at the bottom of in Fig. 4. These data are to be compared
against the resulting RAAE values from RBF and GPR as functions of nTP with σnoise = 10−3.

Figure 5 shows that for this three-parameter model and sample, only nTP ≥ 32 is required to attain a lower
(thus better) RAAE than from library look-up. Both the augmenting of the regression through RBF and the
indirect use of simulation data through GPR allow far fewer simulations for improved validation set accuracy
over the more straightforward conventional approach. Accuracy as expected improves with increases in nTP.
Values for the RAAE between GPR and RBF are similar.

4.3 Uncertainty

The major difference observed in this investigation is among the uncertainties in the validation set. As seen in
Section 3, both the estimated parametric mean and parametric uncertainties can be determined from RBF and
GPR without disregarding correlations among parameters.



Figure 5. Accuracy of RBF and GPR versus library look-up as a function of nTP for these training and validation data. In general,
increasing nTP decreases RAAE, indicating improved accuracy. If notches between any two of these box plot do not overlap, one
may conclude that their two medians differ with 95 % confidence.

A key test is the scaling of the uncertainty with the measurement noise. As also established in Section 3,
the measurement uncertainty is incorporated into the covariance matrix for both library look-up and RBF such
that the parametric uncertainties should scale linearly with σnoise. However, σnoise only indirectly enters into the
estimation of the covariance matrix through the application of this noise to the ”measurement” data. It was
uncertain if this would translate into changes in uncertainty.

In Fig. 6, the expected behavior is observed from library look-up and RBF. Furthermore, the RBF interpola-
tion consistently appears to reduce the uncertainty relative to library look-up by about two orders of magnitude.
However, it is unclear if the measurement noise affects the GPR similarly. Here, there is a slight uptick in
uncertainty between σnoise = 10−3 and σnoise = 10−2, but the uncertainty remains unchanged for σnoise ≤ 10−3.
Notably, GPR yields a higher estimate of the uncertainty than either library look-up or RBF interpolation,
suggesting a near constant factor in the uncertainty that is independent of measurement noise except for large
values of σnoise. Note also, training of the RBF involves solving for both A in Eq. 13 and hyperparameter r from
Eqn. 11, a total of 1 + (t× nTP) parameters, while here GPR training solves for the two hyperparameters σ and
l in Eqn. 20. Incorporating additional hyperparameters in the GPR might positively influence the uncertainty
from GPR.

4.4 Monte Carlo Assessment of GPR Uncertainty

To assess this nature of the uncertainty estimated from GPR, the numerical experiment was repeated for the
multi-output GPR, but instead of picking a new subset of points from the library of size nTP on each realization,

Figure 6. Uncertainty of parameter 2 (middle width) of RBF and GPR versus library look-up as a function of σnoise for these training
and validation data. As intensities have been normalized to the incident intensity, σnoise is also unitless.



Figure 7. Comparisons of the variance of the middle width estimated by the GPR, σ2
p, to the variance of the middle width σ2(p̄)

from Monte Carlo as a function of nTP, the number of training points. Error bars are one standard deviation from 112 realizations.

multiple realizations were performed using the exact same points at each realization for nTP points. Furthermore,
as nTP increased, the previous points were retained. That is, there were not new random draws for nTP = 64
compared to nTP = 32 but rather the subset for nTP = 64 contained 32 new points as well as the points considered
at nTP = 32 (which also contained the points for nTP = 16.) For all these simulations, the validation point also
remained the same with only its measurement noise varied on each realization, applied at each of the experimental
measurement conditions ω1, . . . ,ωt independently assuming a Gaussian distribution. GPR was performed for
112 realizations for each combination of nTP and σnoise. This approach not only allows the estimation of the
posterior mean with its variance, σ(p), but also allows computation of the variance of the mean parametric value
p̄, or σ2

p̄. The uncertainties are shown in Fig. 7 for σnoise = 10−2, a relatively large amount of measurement noise
and also a much lower value, σnoise = 10−5.

Figure 7 illustrates a nearly factor of two difference between the uncertainties σ(p̄) and σp for low noise.
From this additional investigation, GPR as presented here may overestimate its variance except for high noise
and a relatively large number of training points. Note that the mean of the parameter estimate only approaches
zero for low noise and nTP = 256. Additional work is required to further close the two orders-of-magnitude or
more gap in uncertainties between RBF and GPR observed in Fig. 6.

5. RBF AND GPR TESTING

With the discrepancies among RBF and GPR uncertainties, only the parametric values will be considered from
these testing results. The experimental measurement noise varied for each measurement condition ω1, . . . ,ωt

but on average, with the incident intensity I0 ≡ 1, the magnitude fell between σnoise = 10−2 and σnoise = 10−3,
for reference.

In Ref.8 three specific target dies were measured and reported. For consistency, these same three die are
measured here using the library look-up and ML approaches. In Fig. 8, the library look-up value is plotted as
the dotted line in each individual panel. The leftmost column shows the measurement from each of the die and
its label as identified in Ref.:30 Dies (-1,-1), (0,0), and (1,1). The top row for each die shows the GPR fits to the
three parameters identified in Fig. 2, while the bottom row for each die shows the RBF results. For Dies (1,1)
and (0,0), the ML-based fits generally agree with the conventional library look-up approach.

Notable problems appear for the RBF fits for the third die, Die (-1,-1). Noted with ellipses on the bottom-
most row, there is strong evidence of the distribution of parametric value splitting into two values across the
range of nTP. This is highly indicative of an additional local minimum to the weighted χ2 fitting. Fortunately,
the literature has shown a path towards a remedy in two steps. First, in the documentation to Ref.,20 it is clear
that the optimal parameter from RBF can be evaluated using and

p̂ = argmin
[(

f̃I (p)− y
)ᵀ

V−1
(
f̃I (p)− y

)]
. (30)



Figure 8. Realizations of the RBF and GPR compared to current library look-up best-fit values. In the left column, measurement
error bars are 1σ uncertainties. Box and whisker plots follow definitions in Fig. 4. Ellipses in the bottom-most row indicate the
presence of an additional local minimum in the global optimization.



Second, it has been reported that for Bayesian optimization, an objective function can be added to the maximum
posterior estimate by means of Bayes’ theorem as prior knowledge about non-physical self interactions (e.g.,
to prevent nonphysical geometries).17 While the parametric values at this local minimum are physical, they
contradict our prior knowledge of these samples from SEM and AFM measurements, and a similar penalty term
can be applied. No such function was applied here to illustrate the challenges even for RBF of the inverse
problem.

6. CONCLUSION

The need for robust, quantitative machine learning remains especially as sample complexity, improved electro-
magnetic modeling, and added parameters increase electromagnetic simulation time. While ML can add compu-
tational time, this may be smaller in comparison to simulation requirements. Two general approaches have been
analyzed, with RBFs augmenting the use of simulated data, while GPR as presented was used to avoid direct
application of simulation data. Conventional and ML techniques proved to generally agree on parametric values,
but it is clear from the validation steps that uncertainties from GPR here are more problematic than those from
RBFs. Testing on experimental data yielded general agreement but a local minimum complicated the fitting in
RBF. There are potential solutions to be found for decreasing GPR uncertainty and for constraining the range
of allowed fits in RBF due to prior information. These both suggest that additional study is warranted.
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