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Magnetic-field effects on the fragile antiferromagnetism in YbBiPt
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We present neutron-diffraction data for the cubic-heavy-fermion YbBiPt that show broad magnetic diffraction
peaks due to the fragile short-range antiferromagnetic (AFM) order persist under an applied magnetic-field H.
Our results for H ⊥ [1̄ 1 0] and a temperature of T = 0.14(1) K show that the ( 1

2 , 1
2 , 3

2 ) magnetic diffraction
peak can be described by the same two-peak line shape found for μ0H = 0 T below the Néel temperature of
TN = 0.4 K. Both components of the peak exist for μ0H � 1.4 T, which is well past the AFM phase boundary
determined from our new resistivity data. Using neutron-diffraction data taken at T = 0.13(2) K for H ‖ [0 0 1]
or [1 1 0], we show that domains of short-range AFM order change size throughout the previously determined
AFM and non-Fermi liquid regions of the phase diagram, and that the appearance of a magnetic diffraction peak
at ( 1

2 , 1
2 , 1

2 ) at μ0H ≈ 0.4 T signals canting of the ordered magnetic moment away from [1 1 1]. The continued
broadness of the magnetic diffraction peaks under a magnetic field and their persistence across the AFM phase
boundary established by detailed transport and thermodynamic experiments present an interesting quandary
concerning the nature of YbBiPt’s electronic ground state.

DOI: 10.1103/PhysRevB.99.184431

I. INTRODUCTION

Fragile magnetism is associated with strongly correlated
low-temperature electronic states that are highly tunable by
parameters such as strain, applied pressure, and magnetic
field [1]. As the temperature T → 0 K, fragile magnetism
may result in fluctuations between states separated by very
small energy differences and even lead to a quantum-critical
point (QCP) and the emergence of quantum-critical fluctua-
tions [2–6]. In this paper, we present results from neutron-
diffraction and electrical resistivity experiments that detail
the response of the fragile antiferromagnetism (AFM) in the
heavy-fermion compound YbBiPt to the application of a mag-
netic field H strong enough to drive it through the magnetic
phase boundary associated with its purported field-induced
QCP at μ0H = 0.4 T [7].

YbBiPt is a face-centered-cubic (FCC) compound with a
remarkably large low-temperature Sommerfeld coefficient of
γ ≈ 8 J/mol-K2 and is the metallic end member of the RBiPt,
R = rare earth, series [7,8]. The characteristic temperatures
related to the compound’s magnetism are all small and com-
parable: the Kondo temperature is TK ≈ 1 K [7,9], the Weiss
temperature is θW ≈ −2 K [7], the crystalline-electric field
splitting is on the order of 1 to 10 K [10,11], and the Néel
temperature is TN = 0.4 K [7]. In light of the compound’s
FCC lattice and characterization as a low-carrier concentra-
tion semimetal, its extremely large γ has been proposed to
result from magnetic frustration, a low TK, or a combination
of both [9,12].

Data from transport experiments show a jump in the com-
pound’s resistivity at TN at ambient pressure and μ0H = 0 T,
which is consistent with spin-density-wave-type AFM order-
ing [7,13]. A distinct peak also occurs in the heat capacity at
TN, and signatures of an AFM transition are seen in other ther-
modynamic and electrical-transport data as well [7–9,13–16].
The magnetic phase diagram constructed from such data for
H applied parallel to the [0 0 1] crystalline direction shows
that the magnetic field drives TN → 0 K at a critical value of
μ0Hc ≈ 0.4 T. This point separates the AFM phase from a re-
gion characterized by non-Fermi-liquid (nFL) type electrical
transport, and increasing the field past μ0H ≈ 0.7 T results
in a crossover to Fermi-liquid (FL) type electrical transport
[7]. The fragile magnetism of YbBiPt is evidenced by the
experimentally observed features corresponding to TN being
extremely sensitive to magnetic field, pressure, and strain
[7,13–15], as well as the presence of very broad magnetic
neutron-diffraction peaks below TN [17].

Neutron-diffraction experiments for μ0H = 0 T and T <

TN found magnetic diffraction peaks corresponding to an
AFM propagation vector of τ = ( 1

2 , 1
2 , 1

2 ) and an ordered-
magnetic moment μ lying parallel to τ [17]. Surprisingly,
the peaks’ line shapes are complicated, consisting of two
components: a narrow-Gaussian peak that appears below TN

and a broad-Gaussian peak that occurs below T * = 0.7 K
[17]. The total integrated intensity of the peak corresponds
to μ ≈ 0.8 μB; however, the ratio of the integrated intensity
of the broad component to that of the narrow one is ≈ 12:1.
Since the narrow component appears below TN, its associated
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value of μ agrees with previous reports that estimate μ = 0.1
to 0.25 μB [18,19]. The narrow and broad components have
corresponding magnetic-correlation lengths of ξN ≈ 80 Å and
ξB ≈ 20 Å, respectively [17], which are both smaller than
expected for long-range AFM order.

The presence of significant structural disorder that would
limit the AFM correlation length has been ruled out by
the existence of resolution-limited structural Bragg peaks
in neutron-diffraction data and by clean high-energy x-ray
diffraction patterns [11,17]. The presence of quantum os-
cillations in resistance data for μ0H � 6 T at low temper-
ature is also evidence of high-quality crystals [20]. The
magnetic diffraction peaks are elastic within an energy-
resolution window of �E = 0.09 meV, which means that
within such energy resolution they correspond to static AFM
order [17].

In this paper, we present results from neutron-diffraction
experiments performed at T � 0.75 K for applied magnetic
fields strong enough to traverse the previously identified AFM
and FL boundaries [7]. Data for H ‖ [1̄ 1 0] show that the
( 1

2 , 1
2 , 3

2 ) magnetic diffraction peak remains broad with in-
creasing H and that its height and full width at half maximum
(FWHM) smoothly change. The peak’s narrow component
exists up to μ0H ≈ 1.2 T, whereas its broad component per-
sists up to at least 1.6 T. This indicates that short-range AFM
order is not limited to the AFM region. No sharp changes to
the diffraction peak’s line shape occur at the AFM and FL
boundaries determined by resistivity. Rather, depending on the
direction of H, the height of the diffraction peak either reaches
a maximum near the FL boundary or monotonically decreases
upon crossing the AFM boundary. We argue that the field
dependence of the magnetic diffraction peak predominately
reflects changes to the populations of domains of short-range
AFM order for μ0H � 0.55 T.

We further report that for H ‖ [1̄ 1 0] a magnetic diffraction
peak appears between μ0H = 0.2 and 0.4 T at T = 0.14 K at
the ( 1

2 , 1
2 , 1

2 ) reciprocal-lattice position. Its appearance indi-
cates that μ reorients toward H for 0.4 � μ0H � 1.2 T, and
we calculate the angle by which μ rotates as a function H . We
discuss the implications of magnetic domain growth and the
reorientation of μ with increasing field using a phase diagram
for H ‖ [1̄ 1 0] that is based on new resistivity data.

II. EXPERIMENT

YbBiPt’s unit cell may be described using space group
F 4̄3m with a room-temperature lattice parameter of a =
6.5953(1) Å [18]. The nominally J = 7

2 Yb3+ cations sit at
the 4d Wyckoff positions and should experience a tetrahedral
crystalline-electric field [10,11,18]. Our experiments used
single crystals grown out of Bi flux as described previously
[7,8,21].

Standard four-probe ac-resistivity ρ measurements were
made in an Oxford dilution refrigerator by applying a peri-
odically oscillating current I with a frequency of 16 Hz and
recording the resulting voltage along I. Pt wires were used
as leads and attached to the sample with Epotek H20E silver
epoxy. H was applied along either the [0 0 1], [1̄ 1 0], or [1 1 1]
crystalline direction, and I was always applied perpendicular
to H. More details concerning the experimental conditions

are given in Ref. [7]. Since the size of the jump in ρ(T ) at
TN is very sensitive to the sample preparation and mounting
conditions [7], a total of 24 samples were first screened
with μ0H = 0 T. Out of these, a few samples showing the
sharpest anomalies at TN were selected for measurement while
applying a magnetic field.

Neutron-scattering experiments used several samples con-
sisting of either one single crystal or two coaligned single
crystals. The samples had total masses of 1 to 3 g and total
mosaic spreads of ≈ 1◦ FWHM. Given the strong sensitivity
of the compound to pressure and strain [7,13,14], several
methods and glues (CYTOP or HBM X60) were used to
fix the crystals to a Cu sample holder which was thermally
anchored to the mixing chamber of a dilution refrigerator.
Cu wire was loosely wrapped around the crystals to ensure
mechanical stability and provide another thermal path.

Neutron-diffraction experiments were performed on the
SPINS cold-neutron triple-axis spectrometer at the NIST Cen-
ter for Neutron Research, and the E-4 two-axis diffractometer
[22] and FLEXX cold-neutron triple-axis spectrometer [23]
at the Helmholtz-Zentrum Berlin. Measurements were made
with the (h, h, l ) reciprocal-lattice plane coincident with the
scattering plane.

Experiments on SPINS utilized a vertically focused
pyrolitic-graphite (PG) monochromator to select incident neu-
trons with wavelengths of λ = 5.504 Å, and cooled Be fil-
ters were inserted in both the incident and scattered beams
to suppress higher-order neutron wavelengths. The neutron
guide prior to the monochromator gave an effective collima-
tion of 53′, a 80′ Söller-slit collimator was placed between
the monochromator and sample, and a radial collimator was
inserted after the sample. A horizontally focusing PG analyzer
selected λ = 5.504 Å neutrons and focused the diffracted
beam to a single 3He tube detector. The energy resolution
was determined by measuring the incoherent scattering peak
of a plastic cylinder: A neutron energy transfer E scan was
performed across E = 0 meV, and the FWHM of the resulting
peak gave a value for the resolution of �E ≈ 90 μeV.

Measurements made on FLEXX used a vertically and hor-
izontally focused PG monochromator to form a λ = 5.464 Å
neutron beam. A velocity selector prior to the monochro-
mator eliminated higher-order wavelength contamination. No
collimators were used, as the effective collimation of the
neutron optics was sufficient. A PG analyzer selected λ =
5.464 Å neutrons and was horizontally focused to a 3He tube
detector. The energy resolution was found from the incoherent
scattering from a vanadium rod to be �E ≈ 70 μeV by the
same procedure used for SPINS.

Experiments on E-4 used a vertically focused PG
monochromator that selected λ = 2.451 Å neutrons and a PG
filter was placed in the incident beam to reduce higher-order
wavelength contamination. A 40′ Söller slit collimator was
inserted between the monochromator and sample and a radial
collimator was inserted after the sample. A 2-D position-
sensitive detector recorded the diffracted neutrons.

The DAVE [24], LAMP [25], and SPECTRA [26] software
packages as well as in-house developed software were used
for data reduction and analysis. Error bars and stated values
of uncertainties represent one standard deviation. Coordinates
in reciprocal space are given in reciprocal-lattice units (r.l.u.),
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FIG. 1. (a) Temperature-dependent electrical resistivity ρ(T ) of
YbBiPt for a current I with a frequency of 16 Hz applied along
[1 0 0], [1 1 0], or [1̄ 1̄ 1]. The curves are normalized to 1 at T = 1 K,
and the legend indicates the direction of I and the sample number
corresponding to each plot. Data for I ‖ [0 0 1] are from Ref. [7].
(b)–(d) ρ(T ) curves for various values of magnetic field applied
along the [0 0 1] (b), [1̄ 1 0] (c), or [1 1 1] (d) directions with I applied
⊥ H. (e) Transverse magnetoresistivity (I ⊥ H) at T = 0.1 K for
H ‖ [0 0 1], [1̄ 0 0], or [1 1 1]

where 1 r.l.u. = 2π/a. Q corresponds to neutron momentum
transfer and is given in r.l.u. unless otherwise indicated.

III. RESULTS

A. Resistivity for H ‖ [0 0 1], [1̄ 1 0], and [1 1 1]

Zero-field resistivity data for five representative samples
are plotted in Fig. 1(a) along with data from Ref. [7]. The
legend indicates the direction of I for each data set. A jump
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FIG. 2. Magnetic phase diagrams based on resistivity data for
I ⊥ H with H ‖ [0 0 1] (a), [1̄ 1 0] (b), or [1 1 1] (c). Open symbols
are from Ref. [7] and closed symbols are new data. Lines are guides
to the eye. AFM stands for antiferromagnetic, nFL labels the non-
Fermi-liquid region, characterized by ρ ∼ T 1.5, and FL marks the
Fermi-liquid region, characterized by ρ ∼ T 2. TN labels the Néel
temperature and TFL marks the boundary of the Fermi-liquid region.

in ρ(T ) occurs at TN in each curve which is little affected by
the direction of I. Figures 1(b)–1(d) show ρ(T ) for specific
samples with H along either [0 0 1], [1̄ 1 0], or [1 1 1] and I ⊥
H. The jump at TN generally shifts to lower T with increasing
H ; however, the amount by which it shifts depends on the
field’s direction. The change in TN with H is determined in the
same way as in Ref. [7] and is shown by the AFM boundaries
in Fig. 2 for different directions of H.

Figure 1(e) shows the transverse magnetoresistivity (i.e.,
the longitudinal resistivity measured perpendicular to H),
ρ(H ), at T = 0.1 K for H ‖ [0 0 1], [1̄ 1 0], and [1 1 1]. Below
μ0H = 0.4 T, ρ(H ) rapidly changes for all three field direc-
tions. At higher H , depending on the field direction, ρ(H )
shows either a local minimum or levels off near μ0H ≈ 1 T.
A broad local minimum occurs at μ0H ≈ 3 T for H ‖ [0 0 1]
and a broad local maximum is seen at ≈ 5 T and ≈ 4 T
for H ‖ [1̄ 1 0] and H ‖ [1 1 1], respectively. Clear quantum
oscillations are present for all three directions at high field.
The oscillations are analyzed in Ref. [20] for H ‖ [0 0 1] and
[1 1 1].

The phase diagrams in Fig. 2 illustrate that TN is suppressed
to T = 0 K for some value of field μ0Hc, and that a nFL
region exists for all three field directions. By extrapolating the
AFM boundary to T = 0 K, we find that μ0Hc = 0.37, 0.28,
and 0.42 T for H ‖ [0 0 1], [1̄ 1 0], and [1 1 1], respectively.
Figure 3 presents fits made to �ρ(T ) ∼ T 1.5 [Fig. 3(a)] and
�ρ(T ) ∼ T 2 [Fig. 3(b)] for different directions of H, where
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FIG. 3. (a) �ρ(T ) = ρ(T ) − ρ(T = 0 K) versus T 1.5 and
(b) �ρ(T ) versus T 2 for H ‖ [0 0 1], [1̄ 1 0], or [1 1 1]. I was applied
⊥ H, along the directions indicated in Fig. 1. Solid lines are guides
to the eye.

�ρ(T ) = ρ(T ) − ρ(T = 0 K). These plots demonstrate how
the nFL [�ρ(T ) = AT 1.5] and FL [�ρ(T ) = AT 2] regions in
Fig. 2 are defined via the ρ(T, H ) data [7], and the line in
Fig. 2 labeled TFL marks the upper limit for which ρ ∼ T 2.

Figure 4 shows the FL coefficient A versus H/Hc for
the different directions of H. A was determined from fits to
�ρ(T ) = AT 2 within the FL region, and A ∼ 1/(H − Hc)
for all three field directions. As discussed previously [7], the
tendency of A to diverge as μ0H → μ0Hc provides evidence
for the quasiparticle effective mass being enhanced due to
quantum fluctuations associated with a QCP.

B. Magnetic neutron diffraction with H ‖ [1̄ 1 0]

Much of the neutron-diffraction data given in this paper
are for H ‖ [1̄ 1 0] rather than the H ‖ [0 0 1] configuration
used for the thermodynamic and transport measurements in
Ref. [7]. This is due to constraints on the neutron-diffraction
experiments imposed by applying a field along [0 0 1]. In
particular, access to multiple magnetic diffraction peaks
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FIG. 4. The Fermi-liquid coefficient A = �ρ(T )/T 2 for H ‖
[1 0 0], [1̄ 1 0], or [1 1 1]. I was applied ⊥ H, along the directions
indicated in Fig. 1. Data from Ref. [7] (for H ‖ [0 0 1]) are included
for comparison. The solid line is a fit to A ∝ 1/(H − Hc ), where Hc

corresponds to the magnetic field at which TN extrapolates to 0 K.
Note that the values of A are for values of H and T corresponding to
the FL region.

corresponding to τ = ( 1
2 , 1

2 , 1
2 ) and μ ‖ τ on the spectrome-

ters used required the sample’s (h, h, l ) plane to lie horizontal.
This means that a magnet supplying a horizontal field would
be necessary to record data for H ‖ [0 0 1]. We performed
some measurements using a horizontal-field magnet and de-
termined that it too greatly limited neutron access for detailed
studies of the magnetic diffraction peaks’ line shapes. This
was due to the magnet and its supporting structures blocking
or attenuating the neutron beam and the weak and broad na-
ture of the peaks. On the other hand, performing experiments
with H ‖ [1̄ 1 0] allowed for a vertical-field magnet to be used,
which provided for much more neutron access to the sample.

1. Q = ( 1
2 , 1

2 , 3
2 )

Figure 5 shows the magnetic field dependence of the scat-
tering intensity of the ( 1

2 , 1
2 , 3

2 ) magnetic diffraction peak at
various temperatures with H ‖ [1̄ 1 0]. Data were recorded on
SPINS. For T � 0.30 K, the peak’s intensity grows monoton-
ically with increasing field and reaches a maximum at μ0H =
0.55(5) T for T = 0.14 K, which is just past the FL boundary
at μ0H = 0.52 T. There is no clear feature associated with
the AFM-nFL boundary identified in Fig. 2(b). The intensity
maximum diminishes and shifts to lower H with increasing T
and is no longer discernible at T = 0.38 K. Nevertheless, the
scattering intensity is still slightly higher at T = 0.38 K than
at 0.5 K for 0.3 � μ0H � 1 T.

Since we previously showed that the narrow-Gaussian
component of the ( 1

2 , 1
2 , 3

2 ) diffraction peak appears at TN

for μ0H = 0 T [17], the presence of the intensity maximum
for T < TN suggests that it is associated with the magnetic
diffraction peak’s narrow component. On the other hand, the
maximum occurs at a higher field than expected for the AFM
boundary given in Fig. 2(b). This is shown for T = 0.14 K
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on SPINS. Vertical dotted lines mark the boundaries identified in
Fig. 2(b) at T = 0.14 K determined from resistivity data.

by the dashed vertical lines in Fig. 5, which mark the bound-
aries given in Fig. 2(b) for T = 0.14 K and indicate that the
maximum occurs near the FL boundary. To gain more insight
into the field dependence of the magnetic diffraction peaks, we
next present data that detail the ( 1

2 , 1
2 , 3

2 ) peak’s line shape.
Figure 6 shows SPINS rocking scan data for the ( 1

2 , 1
2 , 3

2 )
magnetic diffraction peak at T = 0.13 K and μ0H = 0, 0.6,
and 1.6 T. Similar to our previous report [17], the peak is
fit to a two-Gaussian line shape composed of broad- and
narrow-Gaussian components and a constant offset. The fits in
Fig. 6(a) for μ0H = 0 T give FWHM for the broad and narrow
components of 11.5(5)◦ and 4.2(3)◦, respectively, and the fits
in Fig. 6(b) for μ0H = 0.6 T give FWHM of 5.7(1)◦ and
1.67(3)◦, respectively. Hence, both of the peak’s components
are sharper for μ0H = 0.6 T. This means that their associated
magnetic-correlation lengths are larger than for μ0H = 0 T.

On the other hand, Fig. 6(a) also shows scaled data for the
(1,1,1) structural Bragg peak. This peak occurs at a value of
2θ (scattering angle) that is only 5◦ higher than that for the
( 1

2 , 1
2 , 3

2 ) peak, and should give a measure of the experimental
resolution which is close to the resolution for the ( 1

2 , 1
2 , 3

2 ) po-
sition. An estimation of the resolution based on a calculation
using the DAVE software package gives an expected FWHM
of ≈ 0.6◦ for both peaks. The FWHM of the (1,1,1) Bragg
peak determined from the measurement is 0.70(1)◦, which
is larger than but close to the estimated resolution. Since the
FWHM of the (1,1,1) structural peak is much smaller than the
FWHM of either component of the ( 1

2 , 1
2 , 3

2 ) magnetic peak
for both μ0H = 0 and 0.6 T, we conclude that short-range
AFM persists at 0.6 T.

The ( 1
2 , 1

2 , 3
2 ) peak is almost suppressed for μ0H = 1.6 T,

and Fig. 6(c) compares scans taken at T = 0.13 K for 0,
0.6, and 1.6 T. The value for μ corresponding to the total
integrated intensity of the peak for μ0H = 0 T and T =
0.13 K is μ = 0.76(6) μB/Yb, which is similar to the value of
0.8 μB/Yb previously reported [17]. Figures 7(a)–7(f) exhibit
data for other values of H .
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FIG. 6. Rocking curves for the ( 1
2 , 1

2 , 3
2 ) magnetic diffraction

peak at T = 0.13 K for μ0H = 0 (a) and 0.6 T (b) applied parallel
to [1̄ 1 0]. Data were taken on SPINS using λ = 5.504 Å neutrons.
Solid curves are fits to the two-Gaussian line shape described in
the text, and the line shape’s components are shown by dashed
curves. The small peak at ≈ 10◦ is due to residual Bi flux from the
crystal synthesis process and was masked while performing fits. Data
for μ0H = 0, 0.6, and 1.6 T are plotted altogether in (c). A scaled
rocking curve for the (1,1,1) structural Bragg peak at T = 0.13 K is
also shown in (a).

Figure 8 details the changes to the ( 1
2 , 1

2 , 3
2 ) peak’s line

shape at T = 0.14(1) K induced by H ‖ [1̄ 1 0]. The vertical
dashed lines mark the AFM and FL boundaries at T = 0.14 K
given in Fig. 2(b), which were determined from resistivity
data. Figure 8(a) shows that with increasing H the inte-
grated intensities of the peak’s narrow and broad components
both rise between μ0H = 0 and 0.4 T. For μ0H > 0.4 T, the
integrated intensity of the narrow component continues to
increase until reaching a maximum near the FL boundary, and
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FIG. 7. Rocking scan data from SPINS (λ = 5.504 Å) for the
( 1

2 , 1
2 , 3

2 ) (a)–(f) and ( 1
2 , 1

2 , 1
2 ) (g)–(l) reciprocal-lattice positions

taken at T = 0.13 and 0.14 K, respectively, for various values of
H ‖ [1̄ 1 0]. Data in (g)–(l) are subtracted by data for μ0H = 0 T. The
solid curves are fits to either a two-Gaussian [( 1

2 , 1
2 , 3

2 )] or Gaussian
[( 1

2 , 1
2 , 1

2 )] line shape.

then falls to 0 past 1.2 T. The integrated intensity of the broad
component gently decreases over 0.4 � μ0H � 0.8 T , and
falls more rapidly for μ0H > 0.8 T, approaching 0 at 1.6 T.

Next, Fig. 8(b) shows the magnetic-correlation lengths
associated with the peak’s broad (ξB) and narrow (ξN) com-
ponents as a function of field. These lengths were determined
after calculating the trajectory of the rocking scan in Q space
in terms of reciprocal-lattice units. The corresponding FWHM
of the peak in reciprocal-lattice units was then converted to
Å. ξB increases from 19.8(9) to 39.7(9) Å between μ0H =
0 and 0.6 T, and fluctuates around a slightly lower value
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FIG. 8. The integrated intensities (a) and magnetic-correlation
lengths (b) versus field for H ‖ [1̄ 1 0] and T = 0.14(1) K from
fits to the rocking curves for the ( 1

2 , 1
2 , 3

2 ) and ( 1
2 , 1

2 , 1
2 ) magnetic

diffraction peaks shown in Figs. 6, 7, and 11. Narrow and broad refer
to the components of the two-Gaussian line-shape fit to the ( 1

2 , 1
2 , 3

2 )
peak, and total refers to the sum of the integrated intensities of the
two components. Vertical dotted lines mark the boundaries identified
in Fig. 2(b) at T = 0.14 K determined from resistivity data. Solid
lines are guides to the eye.

for 0.6 � μ0H � 1.6 T. ξN grows from 54(4) to 136(2) Å
between μ0H = 0 and 0.6 T, reaching a maximum at 0.6 T,
just past the FL boundary. It decreases between μ0H = 0.6
and 1.0 T, and ξN = 73(5) Å for both 1.0 and 1.2 T.

The field dependencies shown in Fig. 8 are not those
we anticipated from Fig. 2(b). Specifically, we expected the
integrated intensity and correlation length associated with
the ( 1

2 , 1
2 , 3

2 ) peak to decrease as the AFM-nFL boundary is
approached and crossed with increasing field. Another way
of seeing this disagreement is to overlay in Fig. 9 the region
for which the ( 1

2 , 1
2 , 3

2 ) magnetic diffraction peak exists on
top of the phase boundaries for H ‖ [1̄ 1 0] determined via
resistivity data and shown in Fig. 2(b). The points at μ0H =
0.4 T are from Fig. 10 (described below), and points from the
neutron-diffraction study in Ref. [17] are also incorporated.
The region where the peak exists is shaded, and dashed lines
are estimates for the boundaries of its broad and narrow
components. The figure clearly demonstrates disagreement
between the neutron-diffraction data and the AFM boundary
determined by resistivity. The reason for this disagreement is
currently unknown.

To end this subsection, we show in Fig. 10 data from
transverse scans taken across the ( 1

2 , 1
2 , 3

2 ) diffraction peak
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FIG. 9. Diagram showing the region for which magnetic diffrac-
tion peaks are found for H ‖ [1̄ 1 0]. The AFM and FL boundaries
determined via resistivity are also shown. Squares (triangles) mark
the onset temperatures and magnetic fields of the broad (narrow)
component of the ( 1

2 , 1
2 , 3

2 ) magnetic diffraction peak, and the shaded
region indicates where short-range AFM exists. Lines are guides to
the eye. nFL and FL label the non-Fermi-liquid and Fermi-liquid
regions, respectively.

for μ0H = 0.4 T and various temperatures. Measurements
were made using FLEXX and on a different sample than the
one used on SPINS. Similar to data in Fig. 6, the magnetic
diffraction peak has narrow and broad Gaussian components
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FIG. 10. Data from transverse scans taken on FLEXX, using
λ = 5.464 Å neutrons, showing the temperature dependence of the
( 1

2 , 1
2 , 3

2 ) magnetic diffraction peak for μ0H = 0.4 T. Data are suc-
cessively offset by 400 counts per minute. Solid red curves are fits
to the two-Gaussian lineshape described in the text. The lineshape’s
components are shown by dashed curves. Bragg peaks due to residual
Bi flux from the crystal synthesis process are also marked.

1200

1400

1600

1800

2000

T = 0.14 K
H [1 1 0]

( 1
2 , 1

2 , 1
2 ) (a)

C
ou

nt
s

pe
r

m
in

μ0H = 0.6 T
0 T

−20 −10 0 10 20

0

200

400
μ0H = 0.6 T

Subtracted by 0 T data (b)

θ (deg)

C
ou

nt
s

pe
r

m
in

FIG. 11. (a) Rocking curves taken on SPINS, using λ = 5.504 Å
neutrons, for the ( 1

2 , 1
2 , 1

2 ) reciprocal-lattice position at T = 0.14 K
for μ0H = 0 and 0.6 T applied ‖ [1̄ 1 0]. (b) Difference of the μ0H =
0.6 and 0 T data. The solid line is a fit to a Gaussian line shape.

for T = 0.15 and 0.25 K, however, only the broad component
exists at 0.55 K. The diffraction peak appears to be completely
suppressed at T = 0.75 K. This is similar to the temperature
dependence of the peak for μ0H = 0 T [17]. In Sec. IV, we
argue that the broadness of the ( 1

2 , 1
2 , 3

2 ) diffraction peak
likely reflects the presence of magnetic domains of short-
range AFM order, and that within the AFM phase determined
from resistivity data, a changing magnetic field changes the
domains’ populations. Once a high enough field is reached, μ

then reorients toward H.

2. Q = ( 1
2 , 1

2 , 1
2 )

Rocking curves for the ( 1
2 , 1

2 , 1
2 ) reciprocal-lattice position

at T = 0.14 K for μ0H = 0 and 0.6 T applied along [1̄ 1 0]
are shown in Fig. 11(a). These data were taken on SPINS.
No peak is observed for μ0H = 0 T, as expected, since μ ‖ τ

and neutron scattering is sensitive only to the component of
μ ⊥ Q [27]. However, a peak is found for μ0H = 0.6 T. This
means that μ is rotated away from τ for this value of field.
To account for the θ dependence of the background, which
is likely dominated by absorption due to the sample holder,
we consider the μ0H = 0 T data to arise from a nonmagnetic
background and subtract them from the μ0H = 0.6 T data.
The result is shown in Fig. 11(b), wherein the solid line is a
fit to a Gaussian line shape with a FWHM of 2.9(1)◦. This
is much larger than the estimated experimental resolution
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FIG. 12. Intensity of the ( 1
2 , 1

2 , 3
2 ) magnetic diffraction peak

versus magnetic field at T = 0.13(2) K for a vertical field applied
along [1̄ 1 0] (a), or a horizontal field applied within the scattering
plane along either [1 1 0] (b) or [0 0 1] (c). Data are scaled to 1 at
μ0H = 0 T and 0 at 2 T, as described in the text. Data in (a) are the
SPINS data shown in Fig. 5, and data in (b) and (c) were taken on
E-4. Vertical dotted lines correspond to the boundaries at T = 0.14 K
given in Figs. 2(b) and 2(a).

of 1.1◦ found from a calculation using the DAVE software
package. The FWHM of the peak corresponds to a magnetic-
correlation length of ξ 1

2
= 152(8) Å, which is slightly larger

than ξN(μ0H = 0.6 T).
Rocking scan data for other values of field are given in

Figs. 7(g)–7(l), and Fig. 8 plots the field dependencies of
the peak’s fit parameters. Their magnetic-field dependencies
qualitatively follow those of the narrow component of the
( 1

2 , 1
2 , 3

2 ) magnetic diffraction peak for μ0H � 0.4 T. Note
that even though both the narrow-component of the ( 1

2 , 1
2 , 3

2 )
peak and the ( 1

2 , 1
2 , 1

2 ) peak have FWHM which are larger
than the resolution, the FWHM are only a couple of degrees
of rocking angle. Thus, we expect that the FWHM approx-
imately correspond to those that would be obtained from
transverse scans.

C. Magnetic neutron diffraction with H ‖ [0 0 1]] or [1 1 0]

The effect of the direction of H on the ( 1
2 , 1

2 , 3
2 ) magnetic

diffraction peak was investigated by recording data on E-4
while applying H within the (h, h, l ) scattering plane along
either [0 0 1] or [1 1 0]. Figure 12 shows the peak’s intensity
versus H at T = 0.13(2) K, along with the data from SPINS
for H ‖ [1̄ 1 0] (i.e., applied perpendicular to the scattering
plane) originally shown in Fig. 5. For easier comparison, the
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FIG. 13. Diagram of the (h, h, l ) reciprocal-lattice plane showing
structural (squares) and magnetic (circles) Brillouin zone centers,
as well as the AFM propagation vectors connecting them. Q =
( 1

2 , 1
2 , 3

2 ) is also shown. A circle with an × in its interior indicates
a magnetic zone center with zero diffraction intensity due to the
associated magnetic moments being oriented along τ, as occurs for
μ0H = 0 T.

data sets are plotted according to the equation

S(μ0H ) − S(μ0H = 2 T)

S(μ0H = 0 T) − S(μ0H = 2 T)
, (1)

where S stands for the scattering intensity, and scattering
recorded for μ0H � 2 T is assumed to be due to a constant
nonmagnetic background. This scaling is consistent with
Fig. 8(a), because Fig 8(a) shows the scattering intensity
approaching 0 at μ0H ≈ 1.6 T for H ‖ [1̄ 1 0] at T = 0.14 K.

In contrast to the H ‖ [1̄ 1 0] data, Figs. 12(b) and 12(c)
show that the magnetic scattering intensity generally de-
creases throughout the nFL and FL regions for both H ‖
[1 1 0] and [0 0 1]. The reason behind the scattering intensity’s
dependence on magnetic field direction is discussed below.
For now, we note that data in Fig. 12(c) do show a change in
behavior near the AFM-nFL boundary determined in Ref. [7],
however, the magnetic scattering persists well past this bound-
ary.

IV. DISCUSSION

A. Antiferromagnetic domains and the reciprocal lattice

We begin our discussion by examining the diagram of
YbBiPt’s (h, h, l ) reciprocal-lattice plane given in Fig. 13,
which shows the connection between the structural and
magnetic reciprocal lattices for τ = ( 1

2 , 1
2 , 1

2 ). We assume
collinear AFM order with μ ‖ τ, as described in Ref. [17].
The positions of the magnetic diffraction peaks and the
body-centered-cubic reciprocal-lattice symmetry leads to four
equivalent AFM propagation vectors: τ1 = ( 1

2 , 1
2 , 1

2 ), τ2 =
( 1

2 , 1
2 , 1̄

2 ), τ3 = ( 1
2 , 1̄

2 , 1
2 ), and τ4 = ( 1̄

2 , 1
2 , 1

2 ). Each vector
may be thought of as representing AFM domains with an
ordered moment μi oriented along τ i. For example, Fig. 13
shows that the ( 1

2 , 1
2 , 3

2 ) and ( 1
2 , 1

2 , 1
2 ) positions are connected

to the structural reciprocal lattice by τ2 and τ1, respectively.
Thus, any magnetic Bragg peaks found via neutron diffraction
at these positions would be associated with either τ2 or τ1

magnetic domains. In the case of ideal long-range AFM
order, neutron-diffraction experiments would find similar
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resolution limited magnetic Bragg peaks at symmetry equiv-
alent reciprocal-lattice positions corresponding to each do-
main. For the case of YbBiPt, we find broad magnetic diffrac-
tion peaks at these positions which indicate short-range AFM
order. The magnetic-correlation length determined by fitting
such a diffraction peak may be interpreted as being the aver-
age size of the τ i domains being probed.

We next consider that the expected response of a collinear
AFM to an increasing magnetic field includes changes to the
populations (hence the average sizes) of magnetic domains
and the eventual reorientation of μ toward H. For low values
of H , magnetic domains with the largest component of μ

perpendicular to H are energetically favorable, and the sizes of
these domains will increase with increasing H at the expense
of unfavorable domains. This will occur until a sufficiently
high H is reached for which it becomes energetically favor-
able for μ to reorient toward H. Such a response has been
detailed, for example, through neutron-diffraction results for
Cr [28] and UPdSn [29–31]. For YbBiPt, we will show in
Sec. IV B that at T = 0.13(2) K, application of a field within
the AFM region changes the relative populations of magnetic
domains and that the field-induced domain repopulation con-
tinues into the nFL region. In Sec. IV C, we will show that
μ starts to reorient with increasing H approximately halfway
through the nFL region, and turns away from τ for 0.4 �
μ0H ≈ 1.2 T.

B. Changes to the populations of magnetic domains

For H ‖ [1̄ 1 0] (i.e., ⊥ τ1 and τ2), magnetic domains with
μ ‖ τ1 or τ2 are energetically favorable and will grow in
size with increasing H as domains corresponding to τ3 and
τ4 shrink. The field dependence of the ( 1

2 , 1
2 , 3

2 ) magnetic
diffraction peak at T = 0.14 K appears to follow this behavior
throughout the AFM and nFL regions: Figure 8(a) shows
that the integrated intensities of both components of the peak
increase between μ0H = 0 and 0.55 T, and Fig. 8(b) shows
that both ξN and ξB also increase over this field range. Thus,
the average size of the τ2 domains grows, and either the
number of ordered moments within them increases or μ2
becomes larger. Note that Figs. 5 and 12(a) show that the H
dependence of the peak’s intensity reflects the field-induced
changes to its FWHM and integrated intensity. Assuming that
this holds for other directions of H, we next consider data for
H ‖ [1 1 0] and [0 0 1] using the intensity versus field data in
Figs. 12(b) and 12(c).

For H ‖ [1 1 0] (i.e., ⊥ τ3 and τ4), domains corresponding
to τ3 and τ4 are energetically favorable, and Fig. 12(b) shows
that the diffraction peak’s intensity begins to decrease near
the same value of field at which the data in Fig. 12(a) begin
to increase. This is expected since when H increases the AFM
domain being probed shrinks for H ‖ [1 1 0] and grows for
H ‖ [1̄ 1 0]. A magnetic field applied parallel to [0 0 1] makes
the same angle with all four τ is, which means that none of the
magnetic domains are more energetically favorable than the
others. Thus, Fig. 12(c) shows that the scattering intensity at
( 1

2 , 1
2 , 3

2 ) is constant for μ0H � 0.4 T. This encompasses most
of the region for which the intensity in Fig 12(a) grows, and,
as we discuss in the next subsection, is the region for which
no reorientation of μ occurs.

It is clear that the intensity of the ( 1
2 , 1

2 , 3
2 ) magnetic

diffraction peak does not disappear upon crossing the AFM
boundary for any of the three field directions discussed above,
and Fig. 8(b) also shows that its magnetic-correlation length
behaves differently than typically expected for an AFM phase
transition. In particular, a second-order paramagnetic to AFM
transition would involve the growth of dynamic AFM correla-
tions on the paramagnetic side of the transition as the phase
boundary is approached. These correlations would evolve
into magnetic diffraction peaks at reciprocal-lattice positions
corresponding to τ upon crossing into the AFM phase. For ex-
ample, data for CeCu5.8Au0.2 taken for an increasing magnetic
field at T = 0.06 K (< TN) show broadening of its magnetic
Bragg peaks due to a transition out of its AFM ordered state at
μ0Hc = 0.35 T [32,33]. Such broadening would correspond to
a decrease in the magnetic-correlation length as the material
loses its AFM order.

In the case of YbBiPt, instead of ξB(H ) and ξN(H ) being
maximum in the AFM phase, we find that both increase as
the AFM boundary is approached with increasing field at
T = 0.14 K, and that they are both largest within the nFL
phase. No rapid increases or decreases in ξB(H ) and ξN(H )
are observed at either the AFM or FL boundaries. Thus, we do
not observe the typical critical behavior expected for a second-
order magnetic transition at either the AFM or FL boundaries.
The absence of such critical behavior at the AFM boundary is
particularly surprising because in addition to a jump in ρ(T ) at
TN [7], heat capacity, thermal expansion, and magnetostriction
data show features at TN which may be associated with an
AFM transition [7,9]. Whereas transport measurements may
be affected by scattering associated with magnetic domain
boundaries, the existence of domain boundaries is, in general,
not expected to greatly affect these three measurements.

C. Reorientation of μ toward H

Figure 8 shows that for H ‖ [1̄ 1 0] and T = 0.14 K a
magnetic diffraction peak appears at ( 1

2 , 1
2 , 1

2 ) within the nFL
region and persists into the FL region. As noted in Sec. IV A,
reorientation of the moments toward the field direction is
expected to occur once a certain threshold value of field is
reached. Here, we assume that the appearance of the ( 1

2 , 1
2 , 1

2 )
peak signals that H is strong enough to reorient μ1 away from
τ1 and toward H. Since Fig. 8 shows that the field-induced
changes to the peak’s line shape mimic those that occur for
the narrow component of the ( 1

2 , 1
2 , 3

2 ) peak, which is related
to τ2, we propose that the angle by which μ rotates out of
the scattering plane toward H may be found by comparing
the integrated intensity of the narrow component to the in-
tegrated intensity of the ( 1

2 , 1
2 , 1

2 ) peak. This is because, for
H ‖ [1̄ 1 0], H should influence the τ1 and τ2 domains in
the same manner, and the ratio of the integrated intensities
of magnetic-diffraction peaks corresponding to τ1 and τ2 is
expected to depend only on the underlying magnetic order and
moment orientation. We present this analysis below.

The equation relating the integrated intensity of a magnetic
Bragg peak to its structure factor is [27]

I = CLp2μ2|F |2〈1 − (μ̂ · Q̂)2〉, (2)
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FIG. 14. Diagram showing the angles between H, Q, and μ

for Q = ( 1
2 , 1

2 , 3
2 ) and ( 1

2 , 1
2 , 1

2 ), and H ‖ [1̄ 1 0]. μτ1
and μτ2

refer
to moments associated with domains corresponding to τ1 and τ2,
respectively. β is the angle by which μ is rotated out of the (h, h, l )
plane by H.

where 〈 〉 indicates averaging over magnetic domains [34], I
is the integrated intensity of the magnetic diffraction peak,
p = 0.2695 × 10−14 m, L is the Lorentz factor [35,36], F is
the magnetic structure factor with its dependence on the angle
between μ and Q factored out, and C is a constant related to
the instrument. The Yb3+ magnetic form factor is included in
F . Equation (2) allows us to write the ratio of the integrated
intensity of the narrow component of the ( 1

2 , 1
2 , 3

2 ) peak to the
integrated intensity of the ( 1

2 , 1
2 , 1

2 ) peak:

I( 1
2 , 1

2 , 3
2 )

I( 1
2 , 1

2 , 1
2 )

=
F 2

( 1
2 , 1

2 , 3
2 )

L( 1
2 , 1

2 , 3
2 )

〈
1 − (

μ̂( 1
2 , 1

2 , 3
2 ) · Q̂( 1

2 , 1
2 , 3

2 )

)2〉
F 2

( 1
2 , 1

2 , 1
2 )

L( 1
2 , 1

2 , 1
2 )

〈
1 − (

μ̂( 1
2 , 1

2 , 1
2 ) · Q̂( 1

2 , 1
2 , 1

2 )

)2〉 , (3)

The subscripts in Eq. (3) refer to the peaks’ positions.
Next, we consider the specific case of H ‖ [1̄ 1 0], for

which magnetic domains corresponding to τ1 and τ2 are
energetically favorable, and assume that H causes μ to rotate
out of the (h, h, l ) scattering plane by an angle β but the AFM
order remains collinear. With the aid of Fig. 14, and the fact
that the ( 1

2 , 1
2 , 3

2 ) peak is associated with τ2 and the ( 1
2 , 1

2 , 1
2 )

peak is associated with τ1, Eq. (3) gives

β = sin−1

√
32

33N − 1
, (4)

where

N =
I( 1

2 , 1
2 , 3

2 )L( 1
2 , 1

2 , 1
2 )F

2
( 1

2 , 1
2 , 1

2 )

I( 1
2 , 1

2 , 1
2 )L( 1

2,
1
2 , 3

2 )F
2

( 1
2 , 1

2 , 3
2 )

. (5)

We assume that the τ1 and τ2 magnetic domains are equally
populated, and remain so with increasing field.

Figure 15(a) shows the ratio of the integrated intensities
of the two peaks versus field at T = 0.14 K and Fig. 15(b)
shows that β(H ) at T = 0.14 K smoothly changes between
μ0H = 0.4 and 1 T. μ points ≈ 39◦ out of the (h, h, l ) plane
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FIG. 15. (a) The ratio of the integrated intensity of the narrow
component of the ( 1

2 , 1
2 , 3

2 ) magnetic diffraction peak to the inte-
grated intensity of the ( 1

2 , 1
2 , 1

2 ) magnetic diffraction peak for H ‖
[1̄ 1 0] and T = 0.14(1) K. (b) The angle β by which the field causes
μ to rotate out of the scattering plane. A point at μ0H = 1.2 T is
absent, because

√
32/(33N − 1) is outside of the valid range for

sin−1 [see Eqs. (4) and (5)]. Vertical dotted lines correspond to the
boundaries identified in Figs. 2(a) and 2(b) for T = 0.14 K, which
were determined from resistivity data. Solid lines are guides to the
eye.

by μ0H = 1 T, and β(H ) appears to level off between μ0H =
0.8 and 1 T. However, it is unclear if the short-range AFM
order associated with the narrow component of the ( 1

2 , 1
2 , 3

2 )
peak disappears within the FL region before μ reorients par-
allel to H, because β cannot be determined for μ0H = 1.2 T
due to ( 32

33N−1 )
1
2 being > 1. This is an invalid argument for

sin−1. Our alignment scans show no increase in the integrated
intensity of the (1,1,1) Bragg peak between μ0H = 0 and
1.37 T which would indicate a field-induced ferromagnetic
component of μ along its direction. However, a small value
for μ would make it challenging to detect the weak magnetic
signal on top of a structural Bragg peak.

Lastly, we comment on the persistence of the broad compo-
nent of the ( 1

2 , 1
2 , 3

2 ) magnetic diffraction peak with increasing
field. A possibility is that the component corresponds to
magnetic quasielastic or inelastic scattering arising from lon-
gitudinal magnetic fluctuations rather than static magnetism.
The energy scale associated with such fluctuations would need
to be very small, i.e., within the �E ≈ 0.09 and 0.07 meV
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energy resolutions of the SPINS and FLEXX instruments,
respectively, which are quite good for triple-axis neutron
spectrometers. A problem with this interpretation is that such
scattering would also be expected to appear around ( 1

2 , 1
2 , 1

2 )
once μ reorients away from τ. This is not observed in our data.
Further, one may typically expect a magnetic field to open
a gap in the spin excitation spectrum of the AFM order. A
large enough gap would cause some dynamic spectral weight
to move out of the diffraction measurement’s energy window,
and the intensity of the diffraction peak to consequently de-
crease with increasing H . Future, highly specialized inelastic
neutron-scattering experiments on YbBiPt will be necessary
to determine if the diffraction data include a dynamic compo-
nent or correspond solely to static magnetism.

V. CONCLUSION

We have presented resistivity and neutron-diffraction data
that illustrate the response of YbBiPt’s fragile AFM to ap-
plied magnetic fields along [1̄ 1 0], [0 0 1], and [1 1 0]. Our
results establish that short-range AFM order characterized by
τ = ( 1

2 , 1
2 , 1

2 ) persists across the previously determined AFM
boundary and into the FL region despite clear signatures of
an AFM transition in data from transport and thermodynamic
experiments [7]. The diffraction data for H ‖ [1̄ 1 0] and T =
0.14 K show that a broad magnetic diffraction peak exists at
( 1

2 , 1
2 , 3

2 ) which can be fit by a two-Gaussian line shape con-
sisting of broad- and narrow-Gaussian components, similar
to previous results for μ0H = 0 T [17]. Both of the peak’s
components exist for 0 � μ0H � 1.4 T, and the peak’s total
intensity reaches a maximum at μ0H = 0.55(1) T, which is
near the FL boundary. The magnetic correlation lengths asso-
ciated with its components more than double between μ0H =
0 and 0.6 T, reaching maximum values of ξN = 136(2) Å and
ξB = 39.7(9) Å. Thus, the intensity of the magnetic diffraction
peak and the magnetic-correlation lengths associated with
the short-range AFM are not maximized within the AFM
region, but are largest near the nFL-FL boundary, well away
from the AFM-nFL boundary determined via resistivity. The
fact that the domain sizes are maximized and that moment
reorientation begins, at least for T = 0.14 K, near this bound-
ary is intriguing, as it may signal a change to the magnetic

exchange, or anisotropy, or both concurrent with a change in
the fermiology.

Using data for H applied within the scattering plane along
either [1 1 0] or [0 0 1], and assuming the collinear AFM
structure reported in Ref. [17], we have further shown that
field-induced changes to the ( 1

2 , 1
2 , 3

2 ) diffraction peak’s in-
tensity are consistent with magnetic domains changing size
throughout the AFM and nFL regions. This agrees with the
growth of ξN and ξB with increasing H ‖ [1̄ 1 0] for these
regions. We have also shown that a magnetic diffraction peak
at ( 1

2 , 1
2 , 1

2 ) appears in the nFL region between μ0H = 0.2
to 0.4 T for H ‖ [1̄ 1 0], and that its appearance signals a
reorientation of μ away from τ for 0.4 � μ0H � 1.2 T.

For H ‖ [1̄ 1 0], the line shapes of the narrow component of
the ( 1

2 , 1
2 , 3

2 ) peak and the ( 1
2 , 1

2 , 1
2 ) peak follow a similar field

dependence and disappear at μ0H ≈ 1.4 T. On the other hand,
the broad component of the ( 1

2 , 1
2 , 3

2 ) peak exists up to at least
μ0H = 1.6 T, and we discussed that its persistence in field
may mean that it is associated with very low-energy AFM spin
fluctuations rather than static order. The broadness of the mag-
netic diffraction peaks, their apparent two-component nature,
and their survival across the AFM boundary determined via
detailed thermodynamic and transport experiments present an
interesting quandary that warrants future investigations into
YbBiPt’s fragile magnetic properties.
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