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This rather long-standing project has resulted in a National Institute of Standards and Technology (NIST) Standard Reference Material
(SRM) for the analysis of crystallite size from a consideration of powder diffraction line profile broadening. It consists of two zinc
oxide powders, one with a crystallite size distribution centered at approximately 15 nm, and a second centered at about 60 nm. These
materials display the effects of stacking faults that broaden specific hkl reflections and a slight amount of microstrain broadening.
Certification data were collected on the high-resolution powder diffractometer located at beamline 11-BM of the Advanced Photon
Source, and on a NIST-built laboratory diffractometer equipped with a Johansson incident beam monochromator and position sensitive
detector. Fourier transforms were extracted from the raw data using a modified, two-step profile fitting procedure that addressed the
issue of accurate background determination. The mean column lengths, 〈L〉area and 〈L〉vol, were then computed from the Fourier
transforms of the specimen contribution for each reflection. Data were also analyzed with fundamental parameters approach
refinements using broadening models to yield 〈L〉area and 〈L〉vol values. These values were consistent with the model-independent
Fourier transform results; however, small discrepancies were noted for the 〈L〉area values from both machines and both crystallite size
ranges. The fundamental parameters approach fits to the laboratory data yielded the certified lattice parameters.
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Table 1. List of all acronyms used in this work, and commonly used mathematical symbols.

APS Advanced Photon Source MCL Mean Column Lengths
CoA Certificate of Analysis NLLSQ Non-Linear Least-Squares
DBD NIST Divergent Beam Diffractometer PSD Position Sensitive Detector
esd estimated standard deviation PSF Profile Shape Function
FPA Fundamental Parameters Approach SI International System of Units
FPAPC Fundamental Parameters Approach Python Code SRM Standard Reference Material
FWHM Full Width at Half Maximum TEM Transmission Electron Microscopy
GoF Goodness of Fit WH Williamson-Hall
HCP Hexagonal Close Packed WPPM Whole Powder Pattern Modeling
IBM Incident Beam Monochromator F ( f ) Fourier transform of function f
IPF Instrument Profile Function 〈L〉area Area-weighted mean column length
ISO International Standards Organization 〈L〉vol Volume-weighted mean column length
JCGM Joint Committee for Guides in Metrology ⊗ Convolution operator for two functions
LPA Line Profile Analysis d∗ λ/sinθ , the inverse d-spacing

1. General Introduction

The ability to use diffraction line profile shape to characterize the crystallite size of nano-scale materials
is one of the many attributes of modern powder diffraction. The use of line profile analysis (LPA) has been
extensive, as has been the research effort into the interpretation of results obtained from various strategies
employed in its use. One way to assess performance of a complete measurement method is to acquire and
analyze data from a standard sample with known properties. Toward this end the National Institute of
Standards and Technology (NIST) has developed Standard Reference Material (SRM) 1979, a line-shape
standard suitable for crystallite size calibrations. The certified values for the profile breadth of SRM 1979
are the area-weighted and volume-weighted mean column lengths, 〈L〉area and 〈L〉vol, respectively, as
determined from the Fourier transform of each reflection. The SRM consists of two zinc oxide (ZnO)
powders: One has a crystallite size distribution centered at about 15 nm, and the other has a crystallite size
distribution centered at about 60 nm. While the smaller one is well within the range that can be accessed
with laboratory X-ray equipment, the 60 nm one constitutes a measurement challenge for said equipment.
See Table 1 for a list of acronyms and mathematical symbols used in this paper.

This project began in 1989 and was initially patterned after the extensive body of work by Louër,
Langford, and coworkers [1–7]. Data from the NIST Siemens D5001 diffractometer, equipped with a Ge
111 Johansson incident beam monochromator (IBM), could be fitted using the Voigt profile shape function
(PSF). Therefore the “pattern decomposition” method and analysis of crystallite size broadening outlined by
Louër and Langford could be applied to our data. The manufacture of the SRM feedstock could also be
patterned after the decomposition of the various precursors for cerium and zinc oxide discussed by Louër
and Langford. The intent was to produce two powders; the first would consist of an isotropically broadened
≈15 nm CeO2 material, while the second would be a coarser, anisotropic ZnO material requiring the use of
a shape model in an analysis.

The first component of the work involved the commissioning of the Siemens D500 equipped with the
IBM to provide data of sufficient quality for microstructure analysis via LPA. This work was pursued over
the course of 5 years, largely in collaboration with Robert Cheary [8, 9]. There were multiple difficulties
with the machine; it was essentially reverse engineered in order to ensure proper performance. There were
1Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure
adequately. Such identification does not imply recommendation or endorsement by the U.S. government, nor does it imply that the
materials or equipment identified are necessarily the best available for the purpose.
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deficiencies in the supplied documentation concerning the installation and alignment of the IBM. These
were addressed through personal communications with Ian Langford and the development of in-house
alignment procedures for optimization of the Johansson optic. When completed, performance metrics from
the machine were compared with simulations from Xfit [10], which verified that its behavior was in full
compliance with the geometric models of the Fundamental Parameters Approach (FPA) to X-ray profile
fitting [11]. While the results of this effort were not immediately published beyond a lengthy set of
workshop notes, they were featured in the paper by Cheary et al. [12] on the FPA method and formed the
kernel of the approach delineated in chapter 3.1 of Volume H of the International Tables for Crystallography,
by Cline et al. [13, 14].

With the availability of quality data, additional data analysis methods were considered. This aspect of
the work was pursued in collaboration with Walter Kalceff and later Nicholas Armstrong. A least-squares
convolution approach was considered [15, 16] . This was followed by the development of maximum entropy
and later Bayesian methods for analysis of crystallite size [17–22]. A more straightforward approach was
developed using TOPAS V4.2 [23] with a least-squares convolution approach in conjunction with
Mathematica [24] to generate Williamson-Hall (WH) [25] plots for qualitative evaluation of test samples in
the development of the SRM feedstock.

The preparation of the SRM feedstock required the co-precipitation reactions used to prepare precursor
materials to be scaled up to a considerable extent. J. J. Ritter investigated the use of a static mixer [26] for
applicability as a fixed-element flow reactor to be used in continuous, co-precipitation reactions. Reactants
could be pumped into the flow reactor, wherein all volume elements would undergo an identical mixing
history; the primary limiting factor on batch size was the ability to wash and de-water the product. An
intrepid vendor with experience in inorganic chemical preparation, GFS Chemicals, Powell, OH, was
located to prepare precursor compounds of Ce and Zn. The work proceeded on a small scale using ≈50 g
samples from the flow reactor, while ≈3 g specimens were decomposed in a controlled-atmosphere/vacuum
tube furnace. While a suitable ZnO material was prepared with the use of the flow reactor, a management
change at GFS Chemicals led to a loss of interest on their part in the project. We also investigated the
decomposition of zinc oxalate [5] and were able to duplicate the results of Langford et al. [3]. A vacuum
oven was rebuilt into a low-temperature vacuum furnace that allowed for batches of up to 125 g to be
decomposed in a uniform manner.

The project proceeded with the premise that the SRM feedstock would be prepared from the
decomposition of commercially available zinc oxalate. Test specimens were decomposed in the large-scale
vacuum furnace at a range of annealing temperatures for the determination of the desired final annealing
schedule(s). In order to gain a more quantitative understanding of the microstructure, the programs TOPAS
and PM2K v1.65 [27] were also used to analyze these data [28, 29]. These whole-pattern analyses included
the Warren model for stacking faults [30] to account for the hkl dependence of profile breadth. With the
consideration of the results from these analyses, two schedules were chosen to provide two powders: One
had a size distribution centered at about 15 nm, and the other had a size distribution centered at about 60 nm;
these are referred to hereafter as the “15 nm” and “60 nm” materials.

Certification data were collected on the high-resolution powder diffractometer at the 11-BM beamline at
the Advanced Photon Source (APS) [31] and on a NIST-built Divergent Beam Diffractometer (DBD) setup
with an IBM [13]. The DBD was configured with a modern Johansson Ge 111 optic and, initially, a
scintillation detector; later, it was equipped with a Bruker LynxEye XE position sensitive detector (PSD).
The instrument profile functions (IPFs) of both machines were determined by means of an FPA analysis of
data from SRM 660b [32] using TOPAS V5 [33]. The NIST Fundamental Parameters Approach Python
Code (FPAPC) [34] was then used to simulate the IPF profiles and compute their Fourier transforms at the
ZnO peak positions, using the previously determined FPA parameters. The contribution due to the crystallite
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size of SRM 660b was omitted from these simulations. With respect to the DBD, these simulations included
a correction for the effects of sample attenuation which will broaden the observed profiles from a divergent
beam diffractometer in reflection geometry. The Fourier transforms of the line profiles of SRM 1979 were
extracted from the raw data sets [35]. The deconvolutions of the IPFs from the ZnO data were carried out by
division. The area-weighted and volume-weighted mean column lengths (MCLs), 〈L〉area and 〈L〉vol, were
then determined from the Fourier transform of each reflection. Certified values were from the 11-BM data
only. Statistical analyses of these data provided the Type A measurement errors on the certified values
[36, 37].

The data from both machines were then analyzed via the FPA using TOPAS; these analyses included the
Scardi and Leoni model for the crystallite size broadening [38]. The results are included as Information
Values in the Certificate of Analysis (CoA). Using these values, FPAPC was used to compute the Fourier
transforms of simulated FPA ZnO profiles; again, the IPF contribution was removed by division. The 〈L〉area
and 〈L〉vol values were then computed from the transforms of each reflection. These FPA-based 〈L〉area and
〈L〉vol values from the 11-BM data were then compared to certified values for an assessment of the Type B,
systematic measurement error. The certified lattice parameters were obtained using the FPA method via
TOPAS for analyses of data from the DBD.

1.1 The FPA and Convolutions

The diffraction experiment is an inverse problem; the desired outcome is an understanding of a
three-dimensional structure, although the observation consists only of a one dimensional data set. There are
multiple structures, or solutions, that would yield diffraction data corresponding to the observation; the
object, of course, is to determine the correct one. The observation of a diffraction experiment is itself a
convolution of several contributions:

Iobs(x) = G⊗H =
∫

G(x− x′)H(x′)dx′ , (1)

where G is the underlying shape of a reflection from the sample, H is the IPF at the angle at which the
reflection is measured, and Iobs is the observed diffraction peak. In Fourier space, such convolutions become
products. The classic statement of the convolution theorem, extended for multiple convolutions, is:

F (G⊗H⊗L⊗ ...) = F (G)F (H)F (L)F (...) , (2)

where we use F ( f ) to represent the Fourier transform of the function f . It is desired to determine F (G),
the sample broadening function that is specific to characteristics of the specimen. From the convolution
theorem we obtain the classical Stokes method [39], wherein the sample function F (G) is determined by
simply dividing F (G⊗H), the transform of the observed lineshape, by F (H), the transform of the IPF.
While the technique is mathematically rigorous and appears straightforward to execute, there are, in fact,
multiple difficulties. This is due to loss of statistical information with the use of the fast Fourier transform
algorithm; difficulties also stem from errors due to noise, truncation, background determination, etc., that
have been well documented [17, 40, 41]. Therefore, Fourier-based deconvolution methods have been largely
superseded by least-squares convolution approaches in the area of microstructure analysis.

In the context of the FPA, the IPF (H) is split into two components: a group of geometric models
representing the instrument, and the emission spectrum. The essence of the FPA is the explicit modeling of
the various contributions to the geometric profile that cause the diffraction profiles to vary in shape and
position as a function of 2θ . The emission spectrum is typically described with analytical PSFs of
Lorentzian or Gaussian character. In the context of certified lattice parameter measurements, the emission
spectrum provides the traceability to the International System of Units (SI) [42]. The IPF is determined with
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the use of a suitable standard, although the data analysis approach is dependent upon instrument geometry.
The standard itself has to be crystallographically “perfect” and have a crystallite size sufficiently large as to
be essentially undetectable with laboratory equipment, though not so large as to exacerbate the effects of
“particle” counting statistics. With laboratory equipment configured in Bragg-Brentano geometry, models
used for determination of the IPF must include sample-specific properties such as specimen transparency
and specimen surface height. With high-resolution, synchrotron-based powder diffraction, the crystallite
size contribution from the standard can be readily observed and removed from subsequent simulations of the
IPF using the FPA. With this approach to characterization of the IPF using the FPA, the Fourier transform of
the simulated IPF is set directly to F (H).

1.2 Fundamental Description of Crystallite Size Induced Broadening

Bertaut, in his seminal paper of 1949 [43] proceeded from the simple description of a crystal as a regular
lattice of atoms, to the recognition that the Fourier transform of an intrinsic line shape provides direct
information about the length distribution of coherently reflecting columns of cells. We consider this
development in a reduced number of steps. This section follows the notation of Bertaut fairly closely, and
explanations of many of the symbols displayed are left to that work, which the reader is assumed to have at
hand.

For example, eq. (4-11) of Cullity [44] describes the structure factor as a sum over the N atomic sites
within a complete crystal:

Fhkl =
N

∑
n=1

fn exp [2πi(hun + kvn + lwn)] Cullity (4-11) . (3)

One sees that the amplitude of a reflected electromagnetic field can be represented as a sum over the
reflection amplitudes from each of the atoms in the crystal, as long as the kinematical approximation
applies. This equation can be rewritten as an integral by splitting the problem into a local integral of atomic
form factors within a cell and an integral of cells over the volume of the crystals:

G(~y) =
∫

∞

−∞

s(~ξ )exp[2πi~ξ ·~y] ~dξ ×
∫

v
f (~x)exp[2πi~x ·~y]~dx Bertaut (6) . (4)

The second term is Fhkl for a single cell, in the form of an integral over the electron density in a unit cell,
instead of a sum over individual atoms; i.e., fn for the nth atom replaced with f (~x), the electron density.
G(~y) is the scattering amplitude resulting from integrating the form factor Fhkl from a single cell over the
volume of the crystal, with a phase factor exp[2πi~ξ ·~y] ~dξ and a ’density’ s(~ξ ) which is either 0 or 1
depending on whether the volume of interest is outside or inside the crystal. While the conversion from the
sum to an integral for the left-hand term is not quite technically rigorous, it is fully plausible for materials of
high crystallinity. The form of these integrals are Fourier transforms of the respective functions.

The field amplitude can then be squared (multiplied by its complex conjugate) to compute an intensity.
With normalizing, expanding around the center of a cell, and shifting to a coordinate system in which y1 and
y2 are perpendicular to the diffraction vector, and y3 is parallel to the diffraction vector, we find

I =
|F |20

4π |h|2
d
v

∫
s(~ξ )s(~ξ ′)exp[2πi

−−−−−→(
ξ −ξ

′) ·−→y ] ~dξ
~dξ ′ dy1 dy2 Bertaut (9). (5)

There is an intricate transformation in going to the next equation, Bertaut eq. (9’) (see footnote at base of
page 15 in Bertaut), that recognizes that the integrals over ξ1, ξ2, y1, and y2 share phase factors, and the
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transformation ends up mapping into the self-inverting property of the Fourier transform, so

I =
|F |20

4π |h|2
d
v

∫
s(ξ1,ξ2,ξ3)s(ξ1,ξ2,ξ

′
3)exp[2πi

(
ξ3−ξ

′
3
)

y3] ~dξ dξ
′
3 Bertaut (9’). (6)

The sub-integral which appears in Eq. (6),∫
s(ξ1,ξ2,ξ3)s(ξ1,ξ2,ξ

′
3)dξ1dξ2 , (7)

is, in fact, the area of a slice of the common volume function (since the integral over ξ1ξ2 is over the area
perpendicular to the diffraction plane, and s is either one or zero). In Eq. (6), ξ3−ξ ′3 is the offset between
the two volumes, defined by Bertaut as m3; Eq. (7) can be rewritten in terms of this difference to yield
h(m3), the common volume function. Its second derivative is the column length distribution.

Substituting into the angular space of diffraction, with X = (θ −θ0)d cosθ0/λ where θ0 is the
diffraction angle at the center of a peak, and d is the lattice spacing associated with the specific hkl, and
transforming the ξ variables into m space, we find:

I (X) = c
∫

h(m3)exp [2πim3 X ] dm3 Bertaut (15). (8)

I (θ) = c
∫

h(m3)exp [2πim3 (θ −θ0)d cosθ0/λ ] dm3 Bertaut (15) expanded. (9)

The common form of the Fourier transform integral, with a length scaling factor a, for real-space
function F(x) and its transform F (F), is

F(ax) ∝

∫
F (F)(ω)exp(2π iaω x)dω . (10)

By comparison of Eq. (10) to Eq. (9), one can see that h(m) is the Fourier transform of
I ((θ −θ0)cosθ0/λ ). Since the frequency variable in Fourier space is proportional to the reciprocal of the
length scale in real space, one can see that m ∝ λ/cosθ0, so m has units of length. Then, from Bertaut eq.
(19), one defines the normalized Fourier transform t(m) from h(m) as:

t(m) =− h(m)

∂h
∂m

⌋
m→0+

. (11)

The first and second moments of the column-length distribution, as seen parallel to the diffraction vector, are

M = t(0) = 〈L〉area , (12)

M2 =

∞∫
−∞

t(m) dm , (13)

and thus
M2

M
=

1
t(0)

∞∫
−∞

t(m) dm =
1

h(0)

∞∫
−∞

h(m) dm = 〈L〉vol . (14)

A point of interest, the integral of the Fourier transform of a function f , such as in Eq. (14) is just f (0), and
the amplitude of the Fourier transform at ω = 0 is just the area of the function, so Eq. (14) is equivalent to

(height of peak)
(area of peak in m space)

≡ 1
integral breadth

= 〈L〉vol , (15)
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which is the commonly used expression for this, and it requires no actual computation in Fourier space. It
does, however, require good background subtraction from the peak to determine the height and area.
Transformed from m or s (depending on the paper we are following) space, Eq. (15) becomes

λ

cosθ

(height of peak)
(area of peak in 2θ space)

≡ 1
integral breadth

= 〈L〉vol . (16)

Thus, the relationship between the MCL values of 〈L〉area and 〈L〉vol and the Fourier transform of F (G)

has been derived by Bertaut in a first principles context. Since the publication of Ref. [43], there have been
copious publications utilizing these parameters as a means to characterize crystallite size as measured via
LPA. Therefore, the certification of these two parameters for each line profile observed from the SRM 1979
materials will provide the community with well-established and accepted measurement criteria. The
relationship between the 〈L〉area and 〈L〉vol values and the presumed log-normal crystallite size distribution is
shown graphically in Fig. 1 for both the 15 nm and 60 nm materials. The methods by which these
distributions and the illustrated values were obtained will be discussed in Sec. 7.

Fig. 1. Illustration of how the various weighted measurements of mean column lengths fall on a log-normal crystallite
size distribution.

There are measurement issues associated with the determination of both the 〈L〉area and 〈L〉vol values.
The issue with 〈L〉area is that, from Eq. (12), is it dependent on the derivative of the Fourier transform at the
origin. The computed value of this derivative is very sensitive to the values of the transform at the origin,
which is also the area of the peak. A small error in the area can throw the derivative wildly off. Thus, 〈L〉area
is intrinsically harder to calculate correctly than 〈L〉vol. However, 〈L〉area is relatively insensitive to the
instrumental aberrations, since it only samples data at low Fourier frequency, where the Fourier transform of
the IPF is near unity. On the other hand, 〈L〉vol is an integral over all frequencies, including data at high
frequency, so it is sensitive to errors in the IPF and to noise which is amplified by the IPF deconvolution.
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2. Data Collection and Preliminary Analysis Methods for Feedstock Selection

Data for the evaluation of feedstock candidates were collected on a Siemens D500 diffractometer equipped
with a Johansson Ge 111 IBM, sample spinner and scintillation detector. Copper Kα1 radiation was used.
The D500 was configured with a divergence slit of 0.67◦; the receiving optics included a slit of 0.05◦ and 2◦

Soller slits. Data from SRM 660a, LaB6 [45] were collected to determine the IPF; the collection and
analysis were done in a manner analogous to that described in Ref. [13]. Data from the ZnO and CeO2 test
specimens were collected in continuous scans from 25◦ to 125◦ 2θ with a step width of 0.02◦ and a count
time of 16 s to yield a total scan time of approximately 24 h.

Data analysis methods used in the preliminary studies consisted primarily of WH plots. Data from SRM
660a were fit with the Split Pearson VII PSF. These fitted parameters, full width at half maximum (FWHM)
and coefficients, were modeled as a function of 2θ using codes written in Mathematica. TOPAS was then
used to perform a least-squares convolution approach using a Pearson VII PSF as the specimen broadening
function. Mathematica codes were then used to process the breadths of these profiles to generate the WH
plots.

Once the number of candidate materials suitable for the SRM feedstock had been narrowed, a more
complete understanding of the microstructure was realized with the use of two whole powder pattern
methods. The first was the FPA-based Rietveld [46, 47] analyses using TOPAS, and the second was whole
powder pattern modeling (WPPM) [48] via PM2K. However, the data from the D500 were less than ideal
for analyses with either the FPA or WPPM methods because they both require the modeling of the emission
spectrum. As discussed in Ref. [13], the early Johansson optic of the D500 produced an asymmetric
emission spectrum that defied accurate modeling; see Fig. 29 in Ref. [12] vs. Fig. 13 in Ref. [13]. However,
given the preliminary and qualitative nature in which these results were to be used, this shortcoming was
considered acceptable.

The energies of the Cu Kα1 emission spectrum as characterized by Hölzer et al. [49] were used with
both analysis methods. Parameters specific to the IPF were modeled using data from SRM 660a and fixed in
subsequent refinements. With the FPA, the emission spectrum from the Johansson optic was modeled with a
series of Gaussian profiles, three for the Kα11 line, and a fourth for the Kα12 line. The breadths and
intensities of these profiles were allowed to refine. The “full” axial divergence model [50, 51] was used with
the two Soller slit values being refined as a single value. Other refined parameters included the incident slit
angle, scale factor, Chebyshev polynomial terms for modeling of the background, the lattice parameters,
specimen displacement and attenuation terms, and a term for Lorentzian size broadening. With the analyses
of ZnO, the Warren model for stacking faults in a hexagonal close packed (HCP) structure was included to
account for the hkl dependence on profile breadth. The model includes two refinable parameters, α , which
is proportional to the density of the deformation faults, and β , which is proportional to the density of the
growth faults. A Lorenzian strain term in tanθ was also included.

With the use of PM2K, the IPF was modeled using four pseudo-Voigt PSFs, three for the Kα11 line, and
the fourth for the Kα12 line. The breadth, intensity, and relative contributions of the Lorentzian and
Gaussian components were refined. The U , V , and W parameters of the Caglioti function [52] were refined
to model the FWHM dependence on 2θ and the Finger [53] model was used to account for profile
asymmetry. Lattice parameters were fixed at the certified values for SRM 660a; the effects of specimen
displacement were modeled. With the WPPM analyses of the ZnO, the specimen broadening function was
specific to modeling of cylinders with a crystallite size distribution presumed to be log-normal [38]. Other
refined parameters were analogous to those used with TOPAS.
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3. Preparation of Feedstock

In order to prepare bulk quantities of precipitated materials, the services of a chemical manufacturer
were secured to set up and operate a fixed-element flow reactor. The application of a static mixer for use as a
flow reactor was pioneered by one of the authors, J. J. Ritter. The flow reactor itself consists of a tube that
contains a series of stacked, stationary geometric elements designed so as to interact with the reacting fluid
stream flowing through the tube. The elements cause the stream to divide, swirl, and recombine in a
mathematically predictable fashion. The overall effect is to give all of the processed material nearly the
same velocity, residence time, and degree of radial mixing. As a result, each increment of product exiting
from the reaction tube has had an identical and uniform mixing history. The potential for preparing large
amounts of uniform powder using this technique is limited only by the amounts of reactant solutions
available, the durability of the pumps used to drive the solutions through the reactor, and the inclination of
the operator to wash the resulting precipitate so as to be free of the reactant residue.

Initially, small samples of up to 50 g of the precursor compounds were prepared using the flow reactor.
These precursor materials were decomposed in a small-scale controlled atmosphere/vacuum tube furnace
using a heating schedule that was, at least initially, based on the work of Louër et al. Small, 3 g to 5 g
quantities of the oxide were produced in this manner. The routes investigated with this approach consisted
of cerium(IV) sulfate, Ce(SO4)2, and cerium(IV) ammonium nitrate, Ce(NH4)2(NO3)6, both precipitated
with aqueous ammonia, NH4OH. The routes investigated to prepare ZnO included zinc nitrate, Zn(NO3)2,
and zinc acetate, Zn(OOCCH3)2, again, both precipitated with aqueous ammonia, NH4OH. While initial
thermal decomposition treatments were performed in air or under N2, it was found that decomposing the
material under a vacuum often yielded more desirable results.

It was found that both the cerium and zinc nitrate preparations yielded unacceptable results due to either
uncontrollably rapid growth of the crystallites and/or the development of crystalline defects leading to
microstrain broadening. The ex-sulfate preparations of CeO2 yielded material that exhibited promising
diffraction data. However, the precipitate apparently gelled upon exiting the flow reactor, and upon
decomposition, it yielded large polycrystalline shards of several hundred micrometers in size. An extensive
effort was undertaken to address the difficulty, which included modifications to the chemistry as well as the
use of a high shear rate mixer; success was not realized. Through a correspondence between the author and
D. Louër (personal communication), it was determined that the CeO2 used for the Commission on Powder
Diffraction round robin [54] was successfully prepared in a nonaqueous manner. Cerium sulfate was simply
added to the ammonia solution; this method could not be scaled up to the kilogram level, and the effort
concerning the preparation of CeO2 was abandoned. The thermal decomposition of the flow
reactor-prepared zinc acetate yielded a desirable material. With extensive experimentation, the fairly
complex time/temperature profile required to decompose the ex-acetate ZnO into a phase pure powder of the
desired crystallite size range was developed. The last route that was considered was the preparation of ZnO
powder from the decomposition of a commercially available oxalate precursor, as per the method and results
of Auffrédic et al. and Langford et al. [3, 5]. Our experiments yielded an acceptable material that was in
correspondence with the work of Langford et al.

Following the preliminary work on the experimental quantities in the tube furnace, the large-scale
vacuum furnace, capable of decomposing 125 g lots of material at a time, was commissioned. The primary
virtue of this device was that it could uniformly heat a large powder bed of material, under vacuum, with
good temperature control, through the 50 ◦C to 500 ◦C region. The furnace itself started out life as a vacuum
oven with an internal volume of approximately 0.03 m3. Two conventional resistance heating elements, each
approximately 0.3 m×0.3 m in dimension, were installed in a parallel configuration approximately 25 mm
apart. In this gap would reside the boats that contained the precursor to be decomposed. Temperature
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control was accomplished with a conventional proportional-integral- differential (PID) controller. Two Type
K thermocouples were installed, one for the temperature controller and a second to permit continuous
monitoring of the temperature profile. Vacuum was provided with a roughing pump; 25 mm diameter
vacuum lines, including a cold trap, provided for improved conductance to reach a vacuum of 20 Pa
(0.15 torr). Temperature control was excellent in the region of 75 ◦C to 500 ◦C, with variations outside the
desired control temperature typically being less than 2 ◦C [29].

Again, a series of experiments was performed using a small volume of material to duplicate the earlier
work using this larger furnace, and to establish the specific relationship between particle size and processing
parameters. A WH plot is shown in Fig. 2 for the ex-acetate ZnO, decomposed under vacuum up to 150 ◦C,
followed by a second calcination in air to 400 ◦C. The data in Fig. 3 are consistent with a desirable
nanocrystalline ZnO of a suitable crystallite size and limited microstrain broadening. Analysis via
Transmission Electron Microscopy (TEM) confirmed that the material was well dispersed, consisting largely
of single-crystal particles. Unfortunately, while the material did show great promise for use as the SRM
artifact, the chemical firm that worked with us on the project lost interest. We could not realize the
preparation of ex-acetate ZnO for the SRM in a timely manner.

It was decided to proceed with the ex-oxalate ZnO as the feedstock for SRM 1979. The precursor zinc
oxalate powder, 99.999 % pure (metals basis), was obtained from Alfa Aesar (Ward Hill, MA). Initial
experiments duplicated the time/temperature profile of Auffrédic et al.; the material was heated in the
vacuum furnace, rapidly from room temperature to 70 ◦C, and then from 70 ◦C to 110 ◦C at a rate of 2 ◦C/h
followed by another rapid increase to 250 ◦C and then up to 335 ◦C at 2 ◦C/h followed by cooling to room
temperature. In order to assess the effects of annealing temperature on microstructure, small quantities of
ZnO from the vacuum experiment were then heated in air to temperatures ranging from 400 ◦C to 500 ◦C at
25 ◦C intervals, with a final lot being annealed to 550 ◦C. The heating rate for these experiments was 2 ◦C/h,
and the specimens were quenched by a withdrawal from the furnace when the final temperature was reached.

Fig. 2. Williamson-Hall plot of acceptable ex-acetate ZnO prepared with the flow reactor.
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Fig. 3. Williamson-Hall plot of ex-oxalate ZnO exhibiting the effects of stacking faults as reported by Langford et al [3].

A WH plot from the ex-oxalate ZnO processed to 400 ◦C is shown in Fig. 3. These results are in
correspondence to those reported by Langford et al, and the impact of the stacking faults is illustrated. The
observed broadening can be classified according to hkl, indicative of the nature of broadening that occurs in
HCP materials due to stacking faults. The peaks can be segregated into three groups. Group 1 contains hk0
peaks, and peaks with h− k = 3n , exhibiting no broadening effect. Group 2 has peaks with h− k = 3n±1, l
odd, that exhibit deformation or strain broadening. Finally group 3 has peaks with h− k = 3n±1, l even,
that exhibit broadening due to growth faults [5, 30]. The slope of a linear fit to the peaks in group 1 is about
5×10−5, indicating negligible strain, and the intercept of the fit is 0.0126, giving an 〈L〉vol of about 80 nm.

While the WH method was of sufficient rigor to establish the validity of the processing approach, we
embellished it with the use of a cylindrical shape model [55]. The method assumed that all peak broadening
was due to particle size effects, i.e., no strain broadening, and that the hexagonal ZnO crystallites were well
represented by a cylinder. Equations 10 and 17 from Ref. [55] were then fit to extract the cylinder diameter
(D) and height (H). The result of this analysis as applied to our investigation of the effect of processing
temperature on crystallite size is shown in Fig. 4, where we see that the crystallite size ranges from 10 nm to
110 nm. The disc-like morphology of the crystallites is verified by these data, as the average aspect ratio,
D/H, is 1.1 for the smaller crystallites and 1.25 for the larger crystallites. This is consistent with the results
from Auffrédic et al. [5]. TOPAS was used to determine the dependence of stacking fault density on
annealing temperature, as displayed in Fig. 5. The relatively small values for α reflecting the low density of
“deformation” faults throughout the temperature range and the fact that there are no faults of this type above
the annealing temperature of 400 ◦C. The values for β indicate a substantial level of “growth” faults at the
lower temperatures, but they too are absent at the annealing temperature of 550 ◦C.
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Fig. 4. Crystallite size, expressed as the cylinder diameter and height (from Langford and Louër [55]), and median
crystallite diameter (from PM2K) of the ex-oxalate ZnO as a function of annealing temperature.

Fig. 5. Variation of stacking fault parameters α , proportional to the density of deformation faults, and β , proportional to
growth faults, of the ex-oxalate ZnO as a function of annealing temperature.

These data were then analyzed with the WPPM approach as implemented in PM2K. The median
crystallite sizes, using models for a log-normal size distribution and a cylindrical crystallite shape, are
plotted as a functional of annealing temperature in Fig. 4. The discrepancies between these results and those
from the WH analyses are not unexpected, because the parameters reflect entirely different metrics of
crystallite size; the trends indicated by the two techniques are identical, however. The analyses with PM2K
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also indicate that the crystallites are in the form of discs with a D/H ratio of 1.4. It was decided to prepare
the SRM feedstock using the two annealing temperatures of 400 ◦C and 550 ◦C. The final annealing
schedule was as follows: The material was heated in the vacuum furnace, rapidly from room temperature to
70 ◦C, and then from 70 ◦C to 110 ◦C at a rate of 2 ◦C/h, followed by another rapid increase to 250 ◦C, then
up to 400 ◦C at 2 ◦C/h, and finally a slow, i.e., no power to the heating elements, return to room
temperature. This material was then divided into two lots for each of the two size ranges. Material was then
loaded into a conventional furnace, with no atmospheric control, that was rapidly heated to a temperature of
350 ◦C. For the 15 nm crystallite size, it was heated at a rate of 2 ◦C/h to a final temperature of 400 ◦C,
while, for the 60 nm crystallite size, an identical rate was used with the final temperature being 550 ◦C.
Samples were immediately removed from the furnace once the final temperature was reached. An example
of the diffraction data from these two materials collected on the NIST DBD, with the illustrated IPF profiles
being synthesized via the FPA, is shown in Fig. 6.

Fig. 6. Profiles from the two ZnO powders of SRM 1979 collected on the DBD, with simulated profiles of the IPF, via
SRM 660b.

3.1 Characterization with Dynamic Light Scattering and TEM

The particle size distributions of the two SRM materials were measured with dynamic light scattering.
The results are shown in Fig. 7. These data indicate that the particle size of these two powders is acceptable
for their use as powder diffraction specimens. The slight hump in the 15 nm material at 40 µm is real, but it
is not overly problematic. Experiments indicated that a low-intensity kneading operation with a mortar and
pestle will eliminate these agglomerates without an impact on the crystallite size. The distribution of the
60 nm material is bi-modal, with a small amount of material in the 30 µm to 40 µm range, which is not
problematic.

Images and diffraction patterns obtained from analyses using a TEM are shown in Fig. 8. The clearly
polycrystalline nature of the 15 nm powder is illustrated in Fig. 8 (a); furthermore, the diffraction pattern is
consistent with the crystallites displaying a fair degree of texture. This suggests that the parent zinc oxalate
crystals were quite large and upon decomposition formed the observed polycrystalline aggregates. The
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stacking faults within the crystallites are also apparent in this image. The diffraction pattern from the 60 nm
powder indicate a single crystal. Unfortunately, a quantitative assessment of crystallite size distributions for
either powder would be problematic with a TEM owing to the state of aggregation of the crystallites.

(a) (b)

Fig. 7. Particle size distributions measured with dynamic light scattering for (a) the 15 nm ZnO material and (b) the
60 nm ZnO material.
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(a)

(b)

Fig. 8. TEM images and diffraction patterns from the ZnO feedstock for (a) the 15 nm ZnO material and (b) the 60 nm
ZnO material.

4. Data Collection

As aforementioned, data for the certification of SRM 1979 were collected using two instruments, the
NIST DBD and the diffractometer located at APS 11-BM. The high resolution of the 11-BM machine
rendered it the appropriate choice for data to be used for certification of MCL values. Data from the NIST
DBD were used for certification of lattice parameters, because the machine has an accurate goniometer, its
optics are well understood and its emission spectrum is traceable to the SI. Data from the DBD were also
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used for homogeneity verification, because this requires a large number specimens to be run and
measurement precision is the only critical issue for this verification. The data from the DBD were collected
with the use of two detectors. One complete data set was collected using a scintillation detector, and a
second set was collected using the PSD. This was due in part to the fact that the PSD was being
commissioned concurrently with the pursuit of this work.

Ten units of SRM 1979 were removed from the population of 200 in accordance with a stratified random
protocol. For data collection on the DBD, two specimens were prepared from each bottle of the two
materials, 15 nm and 60 nm, of SRM 1979, for a total of 40 specimens. Both the order in which the
specimens were prepared and the run order were randomized. Data for the certification of lattice parameters
were collected using zero background quartz plates as specimen holders to eliminate the sample absorption
correction. Samples were prepared by kneading a small amount of material in a mortar and pestle using
ethanol as a suspending agent. Small amounts of the suspension were transferred to the quartz plate and
allowed to dry, resulting in a thin film of the zinc oxide powder. With the 11-BM machine, data were
collected from five randomly selected specimens of the 15 nm material, while data were collected from four
specimens of the 60 nm material. Prior to data collection on the zinc oxide, a data set from SRM 660b was
collected, and midway through the data collection, a second data set on the SRM 660b was collected, and a
third run was performed when the data collection from the zinc oxide was complete. The run order of the
SRM 1979 samples was randomized.

4.1 NIST DBD with the Scintillation Detector

For this data collection, the 1.5 kW copper tube (8.047 keV) of fine focus geometry was operated at a
power of 1.2 kW. The variable divergence incident slit was set to 0.9◦, and a 0.2 mm (0.05◦) receiving slit
was used. The receiving optics were fitted with a 4.4◦ Soller slit. The diffractometer was scanned in 2θ

steps of 0.02◦, and the count time was 16 s. The scans were from 25.0◦ 2θ to 125.0◦ 2θ . This resulted in a
scan requiring just under one full day to complete. Samples were spun at 0.5 Hz during data collection. The
machine was located within a temperature-controlled laboratory space where the nominal short-range
control of temperature was ±0.1K. The temperature was monitored using two 10 kΩ thermistors with a
Hart/Fluke BlackStack system that was calibrated at the NIST temperature calibration facility to ±0.002 ◦C
[56]. The source was allowed to equilibrate at operating conditions for at least 1 h prior to recording any
data. These data were used for homogeneity verification from an analysis of lattice parameter values.

4.2 NIST DBD with the PSD

For these data collections, the instrument was otherwise configured and operated as per the use of the
scintillation detector. Axial divergence was limited by a 1.5◦ Soller slit fitted to the entry window of the
PSD. The PSD was scanned using multiscale stepping, with the major step size of 16 pixels and a minor step
size of 1/4 pixel, where a pixel is 0.0198◦. Each minor step was counted for 2 s, resulting in 24 s of dwell
time on each pixel, and each spectral feature being measured at 12 points along the face of the detector. The
total data collection time for these runs was about 3 h. The machine was equipped with an automated
antiscatter slit located above the sample to prevent air scatter from the incident beam from entering the PSD
and contributing to the low-angle background level. Its height above the specimen varied as αR/(2cosθ)

where α is the full equatorial divergence angle of the incident beam. These data were used for homogeneity
verification from an analysis of 〈L〉area and 〈L〉vol values, determination of information values concerning
microstructure, and the certification of the lattice parameters.
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4.3 APS 11-BM

The sample was mounted in a kapton capillary of 0.8 mm diameter and spun at >90 Hz during data
collection. The wavelength was set to 0.0414217 nm (approximately 30 keV); this value was verified in our
analysis using data from SRM 660b. The scans were taken from 0◦ to 40◦ 2θ in 0.001◦ increments. Each
step was counted for 0.1 s. One of the SRM 660b scans ranged from 0◦ to 110◦; this was used for a
microstructure analysis of the LaB6 of SRM 660b.

5. Extraction of Transforms

The primary historical difficulty in using Fourier methods for analyses of powder diffraction data has
been the determination of the background. The procedure we outline is to fit the data in a two-step process.
The data are first fit with an analytical PSF such as a Voigt, with weighting altered so as to favor the accurate
fitting of the tail region of the peak. This ensures the accurate modeling of the background at the expense of
the quality of the fit to the center portion of the profile. The residuals of the fit are then addressed in a second
step wherein they are recombined with the fitted PSF itself. This method effectively solves the infamous
“hook” problem in the Fourier transform analysis of diffraction patterns [57].

5.1 Characterization of the IPF

To obtain the IPF, gIPF (which for brevity is here called H, per Eq. (1)), and its transform F (H), we
apply the FPA to high-quality data sets of SRM 660b measured on the two instruments. By a nonlinear
least-square (NLLSQ) fit of the SRM 660b data to an FPA model, the parameters needed to compute peak
shapes at any angle are obtained. Since the FPA-generated line shapes are produced by a convolution of the
various aberrations, and this convolution is carried out in Fourier space in the FPAPC, the Fourier transform
of the IPF, F (H), can be computed directly. With this approach, F (H) is noiseless, since it is derived from
a theoretical model, and it is a continuous function, i.e., it can be calculated for any Fourier frequency. It
does, though, have systematic uncertainties attached to it as a result of uncertainties in the FPA parameters
that limit the ability to carry out this division in regions where F (H) is small but may have a large relative
systematic uncertainty. However, the statistical errors in F (G⊗H), determined from linear least-squares
fitting of the data, can be also scaled by F (H). The resulting coefficients can be used in weighted
least-squares fitting to compute correct statistical errors on parameters derived there from. This approach is
then more complete than the Stokes method, which does not carry forward the errors for weighted fitting.
With the inclusion of an IBM on the laboratory instrument, the emission spectrum is limited to the Cu Kα1

profile alone, substantially reducing the complexity of the spectral component of IPF and aiding
reconstruction of the intrinsic line profile from the equipment and analyte.

Data were analyzed using the FPA method as implemented in TOPAS with a Pawley [58] analysis. Data
from the DBD were analyzed as per the procedure outlined for the D500, Sec. 2, except that SRM 660b was
used for determination of the IPF. However, with the modern characterization of the Cu Kα emission
spectrum [59] and the development of the “band-pass” model for characterizing the effects of the Johansson
optic [60], it was thought appropriate to re-analyze the data to be used for informational microstructural
values and lattice parameter certification from the DBD.

The band-pass model has three parameters that can be refined: δ3 and δ0 set the width and shape of the
band-pass, respectively, while u0 is a tuning parameter that sets the position of the window relative to the
position of the Kα1 line. The first two parameters are specific to the crystal itself and, after initial
determination, are essentially invariant. The third is specific to the diffraction angle of the Johansson optic
which is known to drift by small amounts. Refinements of the band-pass parameters were accompanied by

17 https://doi.org/10.6028/jres.125.020

https://doi.org/10.6028/jres.125.020
https://doi.org/10.6028/jres.125.020


Volume 125, Article No. 125020 (2020) https://doi.org/10.6028/jres.125.020

Journal of Research of National Institute of Standards and Technology

other IPF-specific parameters such as divergence and Soller slit angles. The IPF of the DBD, a divergent
beam machine of reflection geometry, will also be affected by sample attenuation. Therefore, simulations of
the IPF via FPAPC included values for attenuation of the ZnO obtained from FPA refinements of ZnO data
from the DBD.

With the FPA analysis of SRM 660b to determine the IPF of the 11-BM machine, the lattice parameter’s
value was fixed to the certified values. The incident beam spectrum was also modeled with the use of three
Gaussian profiles of a common, refined wavelength; breadths and intensities were refined independently.
The incident beam was considered parallel in the equatorial plane. The “full” axial divergence model was
used, again with the two Soller slit values being refined as a single value. This is not technically correct,
because the 11-BM machine is not symmetric in the context of the incident vs. diffracted beam path lengths.
A quality fit was obtained nonetheless; other, more complex modes of refinement were tested with no
improvement. With their refinement, the lengths of the “filament,” sample, and “receiving slit” were
constrained to a common value. Slight variations were observed in peak position; these were modeled with a
second-order polynomial for a substantial reduction in residual errors. The terms refined were essentially
constant across SRM 660b data-sets, leading to the conclusion that the goniometer was the origin of this
issue. The effect is essentially undetectable unless the sample exhibits minimal broadening. While
crystallite size broadening was nearly undetectable for the DBD, it amounted to a substantial portion of the
apparent IPF for the 11-BM machine. The scan to 2θ = 110◦ on 11-BM allowed for a robust refinement of
the crystallite size contribution from SRM 660b. A value for 〈L〉vol of 500 nm was realized. This value is
consistent not only with our knowledge of this material, but also with refinements of SRM 660b data
collected from the more limited 2θ range. The “true” IPF of a machine does not include this crystallite size
contribution; therefore, it has been omitted from subsequent computations of the IPF from the FPA
parameters.

The functional behaviors of the IPFs for both machines, computed from FPA parameters, are shown in
Fig. 9 for real space, 110 reflection, and in Fig. 10 for Fourier space. Since the transforms of the observation
are divided by those of the IPF, regions in which the IPF is very close to unity are relatively insensitive to the
instrument, but regions where the IPF is small have large corrections. This correction increases both the
statistical noise from the data and the systematic error associated with the uncertainty in the IPF itself. The
highly collimated beam, narrow energy spread, and capillary sample geometry of 11-BM, in contrast to the
axial divergence and flat specimen effects of the DBD, afford the 11-BM the much higher resolution
apparent in both figures. The much higher response of 11-BM at high Fourier frequencies (long length
scales) is apparent in Fig. 10 relative to that of the DBD. As will be discussed subsequently, the cutoffs
shown in Fig. 10 are, in the case of the DBD, due to noise in the transform of the IPF, and in the case of
11-BM, due to a lack of any additional information available from the sample above the Fourier length scale
of 200 nm.
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Fig. 9. Real space representations of the IPF from the NIST DBD and APS 11-BM.
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Fig. 10. Fourier transforms of the IPF F (gIPF) from the NIST DBD and APS 11-BM.

5.2 Profile Fitting

For the analysis of SRM 1979, Voigt PSF functions were used as they provided the best initial fit to the
data. The profiles were generated numerically by the algorithm of Mendenhall [61]. For normal
Poisson-statistics least-squares fitting, one weights the data with w = 1/σ2 = 1/y, where y is the number of
counts in a bin of the pattern. With this analysis, the data are weighted with w = 1/(y0 + y+a2y2), which,
with y0 being a few counts (to avoid divide-by-zero if an empty bin arises), and a = 0.1, places more
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emphasis on the bins with a small number of counts, and less on the peaks. Using the Voigt functions with
the weighting described above, and a background consisting of the first 8 Chebyshev polynomials in 2θ and
a term in 1/2θ , we carried out a NLLSQ fit to the entire pattern to compute a good approximation to the
shape of the pattern everywhere except on top of the peaks. The curves in red in Fig. 11 are examples of the
result of this fit.

The residuals of the resulting fit, as seen in the green curves in Fig. 11, were then divided into specific
regions of width ∆2θ around each peak where they were non-zero. We then computed, by weighted least
squares, a representation of the residuals. By choosing the basis set of this fit to be trigonometric, it can be
immediately interpreted as a Fourier series. This resulting Fourier series can then be summed with the Voigt
transform to produce a final transform associated with a specific reflection. Thus, the shape of a peak is
represented as:

f (2θ) =C (∆2θ)Voigt(w,σ ; 2θ −2θ0)+A0 (17)

+
n

∑
k=1

Ak coskω0(2θ −2θ0)

+
n

∑
k=1

Bk sinkω0(2θ −2θ0) ,

where the Ak and Bk come from the least-squares fit to the residuals, and 2θ0 is the nominal peak center. The
factor (∆2θ) normalizes the area so that the constant C in Eq. (18) is identical to that in Eq. (17).

Equation (17) separates the data into an analytic function, which extrapolates the tails of the peak to
infinity, and the residuals, which, when recombined with the analytic function, fully reconstruct the data.
The extrapolation of the tails to infinity enables a correct computation of the area of the peak, which then
makes it possible to compute the Fourier transform without distortion due to real-space truncation [40]. The
residuals carry with them statistical uncertainties from the counting statistics of the original data. The
resulting Fourier transform of the peak will be the ’ideal’ noiseless transform, plus a uniform white noise
component at all Fourier frequencies, which is the Fourier transform of the statistical noise. When the
deconvolution is carried out, as described below, it amplifies the high frequencies, resulting in increasing
noise at high frequencies. If no accounting is made for this noise in subsequent data analysis, results can be
very unstable. However, if the Fourier transform is carried out by linear least-squares fitting, such that the
statistical uncertainties can be computed for the Fourier coefficients, then these uncertainties can also be
scaled by the same deconvolution kernel as the data. In this case, if subsequent analysis is carried out in a
manner aware of the uncertainties, e.g., by another stage of linear least-squares fitting, the fit will
appropriately de-emphasize the noisy tails and will remain as stable as possible based on the less noisy
regions of the data.

5.3 Computation of Transforms

The discrete Fourier transform of Eq. (17) is:

F ( f )(k ω0) =C exp
[
−w|kω0|−

k2σ2ω2
0

2

]
+Ak + iBk . (18)

The raw Fourier transforms thus produced contain both the needed information about the material, and
the IPF, which is to be removed. Since the material peak shape and the IPF are combined by convolution, in
the Fourier domain, the transforms are multiplied, as per Eq. (2). To remove the IPF, we divide by its
transform, which is discussed in Sec. 1.1.
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Fig. 11. Typical region around peaks, from 11-BM, for (a) wide peaks from 15 nm ZnO material and (b) narrow peaks
from 60 nm ZnO material. Blue crosses indicate data, red curves are the fit, and green curves are the residuals. Note that
the residuals around the peaks have very short tails, and are easily isolated.
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This IPF can then be interpolated onto the same ω grid as used in Eq. (18), and the division carried out.
Thus, if F (gIPF)(kω0) is the transform of the IPF, (where gIPF is more generically called H in Eq. (1)), then

F ( f1)(k ω0) =
C exp

[
−w|kω0|−

k2σ2ω2
0

2

]
+Ak + iBk

F (gIPF)(kω0)
(19)

is the transform of the intrinsic peak shape from the material being analyzed. Note that, since Ak and Bk have
uncertainties associated with them from the least-squares fit, these uncertainties can also be appropriately
scaled and carried forward. The Fourier transforms resulting from this analysis are shown in Fig. 12 for the
11-BM machine and Fig. 13 for the NIST DBD. The horizontal scale of Fig. 12 extends to 200 nm with
quite low noise, although there is no useful information about the sample above this value. The data from
the DBD, Fig. 13 extends only to 150 nm, and the noise above this level negates any useful information.

The Warren HCP stacking fault model introduces Lorentzian peak shape broadening; this leads to an
exponential in the Fourier transform. Peaks that are heavily affected by stacking faults, such as the (023),
fall off very rapidly in Fourier space (they are very wide in 2θ space). This effect is illustrated in Fig. 14.
On a logarithmic scale, a pure exponential function is linear. The <002> reflection is unaffected by stacking
faults, and it shows a strongly curved Fourier transform, which contains information that will be fit as a
column length distribution. The <023> reflection is maximally broadened in real space by faulting; its
transform is nearly linear, and falls off faster than that of the <002> reflection. Not much information about
the column length distribution related to crystallite size can be derived from this, since the columns are all
truncated by the stacking faults at a length scale much smaller than the crystallite size.
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Fig. 12. Fourier transforms of individual ZnO reflections from the 11-BM data. The two clusters of data correspond to
the two crystallite sizes. The numbers in angle brackets are the hkl indices for the reflection.
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Fig. 13. Fourier transforms of individual ZnO reflections from the NIST DBD.
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Fig. 14. Detail of Fourier transforms of two ZnO reflections from the APS 11-BM data, on a log scale, illustrating the
reduction in width in Fourier space caused by the Warren faulting model, which affects the <023> reflection but not the
<002> reflection.

6. Determination of Certified Mean Column Lengths

The final step of the peak-by-peak analysis is the extraction of the area- and volume-weighted mean
column lengths from these transforms. The area-weighted mean 〈L〉area is the inverse of the derivative of the
transform at the origin, per Eq. (12). The volume-weighted mean 〈L〉vol is the integral of the transform from
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ω =−∞ to ω = ∞, per Eq. (14). These can be extracted by direct numerical integration and differentiation
of the discrete transforms; this approach, however, has the disadvantage of being incapable of using the full
statistical information derived from the underlying Poisson statistics of the data set. An alternative method
that addresses this problem is to least-squares fit parametric functions to each transform, for which the
derivatives and integrals can be computed analytically. We chose a log-normal size distribution model to
parameterize the data for each peak. This model may not be physically correct in a rigorous manner, but it is
known to be flexible enough to account for the expected level of deviation in transform shape, except in the
case of a large degree of Lorentzian peak broadening. In this case, if the log-normal fitter fails to converge to
meaningful values, the procedure falls back to the transform of a Voigt profile, which empirically is a very
good model for high-angle peaks. The statistical properties of parameters computed from these fits correctly
reflect the statistical properties of the underlying transforms. Although one could compute the formal
Gaussian error ellipsoid from these values, in fact the statistical parameters computed for the certified results
are determined from the sample replicates.

Summary statistics of the certified 〈L〉area and 〈L〉vol values from the 11-BM data are shown in Fig. 15 as
a function of the inverse d-spacing, d∗, and the corresponding values from the DBD are also shown. The
upper limit on d∗ of 11.5 nm−1 shown in Fig. 15 is the highest value that could be measured using CuKα

radiation on the DBD. The 〈L〉vol values for the 11-BM data are nearly independent of any aspect of the data
analysis method because the resolution of machine is well in excess of that required for this measurement.
The 〈L〉volvalues for DBD agree reasonably well with the 11-BM values; the 15 nm values show a curious
systematic bias in that the DBD values are nearly always slightly less than the values from 11-BM, and the
60 nm values simply show some degree of scatter throughout. This agreement is quite good given the limits
in the resolution of the DBD shown in Fig. 10. The 〈L〉area values are more sensitive to the accuracy in
background subtraction, with its associated impact on the derivative of the Fourier transform at zero
frequency. Hence, larger discrepancies are observed in the 〈L〉area values for both size ranges between
11-BM and DBD machines. However the 11-BM data are certainly more accurate. Curiously, the same
systematic bias is observed in the 15 nm values; any discrepancy between the DBD values and the 11-BM
values is due to a reduced value for the DBD data. Again the 60 nm values simply show some degree of
scatter throughout. The effect will be exacerbated for both weak and broadened reflections.
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Fig. 15. Results from Fourier analyses of the SRM 1979 data: certified values for 〈L〉area and 〈L〉vol from the 11-BM
machine, and corresponding values from the DBD. Boxes are 25th percentile to 75th percentile of the samples; whiskers
are extreme values.
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Fig. 16. Moments measured for the ex-acetate flow-reacted ZnO material.

Figure 16 shows data from a single measurement of a sample of the ex-acetate ZnO prepared in the
flow-reactor, which was not used in this project. The small ratio of 〈L〉vol /〈L〉area ≈ 1.3 at low angles
implies a relatively narrow width distribution with σ ≈ 0.4 [62]. However, the strong increase in 〈L〉vol at
higher d∗ values is not easily explained by available models. The lack of hkl dependence following the
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Warren stacking fault model does imply that this material has a very low stacking fault density.

7. Fundamental Parameters Approach Refinements of ZnO Data

In order to consider the results from the Fourier methods with respect to more conventional approaches,
we performed FPA analyses of the certification data sets using TOPAS and FPAPC. The IPF-specific
parameters were fixed at those determined in Sec. 5.1. The crystallite size distribution was considered
log-normal, with the model based on [38] for spherical crystallites; refined parameters consist of the median
size, D0, and log-normal distribution width, σl . The macro provided for using this model was corrected in
house. These refinements were conducted as global fits, with multiple data sets being included in a single
refinement. The Pawley fits included a six-term Chebyshev polynomial for the background as well as a
1/2θ 2 low angle tail. The stacking fault density model used was that of Warren. Lorentzian microstrain
broadening, with width proportional to tanθ , was also included. Results from TOPAS and FPAPC were
verified to be indistinguishable. Figure 17 shows the typical fits to 11-BM data, and Fig. 18 shows fits to the
data from the DBD. Table 2 summarizes the parameters of interest from the 11-BM and DBD refinements,
where these are reported as Information Values in the CoA. Improvements in the results from the 60 nm
material with the use of the band-pass model are noteworthy and are illustrated in Ref. [60].

The correspondence, or lack thereof, between the transform-based approach and the direct-fit approach
can be investigated by synthesizing the ZnO peaks in Fourier space using FPAPC; see Sec. 5.1. The
parameters shown in Table 2 are used as the input data for FPAPC, with the 〈L〉area and 〈L〉vol values being
computed as aforementioned, Sec. 6. The values from the independent, Fourier analysis vs. FPA global fits
are shown for the 11-BM machine in Fig. 19 and for the NIST DBD in Fig. 20. For the 11-BM data the
Fourier results are, in fact, the certified values, and the reported error bounds are the Type A, statistical,
k = 2 uncertainties of the mean, computed in accordance with those reported on the CoA. Results from the
FPA analyses from the two machines are compared in Fig. 21.

Table 2. Information Values on the ZnO materials from TOPAS based refinements of the FPA using the
spherical-crystallite log-normal size distribution model. The uncertainties are the esd values reported by TOPAS.

15 nm, 11-BM 15 nm, DBD 60 nm, 11-BM 60 nm, DBD
〈L〉area(nm) 23.83(6) 23.77(30) 95.4(4) 80.7(13)
〈L〉vol (nm) 31.39(9) 31.65(46) 138.9(6) 128.3(25)

median diameter D0 (nm) 24.11(4) 23.35(25) 75.0(1) 51.1(6)
distribution width σl 0.397(1) 0.411(4) 0.508(1) 0.58(4)

deformation α 0.00121(2) 0.00159(10) 0.00028(1) 0.00035(2)
stacking fault β 0.01259(5) 0.01082(23) 0.00157(1) 0.00147(3)
strain ε0 / 10−6 200(2) 182(8) 73(1) 12(2)

χ2/N (GoF) 1.11 1.06 1.04 1.09
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Fig. 17. Typical FPA Pawley fits to ZnO data from 11-BM, using TOPAS, for (a) fit to 15 nm ZnO and (b) fit to 60 nm
ZnO. Blue crosses indicate every 5th data point, red curves are the fit, and the black line is the residuals (offset for
visibility).
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Fig. 18. Typical FPA Pawley fits to ZnO data from the DBD, using FPAPC, for (a) fit to 15 nm ZnO and (b) fit to 60 nm
ZnO. Blue crosses indicate every 5th data point, red curves are the fit, and the black line is the residuals (offset for
visibility).
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global FPA fits using parameters from Table 2. Error bars are Type A, statistical, k = 1 uncertainties of the mean.
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Fig. 20. Values for Fourier, peak-by-peak mean column lengths, from the NIST DBD vs. corresponding values from
global FPA fits using parameters from Table 2. Boxes are 25th percentile to 75th percentile of the samples; whiskers are
extreme values.
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Fig. 21. Comparison of 11-BM and DBD results from the FPA analyses. Average values of 〈L〉area and 〈L〉vol
parameters are shown. Colors have same meaning as in Fig. 20.

An initial inspection of Fig. 19 and Fig. 20 indicates that, for both the 11-BM and DBD machines,
excellent agreement is observed between the 〈L〉vol values from the Fourier vs. FPA methods. In contrast to
this, however, there are discrepancies between corresponding 〈L〉area values, for both crystallite size ranges
and both machines, although the results from 11-BM are observed to be superior to those from the DBD.
These observations are essentially due to the same factors discussed with respect to Fig. 15. The 〈L〉area
values are obtained from a small number of transform values at the origin and are quite sensitive to errors in
their values. The 〈L〉vol values are determined from the integral of the transform and are thus relatively
insensitive to errors in specific values. While the methods of Ref. [35] constitute a marked improvement in
the determination of backgrounds level, what we are seeing is the last trace of error in the background
determination that is known to strongly effect the 〈L〉area values. Observing Fig. 21, an offset in MCL values
is apparent between the two machines for both datasets and analysis methods. This is due to the fact that the
DBD is in reflection geometry, and there is a small error in the FPA fitting of the IPF to low angle. While the
issue is well known [63], the precise origin of it is not. Agreement is otherwise quite good, although 〈L〉area
values for the 60 nm material diverge with high angle. The origins of this behavior are not understood;
however, we are certainly at the confidence limits of the models and refined parameters with these results.

The Warren stacking fault model, with its dependence on hkl, is shown to give results that match the
strong hkl-dependent variation in the profile breadth. The quality of the match is emphasized by the
correspondence of the 〈L〉vol values of Fig. 19, wherein the other sources of error are known to be minimal.
The gradual slope in the MCL downwards from left to right is the result of micro-strain. The limits to the
microstructure models, even for 11-BM results, are highlighted in Fig. 22, which extends to higher d∗ values
than those included in the certification. It is evident that the 〈L〉area values are significantly overestimated by
the model relative to the measurement beyond d∗ = 11 nm−1, and it appears that the Warren stacking fault
dependence on hkl has broken down for 〈L〉area values beyond d∗ = 13 nm−1. The origins of these
observations are not understood. Finally, the refined parameters of the log-normal crystallite size
distribution, D0 and σl , are highly correlated; they are capable of fitting the observation with quality, but
differing sets of these refined parameters can generate nearly indistinguishable results in the context of the
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〈L〉area and 〈L〉vol values.
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Fig. 22. Peak-by-peak mean column lengths from 11-BM data, via both Fourier and FPA methods, displayed to
extended values of d∗.

With regards to LPA, specimen transparency is known to be an issue with data from divergent-beam,
reflection geometry machines, such as the DBD. The refined attenuation corrections obtained for the DBD
data used in the FPA analyses were observed to be non-physical. The value from the global fits of the 15 nm
material was 85 cm−1, while that for the 60 nm material, with sharper lines was, 50 cm−1. Qualitative “tap
density” measurements on the two powders indicated that they pack to ≈ 20 % density and that the 15 nm
material packed to about 90 % of that for the 60 nm material. Given that the linear attenuation coefficient for
zinc oxide is 277 cm−1, the figure of 50 cm−1 appears tenable. This is not surprising because the narrow
lines of the 60 nm material would favor the proper functionality of the attenuation model; conversely, the
broad lines of the 15 nm material would render is inoperable. The size of the absorption correction to the
values of 〈L〉area and 〈L〉vol as computed with FPAPC is illustrated in Fig. 23. The 〈L〉area values are
unaffected as they are based on transform values at the origin, which are not subject to an attenuation
correction. The 〈L〉vol values of the 60 nm material are strongly affected; this is not unexpected because the
sharp lines of this material are going to be significantly broadened by the reduction in attenuation of ZnO
relative to the LaB6 of SRM 660b. Only a slight change in the 〈L〉vol values for the 15 nm material is noted;
the profiles for this material are quite broad by default. The capillary data from the 11-BM machine are not
affected by variations in specimen transparency.
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Fig. 23. Attenuation correction for 〈L〉vol and 〈L〉area values as computed by FPAPC . Colors have same meaning as in
Fig. 22.

7.1 Lattice Parameter Measurement

Analysis of data from the NIST DBD provided lattice parameter values that are traceable to the SI owing
to its accurately calibrated angular scale and its usage of the well-characterized Cu Kα emission spectrum
[59]. The FPA analyses were carried out as per methods delineated in Sec. 7. The sample attenuation issue
was addressed with the use of zero background quartz plates for the specimen holders; no specimen
attenuation correction was applied in the analyses of these data. Data from five such specimens were used to
obtain the certified lattice parameters. The lattice constants were corrected to a standard temperature of
22.5◦ C using data from Ref. [64], page 444. The temperature coefficient of the lattice constant a can be
computed to be 5.51×10−6 K−1 and that of c can be computed to be 3.29×10−6 K−1 at 300 K.

8. Statistical Analysis

The statistical analysis was performed in four parts: 1) The assessment of homogeneity with respect to
lattice parameter, 2) The assessment of homogeneity with respect to parameters 〈L〉area and 〈L〉vol, 3)
Determination of Type A (statistical) and Type B (systematic) errors of the certified lattice parameters, and
4) Determination of Type A and Type B errors of the certified mean column lengths. Each of these
independent efforts was carried out in two stages: exploratory/graphical and quantitative [65].

8.1 Homogeneity Assessment

The data analysis for the homogeneity verification was carried out on the data from the DBD. The lattice
parameters were determined from TOPAS fits of the scintillation data refined as per Sec. 7 except that each
data set was fit independently. The log-normal parameters for crystallite size distribution, median diameter
and distribution width, analogous to the values shown in Table 2, were used as a proxy for the
microstructural homogeneity of the ZnO material. These microstructural data were obtained using TOPAS
to fit data sets collected on the DBD equipped with the PSD, again refined individually as per Sec. 7.
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FPAPC was then used to generate the 22 values for 〈L〉area and 〈L〉vol using the refined parameters for each
data-set. Statistical analysis of the lattice parameters and values for 〈L〉area and 〈L〉vol, which included
graphical block plots (see Sec. 1.3.3.3 in Ref. [65]) as well as Analysis of Variance, indicated that the SRM
feedstock was homogeneous with respect to diffraction properties.

8.2 Certified Lattice Parameters

The certified lattice parameters are shown in Table 3. The type “A” errors are purely statistical, and are
based on the k = 2 expanded standard error of the mean of the measurements. The type “B” errors are
clearly dominant, and were estimated from instrumental and fitting systematics [60].

Table 3. Certified lattice parameters with expanded k = 2 Type A and Type A+B uncertainties.

temperature
corrected

lattice parameter
(nm)

expanded (k = 2)
Type A uncertainty

expanded (k = 2)
(A+B) uncertainty

15 nm
a 0.3249766 ±0.000 005 4 ±0.000 030
c 0.5208376 ±0.000 0194 ±0.000 030

60 nm
a 0.3249872 ±0.000 0080 ±0.000 020
c 0.5206804 ±0.000 0120 ±0.000 020

8.3 Certified Mean Column Lengths

Four exploratory plots were generated for each set of five, or four, replicates: a run sequence plot, a
lag-1 plot, a histogram, and a normal probability plot. Once these plots were observed to indicate
satisfactory results, the quantitative calculations were carried out to compute the certified values. Owing to
the straightforward nature of these analyses and the near-normality of the data, the sample mean was used as
the certified value, and the k = 2 expanded standard error of the mean was computed as the Type A
expanded uncertainty.

The Type B errors were assessed with a comparison of MCL values from the FPA fits with the certified
values. The ratios of the 〈L〉area and 〈L〉vol values obtained from the FPA vs. those from the Fourier methods
are illustrated in Fig. 24. One can see that the 〈L〉vol ratios are consistently closer to unity than the 〈L〉area
ratios. The trends observed indicate that a 15 % uncertainty is appropriate for the 〈L〉area values, while the
reasonable uncertainty for the 〈L〉vol MCL values is 10 %. The interval defined by the certified value and its
uncertainty represents an expanded Type A + B uncertainty with k = 2, and it was calculated according to
the method described in the ISO/JCGM Guide. The certified MCL values and statistics are shown in Tables
4 and 5.
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Fig. 24. Peak-by-peak ratios of mean column lengths, as determined from the FPA refinements, relative to values from
the Fourier analysis (certified values).

Table 4. Certified peak shape parameters for the “15 nm” material with expanded k = 2 Type A and Type A+B
uncertainties, with Information Value peak positions based on Cu Kα λ = 0.154 059 29 nm.

2θ◦ hkl 〈L〉area (nm) (k = 2)
Type A

(k = 2)
Type A+B

〈L〉vol (nm) (k = 2)
Type A

(k = 2)
Type A+B

31.770 010 18.4 ±0.22 ±3.0 26.5 ±0.22 ±2.9
34.409 002 18.9 ±0.22 ±3.1 28.6 ±0.16 ±3.0
36.252 011 14.7 ±0.18 ±2.4 23.5 ±0.22 ±2.6
47.531 012 8.3 ±0.11 ±1.4 16.3 ±0.24 ±1.9
56.598 110 19.2 ±0.65 ±3.5 26.1 ±0.17 ±2.8
62.840 013 11.2 ±0.13 ±1.8 20.1 ±0.17 ±2.2
66.379 020 16.4 ±0.81 ±3.3 24.7 ±0.31 ±2.8
67.942 112 16.1 ±0.21 ±2.6 24.8 ±0.13 ±2.6
69.088 021 15.5 ±1.05 ±3.4 23.4 ±0.44 ±2.8
72.536 004 18.8 ±0.91 ±3.7 26.7 ±0.31 ±3.0
76.955 022 9.4 ±0.12 ±1.5 17.8 ±0.19 ±2.0
81.357 014 7.8 ±0.59 ±1.8 14.5 ±0.35 ±1.8
89.599 023 11.1 ±0.09 ±1.8 19.7 ±0.18 ±2.2
92.798 210 14.1 ±0.11 ±2.2 22.9 ±0.21 ±2.5
95.310 211 13.2 ±0.12 ±2.1 22.0 ±0.11 ±2.3
98.591 114 13.6 ±0.12 ±2.2 23.3 ±0.12 ±2.5

102.931 212 9.4 ±0.14 ±1.6 17.8 ±0.20 ±2.0
104.088 015 10.3 ±0.87 ±2.4 18.7 ±0.30 ±2.2
107.410 024 8.5 ±0.35 ±1.6 15.3 ±0.36 ±1.9
110.394 030 14.3 ±0.22 ±2.4 22.9 ±0.08 ±2.4
116.263 213 10.8 ±0.11 ±1.7 19.4 ±0.15 ±2.1
121.563 032 13.6 ±0.30 ±2.3 22.3 ±0.20 ±2.4
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Table 5. Certified peak shape parameters for the “60 nm” material with expanded k = 2 Type A and Type A+B
uncertainties, with Information Value peak positions based on Cu Kα λ = 0.154 059 29 nm.

2θ◦ hkl 〈L〉area (nm) (k = 2)
Type A

(k = 2)
Type A+B

〈L〉vol (nm) (k = 2)
Type A

(k = 2)
Type A+B

31.766 010 76.1 ±4.11 ±15.5 112.4 ±1.59 ±12.8
34.419 002 75.5 ±0.95 ±12.3 106.0 ±1.42 ±12.0
36.251 011 67.7 ±0.72 ±10.9 101.7 ±1.40 ±11.6
47.535 012 39.6 ±0.55 ±6.5 76.0 ±1.19 ±8.8
56.591 110 71.6 ±0.56 ±11.3 106.5 ±1.26 ±11.9
62.852 013 52.1 ±4.34 ±12.2 84.0 ±2.03 ±10.4
66.371 020 57.6 ±5.35 ±14.0 97.0 ±3.22 ±12.9
67.942 112 63.7 ±0.62 ±10.2 97.7 ±1.25 ±11.0
69.081 021 61.1 ±0.45 ±9.6 96.6 ±1.06 ±10.7
72.559 004 63.3 ±0.96 ±10.5 95.9 ±1.49 ±11.1
76.953 022 44.5 ±4.19 ±10.9 79.1 ±1.72 ±9.6
81.377 014 34.4 ±3.04 ±8.2 66.7 ±2.00 ±8.7
89.604 023 50.0 ±0.69 ±8.2 82.0 ±0.92 ±9.1
92.784 210 48.5 ±0.44 ±7.7 88.7 ±1.28 ±10.2
95.298 211 49.4 ±4.39 ±11.8 87.4 ±2.24 ±11.0
98.608 114 49.9 ±4.44 ±11.9 85.2 ±1.77 ±10.3

102.923 212 41.9 ±3.78 ±10.1 76.6 ±2.03 ±9.7
104.122 015 45.8 ±0.26 ±7.1 75.8 ±1.12 ±8.7
107.425 024 37.4 ±3.07 ±8.7 67.0 ±1.99 ±8.7
110.375 030 56.3 ±0.60 ±9.0 89.6 ±0.72 ±9.7
116.262 213 44.6 ±3.84 ±10.5 78.5 ±2.05 ±9.9
121.549 032 50.9 ±0.54 ±8.2 86.0 ±1.71 ±10.3

9. Conclusions

The area-weighted mean column lengths, 〈L〉area, and the volume-weighted mean column lengths,
〈L〉vol, of the sample contribution to the breadth of each reflection, which were derived directly from the
Fourier transform of the individual peak shapes, are the primary quantities that were certified for this SRM.
These values are fundamental properties of the material being certified and essentially free of
model-dependent interpretation. The 11-BM instrument selected for use in collecting the certification data
has been demonstrated to be operating in conjunction with theoretical expectations in the d-space range of
interest and imparting a minimum of influence on the certified parameters. These quantities are reported
with an assessment of both the Type A (statistical) and Type B (systematic) measurement uncertainties. The
lattice parameters are also certified. The crystallite size distributions, determined from an FPA analysis on
the data from the two machines, are provided as Information Values since there is model-dependent
interpretation involved in such an analysis. The ZnO materials of this SRM present a wide range of peak
widths that are affected by various well-understood physical characteristics. This makes this material a
particularly good candidate for a line shape standard in that it offers not only complex measurement issue;
but that, through the course of the certification, we have quantitatively addressed contributions to the profile
breadths of this SRM. Data from the NIST machine equipped with the IBM, when analyzed with use of the
“band-pass” model yielded credible results from the 60 nm material; this size range was considered to be at
or near the upper limit of the measurement capability of laboratory equipment.
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