A residual heat compensation based scan strategy for powder bed fusion additive manufacturing

H. Yeung *, B. Lane
National Institute of Standards and Technology, Gaithersburg, MD 20899, United States

ABSTRACT

Typical scan strategies for laser powder bed fusion (LPBF) additive manufacturing systems apply a constant laser power and scan speed. Localized preheating from adjacent scan paths (residual heat) result in inconsistent melt-pool morphology. A new control approach is proposed which compensates the residual heat through laser power adjustment. A model called residual heat factor (RHF) is developed to ‘quantify’ the residual heat effect, and laser power is controlled proportional to this RHF. Experiments are conducted on a custom-controlled LPBF testbed on nickel-alloy (IN625) bare plate, and the effects of this unique scan strategy are investigated by in-situ melt-pool monitoring.

Published by Elsevier Ltd on behalf of Society of Manufacturing Engineers (SME).

1. Introduction

Laser powder bed fusion (LPBF) additive manufacturing (AM) uses a high-power laser to melt and solidify thin layers of metal powder in geometric patterns sliced from parts’ solid models. A typical LPBF process scans the laser back and forth with constant power and speed in a ‘hatch’ pattern to cover each layer. Reheating from adjacent scan paths, or heat accumulation result in inconsistent melt-pool morphology due to dynamic thermal history [1]. This dynamic thermal process can elicit heterogeneities in the solidified microstructure [2,3], or defects such as end-of-track key-hole pores [4,5].

Limited research demonstrates practical methods to alleviate these heterogeneities through laser power or scan strategy control, which requires custom research testbeds [5–8]. Earlier, the authors formulated a geometric conduction factor (GCF), which approximates the effect of geometry-based heat accumulation due to small solidified volumes enclosed by powder [8]. Laser power was controlled proportionally to GCF which improved surface finish. This paper introduces a new factor, called the residual heat factor (RHF), which accounts for the dynamic reheating effect. We present an RHF-based model for power control strategy, and experimental optimization of RHF parameters reduce melt-pool size variability.

2. AM process control and monitoring

AM process preparation can be divided into four major steps: (1) Digitally slice parts’ solid models into layers. (2) Assign scan path/vectors for each layer. (3) Interpolate scan vectors into time-stepped digital position commands, which may also include other auxiliary information (explained below). (4) Send the digital commands to AM machine controller to execute. Fig. 1a shows the digital command format used on the National Institute of Standards and Technology (NIST) Additive Manufacturing Metrology Testbed (AMMT) [9,10]. The digital command is a n × m numerical array, where n is the number of time steps in 10 μs increments, and m is the number of control parameters. This format is based on the xy2-100 protocol for laser-galvo position (X, Y), but extends it to control laser power (L), laser spot size (D), and triggers (T) for synchronizing process monitoring sensors, such as a coaxial melt-pool monitoring (MPM) camera shown in Fig. 1a [11]. The digital command file enables full description of the scan strategy and the geometry of a part [8]. On most commercial systems, neither access nor control of this digital command file is typically available.

The MPM camera used in AMMT captures melt-pool incandescent emission diverted by a dichroic mirror and filtered at the emission bandwidth of (850 ± 20) nm. The custom optics enable 1:1 magnification and 8 μm/pixel. Since MPM images and galvo positions are synchronized, the calculated melt-pool area can be plotted against their XY position as shown in Fig. 1b. The temporal variation of melt-pool image area (in pixels) is used here as a metric for melt-pool uniformity. The AMMT uses the digital command
file as an intermediate interface file, making it accessible, editable, or available for spatial registration of process monitoring data, as in Fig. 1b.

3. Example residual heat effect under constant laser power

Melt-pool morphology is an important process signature indicating the level of process stability. To demonstrate the effect of dynamic residual heat on melt-pool morphology, a 3 mm × 2 mm rectangular area (Fig. 2) was scanned on a nickel alloy (IN625) bare metal plate with constant laser power of 195 W, scan speed of 1000 mm/s, laser spot size of 85 μm in diameter, and hatch spacing of 0.1 mm. To maintain constant speed during the build, the scan lines are programmed to overshoot (skywrite) when changing directions (blue lines in Fig. 2a). Overshoot time is 4.24 ms here. The MPM camera captured 20,000 frames/s, and melt-pool area within each frame is plotted in Fig. 2b. This shows a clearly heterogeneous melt-pool size despite constant process parameters, primarily due to the residual heat effect.

4. Residual heat factor (RHF)

The scan path is made of discrete points defined by the digital command (Fig. 3a). The preheating on point \(i \) by a previously scanned point \(k \) is assumed dependent on three factors: (1) distance between \(i \) and \(k \) (\(d_{ik} \)), (2) elapsed time since \(k \) was scanned (\(t_{ik} \)), and (3) the laser power (\(L_k \)) at point \(k \). Specified time \(T \) and radius \(R \) threshold values ignore points scanned too long ago or too far away. A numerical value, referred to as residual heat factor...
(RHF) defined by Eq. (1), may be assigned to each point to describe this reheating condition, where S_i is the set of previous scanned points, $S_i = \{t_{ik} < T \cap d_{ik} < R, \text{where } i > k\}$ as shown in Fig. 3a. S_i is empty while $R = 0\, \text{mm}$.

$$\text{RHF}_i = \sum_{k \in S_i} \left(\frac{R - d_{ik}}{R} \right)^2 \left(\frac{T - t_{ik}}{T} \right) L_k \quad (1)$$

Eq. (1) assumes the reheating is linearly proportional to time and square-proportional to distance. R and T values are chosen as tuning parameters, and RHF value is computed for each point listed in the digital command file. Fig. 3b demonstrates normalized RHF for the scan described by Fig. 2a with $R = 0.29\, \text{mm}$ and $T = 6\, \text{ms}$, which generally replicates the melt-pool area variation in Fig. 2b. The commanded laser power L is adjusted based on the RHF according to Eqs. (2) and (3), where L_o is original laser power, $C = \text{power adjustment factor}$, and $\text{RHF}_N = \text{normalized RHF}$. The three tuning parameters R, T and C are optimized by observing their relative effect on the experimental temporal variation of the melt-pool size as explained below. C is heuristically set to 0.25, resulting in a laser power range of 146.25 W to 195 W. Fig. 3c plots the adjusted laser power.

$$L = L_o \cdot ((1 - C) + C \cdot (1 - \text{RHF}_N)) \quad (2)$$

$$\text{RHF}_N = \min \left(\frac{\text{RHF}}{\text{mean}(\text{RHF}) + \text{std}(\text{RHF})}, 1 \right) \quad (3)$$

5. Experimentally tuning RHF

For experimental optimization, the laser power is adjusted based on Eqs. (1)–(3) using a range of $R = 0\, \text{mm}$ to 0.99 mm and $T = 1\, \text{ms}$ to 8 ms, as shown in Fig. 4a. $R = 0\, \text{mm}$ (hence all S_i is empty) is equivalent to baseline (constant power). A total of 55
rectangles scanned, with 5 as baseline and 50 with RHF-based laser power control.

Fig. 4b shows the measured melt-pool area maps corresponding to these conditions. The standard deviation of melt-pool area (in pixels) is calculated for each (R,T) combination, and cubic-spline interpolated to form the contour plot in Fig. 4c. Minimum melt-pool area variation with $\sigma = 60.5$ pixels was determined at $R = 0.29$ mm and $T = 6$ ms (indicated with arrow), resulting in 27% reduction compared with the baseline ($\sigma = 76.7$ pixels). RHF-optimized melt-pool area plot in Fig. 4d shows visible improvement compared to the baseline plot Fig. 2b.

Fig. 4c shows that effective values of (R,T) are bounded by [0.1 mm to 0.7 mm, 4.5 ms to 8 ms]. Under similar laser parameters and material, melt pool length and width was 0.75 mm and 0.1 mm, respectively [12]. Overshoot (skywriting) time between tracks when the laser turns off and the melt pool cools was 4.24 ms. Though not conclusive, these indicate R and T are on the same dimensional scale as melt pool phenomena.

6. Summary and future work

Better laser power control in LPBF has potential to reduce defects, control residual stress or microstructure, or improve the processing speed. A residual heat factor (RHF) model was developed, which simplifies the dynamic reheating effect of a scanned melt-pool into a single parameter. Laser power was continuously adjusted based on RHF to reduce local variability of melt-pool area measured via coaxial camera by 27% compared to baseline. While melt-pool area was used as an objective to optimize RHF parameters here, future efforts will combine geometry [8] and reheating based control parameters to optimize other part qualities.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

