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ABSTRACT 

The number and types of measurement devices used for 

monitoring and controlling laser powder bed fusion (LPBF) 

processes and inspecting the resulting AM metal parts have 

increased rapidly in recent years. The variety of the data 

collected by such devices has increased, and the veracity of the 

data has decreased simultaneously. Each measurement device 

generates data in a unique coordinate system and in a unique data 

type. Data alignment, however, is required before 1) monitoring 

and controlling LPBF processes, 2) predicting the material 

properties of the final part, and 3) qualifying the resulting AM 

parts can be done. Aligned means all data must be transformed 

into a single coordinate system. In this paper, we describe a new, 

general data-alignment procedure and an example based on 

LPBF processes. The specific data objects used in this example 

include in-situ photogrammetry, thermography, and ex-situ X-

ray computed tomography (XCT), coordinate metrology, and 

computer-aided design (CAD) models. We use the data-

alignment procedure to align the data from melt pool images, 

scan paths, layer images, XCT three-dimensional (3D) model, 

coordinate measurements, and the 3D CAD model.   

 

Keywords: additive manufacturing, data alignment, data fusion, 

manufacturing system integration 
 

1. INTRODUCTION 

For three main measurement needs, accurately qualifying 

complex, laser powder bed fusion (LPBF)-built, metal parts is 

still extremely difficult. First, there are LPBF process 

instabilities, which can cause significant variations in built parts. 

Second, there are not well-understood quantitative relationships 

among the CAD geometry, the raw-material properties, the 

fabrication process, which are needed to predict final-part 

properties. Third, there are the current, LPBF-system states, 

which are needed for control. Meeting those three needs required 

the extensive use of a wide range of measurement devices, 

including sensors and measuring machines, to 

understand relationships before making decisions throughout the 

entire additively manufactured product life cycle. 

High-quality parts require 1) understanding the physical 

phenomena, 2) developing the correct models of the different 

phenomenon, 3) linking those models through data, and, finally, 

4) making the best life-cycle decisions possible. Meeting those 

four requirements were based on the measurement, the principle 

of physics, and associated mathematical models. 

Metal additive manufacturing (MAM), is a completely new 

kind of fabrication technology. The life cycle of AM parts 

includes designing, engineering, controlling, and inspecting. 

Nevertheless, the required data links needed to perform those 

life-cycle functions optimally do not exist. Instead, LPBF MAM 

process users are building new kinds of data-driven models and 

information links, based on new kinds of data collected by new 

kinds of sensors. In addition to traditional numerical types of 

data, many AM sensors collect a myriad of different types and 

quantities of in-situ and ex-situ image data. For example, there 

are sensors for photogrammetry and thermography and machines 

for X-ray computed tomography (XCT) and coordinate 

measurement, such as coordinate measuring machines (CMMs) 

[9]. Unfortunately, different sensors collect data in different, 

physical, local, coordinate systems. Moreover, the data from 

sensors in those systems must be “fused” to create the links that 

provide input to the models needed to make all AM-part, life-

cycle decisions.  
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Today, aligning data is not possible because there are no 

procedures for both spatially and temporally aligning data from 

different coordinate systems. The scope of this work is on 

alignment of data. Data can come from scan commands, laser-

spot locations, melt-pool images, layer-wise images, XCT 

model, CMM model, and CAD model. Our approach to aligning 

these different data types is to find and use the reference 

locations and orientations required to transform a local 

coordinate system into the reference coordinate system. The 

authors have identified the meta data needed to align related data 

sets, which can be used for data registration. Registered data can 

then be used for analyzing the quality of part. 

This rest of paper has the following sections. Section 2 

reviews related publications in data collected from both in-situ 

and ex-situ monitoring. Section 3 proposes a procedure for data 

alignment. Section 4 gives examples of data alignment. Section 

5 discusses the proposed procedure. Section 6 concludes the 

paper and identify the future work.   

  

2. REVIEW OF SENSOR DATA TYPES AND 

ALIGNMENT METHODS 

Recently, researchers have been integrating LPBF sensors 

and developing techniques to apply sensor data as input to 

various applications, such as data analytics. The section provides 

a review of types of data, data fusion, and research needs. 

2.1 Sensor Data Types 
In-situ process monitoring is necessary for real-time 

control and is enabled by sensors that monitor in-process 

phenomena. Scime et al. [20] used a common, staring cameras 

with a k-Mean unsupervised classification algorithm to detect 

anomalies on freshly coated powder bed for laser PBF. The 

images are used to detect anomalies on a freshly coated powder 

bed surface: waviness from blade hopping, streaks, debris, voids, 

and incomplete spreading. Many researchers [11][12][3] have 

reported the use of multiple monitoring methods, including high-

speed coaxial cameras, off-axis thermal detectors and/or staring 

cameras to collect data for monitoring melt-pool characteristics, 

including melt pool geometry, energy intensity, spatter, and 

residual heat.  

Reutzel et al. [19] described measurements of melt-pool 

geometry and temperature with images taken by a single-color 

camera in the infrared (IR) range. Temperature measurements, 

however, were based on images taken from a dual-color camera. 

The authors aligned the images with built-in reference marks in 

addition to the part design. Everton et al. [5] described in-situ 

sensors and sensing techniques for monitoring part buildup, 

layer-by-layer, in LPBF processes. Purtonen et al. [17] applied 

optical sensors included photodiodes, spectrometers, Charged 

Coupled Device (CCD) and Complementary Metal Oxide 

Semiconductor (CMOS) imaging sensors, pyrometers, and 

infrared cameras to monitor the LPBF process. 

Commonly used off-axis sensors are Digital Single Lens 

Reflex (DSLR) cameras. A DSLR camera can take images of the 

powder bed each time it is triggered. A combination of 

flashlights from different angles of illuminations can detect 

anomalies on each scanned layer [1]. Bartletta et al. [2] explored 

using a high-speed camera to record the laser-scanning process 

including melting, solidifying, and track formations. Foster et al. 

[6] used staring-video cameras and coaxial cameras to collect 

data for monitoring melt-pool characteristics with other types of 

sensors for data fusion to monitor the progress of melting and 

track formation. 

2.2 Sensor Data Alignment 
For the background, data alignment is part of the data 

registration process, as shown in Figure 1. Data registration is 

necessary to fuse different data correctly. Data alignment 

includes both temporal alignment and spatial alignment. 

Temporal alignment requires a synchronized clock, which 

usually is a prerequisite of spatial alignment. Spatial alignment 

is a process that converts sensor data from its original, local 

coordinate system to another coordinate system so that the data 

can be compared and fused with the data generated in the new 

coordinate system. AM data alignment as a research topic 

continues to expand. Nevertheless, the current limitations of that 

research are still impeding the use of advanced data analytics, 

which can accelerate the understanding and control of AM 

processes and improve decision-making across the AM part 

lifecycle. Specifically, data-correlation limitations include 1) a 

limited understanding of how to characterize the new types of 

sensor data and 2) there is no information to link the data 

correctly in space and time. 

2.3 State of Research in Sensor Data Alignment 
Morgan et al. [13][14] used the direct-image-alignment 

approach, where no well-defined edges or corners in the build 

 
Figure 1 General Data Registration Procedure 
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imagery can be used for alignment. This approach uses a filtered, 

built image and a synthetic image derived from the laser scan 

directions. These images are constructed so that they have high 

intensities where there is solidified materials and low intensities 

where there is unfused powder. The images must look as similar 

as possible so that they can be aligned by minimizing the 

differences. This requirement is almost impossible to be 

achieved due to measurement uncertainties associated with the 

sensor data.  

Witherell [21] investigated data curation, fusion, and 

analytics techniques and showed an abstract data-alignment 

model for additive manufacturing. Bartlett et al. [2] correlated 

the measured surface temperature with layer-wise, scanned 

surface images to identify potential anomalies on the layer. The 

authors then correlated layer-wise measurements with the part 

measurements using ex-situ, scanning electron microscopy to 

validate the identified defects. Since the part used in the 

experiment is a regular shape, the data alignment is relatively 

simple.  

Everton et al. [5] described specific sensors and sensing 

techniques for monitoring layer-by-layer builds in L-PBF 

processes. The purposes were to see 1) defects, such as pores, 

balling, unfused powder, and 2) cracks on a scanned surface with 

a correlation to the thermal images of that layer. Abdelrahman et 

al. [1] used a binary template created from the sliced 3D model 

of the part, as the reference geometry to do data alignment layer 

by layer. The aligned data then is used to create a 3D model to 

detect anomalies visually both before laser scanning and in the 

solidified material after laser scanning. Foster et al. [7] used 

angle illuminations to collect layer-wise images, which were 

then fused with pre-placed powder layers. Three-dimensional 

reconstruction of the images identifies potential flaws in the part.  

Petrich et al. [16] used reference marks that were built into 

the part to align layer-by-layer images with an XCT model for 

defect location in the scanned part. Roehling et al. [18] 

modulated the heating and cooling profiles for visualizing the 

correlation between heating, cooling, and grain growth. Finally, 

Hirsch et al. [8] proposed a method to align 1) the design model, 

2) the part slices, and 3) layer-by-layer images to create a 3D 

composite model for defect analysis. 

 

2.4 Gaps and Research Needs 

Clearly, there is an issue to properly relate a variety of 

sensors used for in-situ and ex-situ monitoring of LPBF AM 

processes. Those sensors provide a plethora of data, including 

gray-scale images and thermal data. While the data from 

individual sensors are important, correlations among those data 

can be extremely valuable. Sensor data must be aligned before 

the data can be applied for analysis to extract new knowledge. 

Data alignment is necessary to determine the state of the powder-

fusion process, the material microstructure, and the fabricated 

part. For example, without correctly aligning measurements in 

the spatial domain, conflicting predictions can be made on the 

process performance and part quality. Lastly, there is no 

contextual information for data alignment. This is one of major 

barriers for part qualification and verification to ensure AM 

product quality 

 

3. PROCEDURE FOR DATA ALIGNMENT 

For in-situ monitoring, there are three sensor data types: 

photographic images, video clips, and time-series data. 

Photographic images include gray-scale images and 

thermographic images. Gray-scale images are commonly used to 

monitor melt pool shape, including its area and dimensions. 

Thermographic images are used to monitor temperature as well 

as energy intensity of a recently scanned layer. Video clips are 

used to monitor the dynamic behaviors in the scanning process, 

such as spattering and pluming. Time-series, acoustic data is 

collected from sonic sensors. Sonic sensor data is commonly 

used to monitor sparking or cracking during laser scanning.  

For ex-situ monitoring, the following types of data are in 

the scope of this paper: XCT 3D model and points collected 

using CMM. CMM points should be properly associated with the 

corresponding features. An XCT 3D model can be used to 

identify pores and other defects. CMM points can be used to 

establish a datum reference frame and evaluate a feature’s 

geometry again its tolerance specifications. These two types of 

data are commonly used in AM and are from nondestructive 

evaluations of additively manufactured parts. 

Another type of data is scanning paths and speed, related 

to in-situ monitoring data. Scan paths are series of laser spot 

locations that are used to guide the laser to scan the powder layer. 

Lastly, chamber monitoring data, such as environmental 

temperature, gas pressure, and CO2 levels. Note that chamber 

monitoring data is out of the scope of this work. 

The above-mentioned data types are related, but in 

different coordinate systems. Examples of different coordinate 

systems include 1) the CAD-modeling coordinate system, 2) an 

in-situ sensor coordinate system, 3) a laser coordinate system, 

and 4) a staring camera coordinate system. Developing a 

procedure to geometrically align related data types and tie them 

all to a common coordinate system is the main purpose of our 

research work.  The basis of our proposed, geometric, data-

alignment procedure is coordinate transformation. The same 

point in the space is transferred from one coordinate system to 

another one. In this paper, the local coordinate system is referred 

as the “from” coordinate system, and the new coordinate system 

to which the point is transferred is referred as the “to” coordinate 

system. For example, a melt-pool image, which is collected by a 

coaxial camera, can be transformed from the camera coordinate 

system to the laser-scanning path coordinate system.  
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Scanning paths can be further related to the layer images 

taken by a staring camera. Layer images can be related to the 3D 

model generated by XCT. XCT 3D model can be related to the 

CMM model generated by the measured points (a point cloud). 

The CMM model can be related to the geometric model 

generated by a CAD system. In that sequence of relationships, 

melt pool images, scan paths, layer images, XCT model, CMM 

model, and CAD model can be sequentially related in data 

alignment.  

In summary, the procedure includes the following steps: 

(1) Group all the related data sets for data alignment. 

Specifically, two related data sets must have a common 

reference point and known difference in orientations, see 

Section 4 for examples. 

(2) Identify every two related data sets and pair them for 

coordinate transformation. Also, identify the “from” 

coordinate systems and the “to” coordinate system in every 

pair. 

(3) Sequence (chain) all the pairs according to spatial and/or 

temporal relations. For examples of spatial relations, see 

Section 4. 

(4) Perform coordinate transformations so that all the data sets 

are in one single coordinate system. 

(5) The chained data sets can be assigned an identifier (ID) for 

indexing and searching. The chained data sets can be used, 

such as data analysis. 

 

4. EXAMPLES OF DATA ALIGNMENT 

This section provides some data alignment examples. The 

sequence of align related data sets are as follows: (1) align melt-

pool images to scan path, (2) align scan paths to the layer image, 

(3) align layer images to the XCT 3-D model, (4) align the XCT 

3-D model to the CMM model, and (5) align the CMM model to 

the CAD model. After alignment, melt pool images, scanning 

paths, layer images, the XCT 3-D model, the CMM model, and 

the CAD model are all in the same coordinate system. This 

coordinate system will be the CAD coordinate system. 

4.1 Melt pool image to scan path alignment 

Melt pool is generated by laser melting. As shown in Figure 

2, the center of the laser spot is used as the reference point in the 

alignment. The point in the coaxial camera coordinate system 

can be estimated using the shape of the melt pool shown in the 

image. The center of the laser spot on the scan path is in the 

scanning laser coordinate system. There are at least three ways 

to describe a scan path: (1) the command position in the XY2-

100 or G-code file [10] (Note that the command position and the 

true laser spot center are different), (2) the intercepted encoder 

position of the two galvanometers [4], and (3) using an 

interpretation method to predict the true laser position based on 

the scanning speed, laser on/off timing, and camera-triggered 

times. When the time that the melt pool image is taken by the 

camera, the true laser spot moves away from the original 

position. If the off-distance is very small, then it is negligible. 

The relative orientation between the image (“from”) and 

the layer (“To”) can be computed using an appropriate image-

calibration method. An image-calibration artifact with black and 

white grids may be used to measure the relative orientation 

difference between the orientation in the coaxial camera 

coordinate system and the orientation in the laser scanning 

coordinate system. The relations between the laser spot center 

and orientations in both coaxial camera and scanning laser 

coordinate systems are thus obtained for coordinate 

transformation. At this point, the melt-pool image is transformed 

to the scan path (layer) coordinate system. 

 

4.2 Scan paths to layer image alignment 

Scan paths should be aligned with the image of the layer 

that laser scanned. Scan paths are generated with the laser 

 
Figure 2 Melt pool images to scan path alignment 

 

 
Figure 3 Scan path to layer image alignment 
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scanning coordinate system. Since it is not always possible to 

identify features on the scanned layer, fiduciary marks must be 

created. A fiduciary mark is created on the layer but outside the 

designed part during or after the laser scanning process. Four 

fiduciary marks can be used, minimally three. These four marks 

are the same artifacts in both scanning paths and the layer image. 

Figure 3 show an example of four fiduciary marks relative to the 

scan paths. With this aligning, coordinate transformation 

becomes possible. The “from” coordinate system is the laser 

scanning coordinate system. The “to” coordinate system is the 

layer image coordinate system. After the coordinate 

transformation, melt pool images, scan paths, and the layer 

image are all in the same coordinate system. Since there are 

multiple layers in an additively manufactured part, the fiduciary 

marks can also be used to align layers, from Layer 1 (the bottom 

layer) to the last Layer (the top layer), as shown in Figure 4. 

 

4.3 Layer images to the XCT model alignment 

Aligned layer images should be aligned with the XCT 3-D 

model of the additively manufactured part. The purpose is to 

relate defects found in the XCT 3-D model to the defects found 

in the scanned layers to identify possible causes for those defects. 

There are some means for alignment: (1) create or specify 

reference datum features (e.g., plane, point, or line) in the part 

for alignment, (2) create fiduciary marks on last layer of the 

workpiece as the reference positions and align the fiduciary 

marks on the last layer image with the fiduciary marks shown in 

the XCT 3-D Model (note: the fiduciary marks has to be on the 

part, not outside the part so that XCT can detect them.), and (3) 

use mathematical algorithms to best fit layer images to the XCT 

3-D model. The first method is based on geometric dimensioning 

and tolerancing standards, such as ANSI Y14.5. Figure 5 shows 

the fiduciary marks must be on the top of the part. The bottom 

few layers are not part of the part and are separated from the part 

when it is removed from the built plate. 

 

4.4 XCT 3-D model to CMM model alignment 

The XCT 3-D model should be aligned with the CMM 

model of the AM part. The purpose is to relate the part geometry 

found in the XCT model to the part geometry found in the CMM 

model to measure functional features, such as internal holes and 

thin walls, to verify if they are within the tolerances to ensure the 

manufactured part meets the functional requirements. The steps 

in the procedure includes (1) define a datum reference frame on 

the part for establishing a coordinate system, as defined in 

ANSI/ASME Y14.5, (2) align the XCT 3-D Model with the 

CMM model using the datum reference frame. Note that (1) a 

datum reference frame consists of primary, secondary, and 

tertiary reference planes (or equivalent geometries), (2) if datum 

 
Figure 4 Layer images alignment 
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Figure 5 Layer image to XCT 3-D model alignment 

 

 
Figure 6 XCT 3-D model to CMM model alignment 
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reference frame is not possible to define, then other methods, 

such as fitting with point cloud, can be used for the alignment, 

and (3) CMM can be substituted with other dimensional 

measurement methods, such as laser scanners. Figure 6 shows an 

example of primary, secondary, and tertiary datums to form a 

datum reference frame, as specified in ANSI/ASME Y14.5. 

 

4.5 The CMM model to the CAD model alignment 

The CMM model should be aligned with the CAD model 

of the AM part. The purpose is to relate the part geometry found 

in the CMM model to the part geometry found in the CAD model 

to verify whether features with the specified tolerances, such as 

cylindricity of an internal hole, to verify if the features meet the 

tolerance requirements. The step in the procedure is to use the 

defined datum reference frame align the CMM model with the 

CAD model of the part for establishing a coordinate system, as 

defined in ANSI Y14.5. Figure 7 shows the use of primary, 

secondary, and tertiary datums to align CMM model to the CAD 

model. CMM model coordinate systems is the “from” coordinate 

system and the CAD coordinate system is the “to” coordinate 

system. With the alignment, the dimensions and tolerances of all 

the feature can be evaluated. 

 

5. DISCUSSIONS  

The primary challenge for AM is to control the fabrication 

process well enough to provide the reliability and repeatability 

necessary for commercial applications. For example, control is 

not a standalone process; control is connected to 

design/engineering processes upstream and 

inspection/qualification processes downstream. The key to the 

execution of all these AM processes is sensor data. 

In pursuit of overcoming the challenges, methods and 

standards of data gathering, registration, and fusion are the 

critical needs [15]. First, data should be collected and curated 

with rich meta information, e.g., sensor meta data, installation 

information, and configuration information. Additionally, best 

practices should be developed to calibrate the measurement 

apparatus and document the results appropriately. In addition, 

the data captured should be structured and represented to support 

interoperability among various computer information systems 

owned by various stakeholders, including material suppliers, 

machine manufacturers, measurement devices providers as well 

as testing labs. Both lexicon and semantic standards are required 

to enable seamless integrations of data generated from AM 

lifecycle and value chain activities. With established common 

data dictionary and common data exchange format, data 

collected during AM processes can be aligned and fused for 

better process monitoring and process control. In addition, data 

of thousands of builds conducted distributed can be aggregated 

into a common data virtual repository in the form of a federated 

data repository which will be available for the AM community 

to conduct advance data analytics including data alignment and 

data fusion and adaptive learning to accelerate AM part 

development lifecycle. This research establishes a good 

foundation on identification of the information for data fusion 

and provides a initial guidance on how to align the data. The 

remaining challenges include 1) data alignment for 

unsynchronized data, 2) data alignment uncertainty 

qualification, and 3) geometric feature alignment. 

The data alignment procedure proposed in this paper is still 

a conceptual exploration. Real cases of additively manufacturing 

part using LPBF with in-situ and ex-situ measurements using 

appropriate sensors should take place to validate the procedure. 

Furthermore, defect-detection and cause analyses should also be 

done using the aligned data sets. 

 

6. CONCLUSIONS 

The use of laser powder bed fusion, LPBF, additive 

manufacturing technology to fabricate complex, metal parts in 

aerospace and medical industries has been increasing steadily. 

As a result, the demands on the quality and reliability of those 

parts has also increased. To respond to these demands, 

researchers have started to implement in-situ sensors and ex-situ 

measurement machines to monitor LPBF processes and to detect 

potential anomalies in the part. Types of in-situ data include 

melt-pool images, movies, and acoustic signals. Types of ex-situ 

data include XCT 3-D models and CMM data clouds. 

Correlation among related datasets are critical to detect 

 
Figure 7 CMM model to CAD model alignment 
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anomalies and the causes. Correlated data set can also be used to 

verify the quality of AM parts. Since data alignment means all 

data is transformed into a single coordinate system, to compute 

the correlation is then possible for data analytics. 

The proposed data alignment procedure in this paper 

addresses the long standard issue of how to align images taken 

by a coaxial camera, laser scanning commands, and a staring 

camera that are related to in-situ monitoring. The proposed 

procedure also addresses the need of aligning in-situ monitoring 

data with ex-situ monitoring data from XCT, coordinate 

measurement, and the design model. Examples in the paper show 

how to relate in-situ and ex-situ data into a suite of correlated 

datasets that can be used for downstream applications, such as 

defect analysis, feature analysis, and decision making. 

Future work will be in two areas. One is to provide more 

examples of aligning time series data, such as acoustic signals, 

with geometric data. Second is to develop data registration 

procedure to include sensor meta-data with the sensor data for 

AM data analytics. The procedure will lead to standardization. 

We expect that these standards will lead to better 

implementations in the L-PBF user community. Furthermore, a 

case study that includes design, build, measurement, test should 

show that data alignment can enable defect detection in AM 

parts. 
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