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Local elasticity in nonlinear rheology of
interacting colloidal glasses revealed by
neutron scattering and rheometry†

Zhe Wang, *abc Takuya Iwashita,d Lionel Porcar,e Yangyang Wang, f Yun Liu,g

Luis E. Sánchez-Dı́az,c Bin Wu,c Guan-Rong Huang,h Takeshi Egamii and
Wei-Ren Chen*c

The flow of colloidal suspensions is ubiquitous in nature and industry. Colloidal suspensions exhibit a

wide range of rheological behavior, which should be closely related to the microscopic structure of the

systems. With in situ small-angle neutron scattering complemented by rheological measurements, we

investigated the deformation behavior of a charge-stabilized colloidal glass at particle level undergoing

steady shear. A short-lived, localized elastic response at particle level, termed as the transient elasticity

zone (TEZ), was identified from the neutron spectra. The existence of the TEZ, which could be promoted

by the electrostatic interparticle potential, is a signature of deformation heterogeneity: the body of fluids

under shear behaves like an elastic solid within the spatial range of the TEZ but like fluid outside the TEZ.

The size of the TEZ shrinks as the shear rate increases in the shear thinning region, which shows that the

shear thinning is accompanied by a diminishing deformation heterogeneity. More interestingly, the TEZ is

found to be the structural unit that provides the resistance to the imposed shear, as evidenced by the

quantitative agreement between the local elastic stress sustained by the TEZ and the macroscopic stress

from rheological measurements at low and moderate shear rates. Our findings provide an understanding

on the nonlinear rheology of interacting colloidal glasses from a micro-mechanical view.

1. Introduction

Flowing colloidal suspensions are of great importance in our
life as well as in a wide variety of industrial applications, such as
pharmaceuticals, polymer processing, cosmetics, and transpor-
tation technologies. Therefore, there has been much interest in

understanding the flow behaviors of colloids.1,2 The simplest
form of colloidal suspensions is the suspension of hard spheres.
Extensive computational,3,4 theoretical5–7 and experimental
investigations of scattering8–10 and imaging techniques,11–13

have been performed to study the rheology of hard-sphere
colloids. These results significantly broadened our knowledge
on how the microscopic structure and flow of hard-sphere
colloids are determined by the volume fraction of the colloidal
particles and the shear rate _g. Nevertheless, a large amount of
colloidal suspensions of everyday and technological importance
are not hard-sphere systems, but are characterized by more
complicated interparticle interactions. These interactions, such
as the electrostatic repulsion and van der Waals attraction,
extend far beyond the range of the excluded particle volume.14

Because of the extended range of interaction, their rheological
properties are often rather different from those of hard-sphere
colloidal suspensions at the same volume fractions.2,7 The
microscopic mechanism of the flow of interacting colloidal
suspensions demands further studies.

In this work, we investigate the relation between the micro-
scopic structure and rheology of a charge-stabilized colloidal
glass as a model colloidal system with soft repulsive inter-
actions. One reason for the current excitement stems from the
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description of flow based on the concept of ‘‘dynamical heterogene-
ity’’ – the spatial inhomogeneity in the relaxation dynamics or local
configurational rearrangements.15,16 For example, Yamamoto and
Onuki illustrated how the heterogeneity in bond breakage influences
the nonlinear rheology of highly-supercooled liquids.17,18

Particularly, computer simulations suggest that the shear thinning
phenomenon is a consequence of decreasing inhomogeneity of flow
due to the increasingly frequent configurational fluctuations.17–20

In the past several decades, there were extensive theoretical
and computational studies on the effects of local plasticity in
developing a microscopic description of the flow of amorphous
solids.16,21–26 The localized plastic arrangements and their spatial
correlation were experimentally examined in colloidal glasses27–30

and their connection to the shear banding instability was further
investigated.31,32 On the other hand, the role of local elasticity in
determining the rheological behavior of soft matters has also been
discussed.33,34 For many soft glasses, such as microgels, polymeric
materials, foams and emulsions, the constitutive particles or
molecules are deformable and possess significant elasticity. There-
fore, the local elasticity can be clearly identified, and is found to
deeply influence rheological behaviors.35 For example, polymeric
molecules exhibit a strong entropic elasticity, which leads to the
viscoelastic nature of these materials.36 For many colloidal suspen-
sions, however, the constitutive particles are too hard to contribute
any measurable elasticity at typical flow rates. In this case, the local
elasticity should be due to the collective rearrangement of particles
under deformation, as suggested by a recent computational
study.37 Therefore, experimental identification of the local elasti-
city and its structural basis is crucial to understand the rheological
behaviors, especially the viscoelasticity and the shear thinning
phenomenon, of interacting colloidal glasses.

The aim of this work is to experimentally explore the origin of
the nonlinear rheology of interacting colloidal glasses from the
perspective of dynamical heterogeneity and local elasticity. Small-
angle neutron scattering (SANS) technique is a powerful tool to
study the microscopic structure of complex fluids at length scales
from 1 to several hundreds of nanometers.38 It has been largely
employed to investigate the structure of sheared colloidal
suspensions.2,8–10,39 The analysis of our SANS data shows that the
mechanical response of the charge-stabilized colloidal glass to the
imposed shear is localized in a transient elasticity zone (TEZ), which
could be promoted by the electrostatic interparticle potential. The
correlation between the TEZ and the mechanical behavior of the
sample is supported by the agreement between the microscopic
stress revealed by scattering and the macroscopic stress measured
by rheometry at low and moderate shear rates. Moreover, the size of
the TEZ is found to shrink as the shear rate increases in the shear
thinning region, which demonstrates that the shear thinning is
accompanied by a diminishing heterogeneity of flow.

2. Experimental
2.1 Sample

The charge-stabilized colloidal glass used in this study is
composed of charged silica particles suspended in a solvent

consisting of a mixture of ethylene glycol and glycerol. The proton
to deuterium ratio of the solvent was carefully adjusted to avoid
possible multiple neutron scattering.40 The volume fraction of
silica particles is 0.4. At this volume fraction, the sample exhibits
an evident nonlinear rheological behavior, which will be seen in
the next section. The Kob–Andersen mixture of two kinds of silica
particles,41 with diameter of 120 nm and 80 nm in a number ratio
of 4 : 1, was used to avoid shear-induced crystallization.42,43

The polydispersities of these two kinds of particles are 5.6%
and 5.7%, respectively.

2.2 SANS experiment

The Rheo-SANS technique under the Couette geometry was
employed to study the microscopic structure of the sheared
colloids.44 Fig. 1(a) shows the schematic representation of the
SANS experiment. Three principal directions, the flow direction
(v, denoted as 1), the velocity gradient direction (rv, denoted as 2),
and the vorticity direction (x = r � v, denoted as 3), are
defined based on the direction of the applied shear. Two cross
sections of the three-dimensional spectrum, namely, the flow-
velocity gradient (v–rv or 1–2) plane and the flow-vorticity
(v–x or 1–3) plane, can be measured, as illustrated in Fig. 1(a).
Fig. 1(b) shows the SANS spectra obtained from these two
planes for the sheared charge-stabilized colloids. When sub-
jected to steady shear, the scattering profiles present elliptical
shapes in both configurations. In neither configuration no
noticeable scattering signature of shear-induced ordering,
such as layer formation, is observed. A similar development
is also observed by our complementary Brownian dynamics
simulation.40 Trajectory analysis suggests that the origin of
the intensity variation is the local ordering promoted by the
anisotropic density fluctuation, instead of the long-range
ordering.

3. Results and discussion
3.1 Rheological measurements

The small-amplitude oscillatory shear measurement and the
steady shear measurement on the charge-stabilized colloidal
suspension have been done and the results are shown in Fig. 2.
In the linear viscoelastic regime shown in Fig. 2(a), the dynamic
moduli indicate that the sample is an elastic solid in the
quiescent state. Results of steady shear measurements given
in Fig. 2(b) show that the sample exhibits a dramatic shear
thinning. In following parts, we will provide an illustration based
on the cooperative rearrangement of particles under shear.

3.2 SANS results

To address the connection between the spatial correlation
functions and the flow behavior of the fluids, we adopt a
spherical harmonic expansion (SHE) approach for the SANS
data analysis. The pair distribution function (PDF) g(r) of a
sheared fluid can be expressed by SHE as:45–52

g rð Þ ¼
X
l;m

gml rð ÞYm
l

r

r

� �
; (1)
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where Ym
l (X) are the tesseral (real basis) spherical harmonic

functions and gm
l (r) are the expansion coefficients. gm

l (r) can be
determined from SANS experiments by expanding the structure
factor, S(Q), as:

which allows us to transform the reciprocal space structural
coefficients Sm

l (Q) to the real space coefficients gm
l (r) using the

spherical Bessel transformation:53

gml rð Þ ¼ i l

2p2r

ð
Sm
l ðQÞJlðQrÞQ2dQ; (3)

where r is the number density of the particles and Jl(x) is the
spherical Bessel function. Due to the symmetry imposed by
shear, g2

�2(r) is the most relevant coefficient that connects
the shear-induced structural distortion to the macroscopic
properties.9,54,55 The way of obtaining g2

�2(r) from SANS spectra
can be found in Appendix, more details are included in ESI.†
For an elastic solid undergoing an affine deformation, g2

�2(r) is
proportional to the derivative of the quiescent PDF g(r) when
the shear strain g is sufficiently small.56,57 Namely,

g2
�2 rð Þ ¼ � gffiffiffiffiffi

15
p r

dgðrÞ
dr

: (4)

In Fig. 3(a) to (d) we plot both of g2
�2(r) and �rdg(r)/dr

determined from the SANS experiment at _g = 3, 10, 30 and
100 s�1, respectively. It is seen that the characteristic variations
of these two functions are generally in phase within the shear
thinning regime, which qualitatively agrees with the prediction
of eqn (4). This observation suggests that the system is essen-
tially elastically deformed at these shear rates, even when the
system is flowing. Such deformation coherency is also observed
in a simulation study on a model metallic liquid.37

Fig. 2 Rheological measurements of the charge-stabilized colloidal sus-
pension. (a) Frequency dependence of the storage and loss moduli G0 and
G00. (b) Shear viscosity Z as a function of shear rate _g.

Fig. 1 (a) Illustration of the Rheo-SANS experiment under Couette geometry. 1, 2, and 3 denote the directions of flow (v), velocity gradient (rv)
and vorticity (x), respectively. (b) Two-dimensional SANS spectra obtained from the flow-velocity gradient (v–rv or 1–2) plane and the flow-vorticity
(v–x or 1–3) plane at _g = 0, 10 and 100 s�1 for the charge-stabilized colloidal suspension.

S Qð Þ ¼
X
l;m

Sm
l Qð ÞYm

l

Q

Q

� �
; (2)
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In a random stacking of particles, the local configurational
environment is known to differ widely from one tagged particle
to another. As a result, it is expected that the constant strain
picture given by eqn (4) does not provide a complete descrip-
tion about the microscopic deformation. To further elucidate
the structure of the flowing elasticity, we introduce the depen-
dence of g on the spatial range over which the elastic deforma-
tion is sustained:37

g rð Þ � �
ffiffiffiffiffi
15
p

g2
�2 rð Þ

�
r
dg rð Þ
dr

� 	
; (5)

In Fig. 4(a) to (d) we present the g(r) for the charge-stabilized
colloidal suspension at _g = 3, 10, 30 and 100 s�1, respectively.
We would like to point out that the extraction of g(r) does not
involve any model fitting but only Bessel transforms and data
binning. A region of effectively nonzero g(r) with a spatial range
of several particle diameter d is observed for all measured _g.
We name this region transient elasticity zone (TEZ): Within the
spatial range of this region, the local structure undergoes an
elastic deformation with an average strain given by g(r) when
the system is under steady shear. Beyond this region, the
particle motion is dominated by liquid-like random displace-
ments. This localized elastic response survives only for a certain
lifetime before it relaxes by flow and diffusion. The existence of
TEZ suggests the dynamical heterogeneity in the mechanical
response of the system to applied shear. g(r) can be considered
as a correlation function that describes a cooperative region
characterized by mechanical coherency in the flow. Based on
the previous simulation study,37 a Gaussian function is used to
model the landscape of g(r):

g rð Þ � gMexp �ðr� pÞ2
2dTEZ2

� 	
; (6)

where p is the peak position, dTEZ is the standard deviation of
the Gaussian distribution, and gM is the average maximum
strain of the TEZ. The fit curves with eqn (6) are also shown

in Fig. 4(a) to (d). Accordingly, a specific length scale xTEZ ¼
pþ

ffiffiffiffiffiffiffiffiffiffi
2ln 2
p

dTEZ is defined to represent the correlation length of
the cooperatively elastic deformation in the steady flow. It is
seen that 2xTEZ denotes the ‘‘full width at half maximum’’ of
the TEZ, and can be considered as the size of TEZ. Its shear-rate
dependence is shown in Fig. 4(e).58 A decrease of elastic
coherency is revealed by the shrink of the TEZ size from about
6d to 4d as _g increases from 1 to 300 s�1. Meanwhile, an
increase in gM from approximately 0.045 to 0.11 is also revealed.

From Fig. 4 it is seen that at r \ 3d, the values of g(r) are
with large uncertainties and the dependence of g(r) on r
becomes irregular. Numerically this is due to the division
between two small numbers. As evidenced by Fig. 3, at r \ 3d,
both g2

�2(r) and rdg(r)/dr are small, which suggest the loss of
structural order and correlation at far distances. In this case, the
local elastic coherency is no longer significant.

3.3 Discussion

The above analysis reveals a micro-mechanical picture for the
deformation of the charge-stabilized colloidal glass. In this
system, the changes of the momentum and position of a
particle can instantaneously influence surrounding particles
through the extended-range electrostatic interaction. Conse-
quently, the particles within a certain spatial range undergo
elastic coherent deformation in response to the imposed shear.
During this process, a reference particle retains its original
neighbors until the stress generated by shear is sufficient to

Fig. 3 Comparison between g2
�2(r) (circles) and �rdg(r)/dr (lines). (a–d)

display the results at _g = 3, 10, 30 and 100 s�1, respectively. The magnitude
of �rdg(r)/dr is scaled to match that of g2

�2(r) for all panels. Fig. 4 (a–d) g(r) determined by eqn (5) at _g = 3, 10, 30 and 100 s�1,
respectively (yellow circles). The solid curves denote the fitting results by
the Gaussian function eqn (6). Panel (e) summarizes the size of the TEZ
2xTEZ as a function of _g.

Paper PCCP

Pu
bl

is
he

d 
on

 2
8 

Se
pt

em
be

r 
20

18
. D

ow
nl

oa
de

d 
on

 9
/2

7/
20

19
 2

:4
6:

24
 A

M
. 

View Article Online

https://doi.org/10.1039/c8cp05247f


42 | Phys. Chem. Chem. Phys., 2019, 21, 38--45 This journal is© the Owner Societies 2019

cause local configurational rearrangement. The deformation
and yielding of the TEZ are ubiquitous and persistently succes-
sive at the particle level. Note that, there should be a structural
unit that can store and release elastic energy in viscoelastic
materials. Thus, the observation of TEZ is conceptually important
for understanding the strong viscoelasticity exhibited by the
charge-stabilized colloidal suspension.59

In the above mechanism, the interparticle electrostatic
repulsion acts like a free energy barrier to resist the applied
strain. Therefore, it is crucial in forming the local elasticity in
the flow of charge-stabilized colloids. In fact, at the volume
fraction of 0.4, it is known that the hard-sphere colloidal
suspension is highly fluid, which suggests the absence of TEZ.
The hard-sphere suspension exhibits evident elasticity only when
the volume fraction is higher than about 0.58, in which case the
excluded volume effect is significant.7

Having established the picture of transient local elasticity
from SANS experiment, we now proceed further to explore the
role of the TEZ in the nonlinear rheological behavior of inter-
acting colloidal suspensions. In the flowing charge-stabilized
colloids, the elastic stress sustained by TEZ is estimated as
sTEZ = G0gM, where G0 is the modulus of the local elasticity that
is similar to the storage modulus given in Fig. 2(a).60 As given in
Fig. 5(a), the microscopically determined stresssTEZ is seen to
be in a quantitative agreement with the macroscopic shear
stress sCC (sCC = Z_g) determined from rheometry when _gr 10 s�1.
This agreement is remarkable considering that the two
approaches of measuring stress are completely different. It
clearly reveals that the elasticity of the TEZ causes the high

shear stress, or equivalently the viscosity, in the flow of the
charged-stabilized sample. At higher shear rates ( _g c 10 s�1),
sTEZ considerably deviates from sCC, manifesting the increas-
ing fluidization.

It is known that Brownian and hydrodynamic effects con-
tribute to the viscosity of colloidal suspensions.4,5 The Brownian
viscosity contribution ZB can be calculated from g(r)5,61,62 and
the result is shown in Fig. 5(b). The hydrodynamic viscosity
contribution, estimated with the approximation given in ref. 61,
is found to be well below 0.1 Pa s. This value is small since the
electrostatic repulsion can suppress the hydrodynamic effect by
reducing the near-contact lubrication.61 The viscosity contribu-
tion from the TEZ (ZTEZ = sTEZ/_g) is plotted in Fig. 5(b). The
viscosity of the sample ZCC measured by rheometry is also shown
in Fig. 5(b) for comparison. It is seen that for the flowing charge-
stabilized colloids, ZTEZ is much larger than the Brownian
viscosity contribution ZB. This result agrees with the theoretical
prediction that in charge-stabilized colloids the potential viscosity
contribution is much stronger than the Brownian viscosity
contribution.61 Summarizing these results, we confirm that
TEZ plays a key role in the nonlinear rheology of the sheared
charge-stabilized colloids. This is very different from the hard-
sphere colloids, in which the shear thinning is mainly attributed
to the Brownian effect.4,11,61

The concept of dynamical heterogeneity was introduced for
the first time to explain the dramatic increase of the viscosity in
the glass transition of supercooled liquids or the colloidal glass
formation.63–65 Numerous computational and theoretical studies66,67

and recent experiments68 have shown that the drastic increase
in viscosity is accompanied by the growth of cooperatively
rearranging regions in fluids during the supercooling process.
Yamamoto and Onuki generalized this thinking to the flowing
supercooled and glassy liquids: With computer simulations,
they demonstrated that the size of the region characterizing the
collective bond breakage events shrinks during the shear
thinning.17,18 Experimentally, we found that the size of the
TEZ decreases with increasing the shear rate (Fig. 4(e)), implying
the observed shear thinning behavior is accompanied by dimin-
ishing deformation heterogeneity. This result is consistent with
the previous computational investigations.

4. Conclusions

In summary, using SANS and rheometry, we identify a transient
elasticity zone (TEZ) in a charge-stabilized colloidal glass
undergoing steady shear. This TEZ, which manifests the local
elasticity in flow, is a many-body effect sustained by the
electrostatic interparticle repulsion. We show that the TEZ acts
as the micro-structural unit that resists the shear from the
agreement between the microscopic elastic stress determined
by SANS and the macroscopic stress measured by rheometry at
low and moderate shear rates. The spatial range of TEZ spans
over a distance of a few particle diameters. It is found to shrink
with increasing the shear rate, suggesting that the shear thinning
is associated with the weakening of the dynamical heterogeneity

Fig. 5 (a) Shear stress s and (b) viscosity Z as a function of the shear rate _g.
In panel (a), the elastic stress sustained by the TEZ is also shown. In panel
(b), the viscosity contributed by TEZ and the Brownian viscosity contribu-
tion are also plotted.
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in the flow. Our findings shed new light on understanding the
nature of nonlinear rheology and viscoelasticity of interacting
glasses and highly supercooled liquids.
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Appendix

In this part, we will give a description of obtaining g2
�2(r) from

the SANS spectra. First of all, we need to obtain S2
�2(Q) from

the spectra. The structure factor of the sheared colloids, S(Q),
can be expanded by spherical harmonic functions:

S Qð Þ ¼
X1
l¼0

Xl
m¼�l

Sm
l Qð ÞYm

l

Q

Q

� �
; (A1)

where Ym
l (X) are the real basis spherical harmonic functions

defined as:

Ym
l ðXÞ ¼ Ym

l ðy;fÞ

¼

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1ð Þ l � mj jð Þ!

l þ mj jð Þ!

s
P
jmj
l cos yð Þ sin mj jfð Þ ðmo 0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1
p

P0
l cos yð Þ ðm ¼ 0Þ

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1ð Þ l �mð Þ!

l þmð Þ!

s
Pm
l cos yð Þ cos mfð Þ ðm4 0Þ

8>>>>>>>>>><
>>>>>>>>>>:

(A2)

where Pm
l (x) are the associated Legendre polynomials, y is the

angle with respect to the 3 axis, f is the polar angle with respect
to the 1 axis. In three-dimensional space the spherical harmonic
functions are mutually orthogonal:ð

dXYm
l Xð ÞYm0

l0 Xð Þ ¼ 4pdll0dmm0 (A3)

Each function has a well-defined parity:

Y m
l (y,f) - Y m

l (p � y,p + f) = (�1)lY m
l (y,f). (A4)

Within the accessed range of shear rate, the contribution
from terms with l = 3,. . .,N to spectra should be small
compared with the several leading terms. This approximation
can be justified from the fact that the measured strain of the
TEZ is only around 0.1 or even less. Therefore, eqn (A1) can be
approximated as:

S Qð Þ �
X2
l¼0

Xl
m¼�l

Sm
l Qð ÞYm

l

Q

Q

� �
: (A5)

Under the geometry of shear flow, it is seen that S(Q)
satisfies the conditions S(Q,y,f) = S(Q,p � y,f) and S(Q,y,f) =
S(Q,y,f + p). These conditions can be justified from Fig. 1(b).
Therefore, only terms with even l and m survive, which leads to

the following expression:

S Qð Þ � S0
0 Qð ÞY0

0

Q

Q

� �
þ S2

�2 Qð ÞY2
�2 Q

Q

� �

þ S0
2 Qð ÞY0

2

Q

Q

� �
þ S2

2 Qð ÞY2
2 Q

Q

� �
:

(A6)

In the 1–2 plane, we can define the following quantity:

S
xy
2;�2 Qð Þ ¼ 1

2p

ð2p
0

S Q; y ¼ p
2
;f

� �
Y2
�2 y ¼ p

2
;f

� �
df

¼ 1

2p

ð2p
0

S Q; y ¼ p
2
;f

� � ffiffiffiffiffi
15
p

2
sin 2fð Þdf:

(A7)

Since S(Q,y = p/2,f) can be measured from the SANS experi-
ment (see Fig. 1(b)), Sxy

2,�2(Q) can be obtained easily from the
measured spectra in the 1–2 plane. Combining with eqn (A6), it
is straightforward to show that:

S2
�2ðQÞ ¼ 8

15
S
xy
2;�2 Qð Þ; (A8)

With S2
�2(Q), g2

�2(r) can be obtained by spherical Bessel
transformation:

gml rð Þ ¼ il

2p2r

ð
Sm
l ðQÞJlðQrÞQ2dQ: (A9)

The calculation of S0
0(Q) from SANS spectra needs the

information on the 1–3 plane. The detail can be found in ESI.†
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