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Typical scan strategies for laser powder bed fusion (LPBF) additive manufacturing systems apply a con-
stant laser power and scan speed. Localized preheating from adjacent scan paths (residual heat) result in
inconsistent melt-pool morphology. A new control approach is proposed which compensates the residual
heat through laser power adjustment. A model called residual heat factor (RHF) is developed to ‘quantify’
the residual heat effect, and laser power is controlled proportional to this RHF. Experiments are con-
ducted on a custom-controlled LPBF testbed on nickel-alloy (IN625) bare plate, and the effects of this
unique scan strategy are investigated by in-situ melt-pool monitoring.
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1. Introduction

Laser powder bed fusion (LPBF) additive manufacturing (AM)
uses a high-power laser to melt and solidify thin layers of metal
powder in geometric patterns sliced from parts’ solid models. A
typical LPBF process scans the laser back and forth with constant
power and speed in a ‘hatch’ pattern to cover each layer. Reheating
from adjacent scan paths, or heat accumulation result in inconsis-
tent melt-pool morphology due to dynamic thermal history [1].
This dynamic thermal process can elicit heterogeneities in the
solidified microstructure [2,3], or defects such as end-of-track key-
hole pores [4,5].

Limited research demonstrates practical methods to alleviate
these heterogeneities through laser power or scan strategy control,
which requires custom research testbeds [5–8]. Earlier, the authors
formulated a geometric conduction factor (GCF), which approxi-
mates the effect of geometry-based heat accumulation due to small
solidified volumes enclosed by powder [8]. Laser power was con-
trolled proportionally to GCF which improved surface finish. This
paper introduces a new factor, called the residual heat factor
(RHF), which accounts for the dynamic reheating effect. We pre-
sent an RHF-based model for power control strategy, and experi-
mental optimization of RHF parameters reduce melt-pool size
variability.
2. AM process control and monitoring

AM process preparation can be divided into four major steps:
(1) Digitally slice parts’ solid models into layers. (2) Assign scan
path/vectors for each layer. (3) Interpolate scan vectors into
time-stepped digital position commands, which may also include
other auxiliary information (explained below). (4) Send the digital
commands to AM machine controller to execute. Fig. 1a shows the
digital command format used on the National Institute of Stan-
dards and Technology (NIST) Additive Manufacturing Metrology
Testbed (AMMT) [9,10]. The digital command is a n � m numerical
array, where n is the number of time steps in 10 ls increments, and
m is the number of control parameters. This format is based on the
xy2-100 protocol for laser-galvo position (X, Y), but extends it to
control laser power (L), laser spot size (D), and triggers (T) for syn-
chronizing process monitoring sensors, such as a coaxial melt-pool
monitoring (MPM) camera shown in Fig. 1a [11]. The digital com-
mand file enables full description of the scan strategy and the
geometry of a part [8]. On most commercial systems, neither
access nor control of this digital command file is typically
available.

The MPM camera used in AMMT captures melt-pool incandes-
cent emission diverted by a dichroic mirror and filtered at the
emission bandwidth of (850 ± 20) nm. The custom optics enable
1:1 magnification and 8 lm/pixel. Since MPM images and galvo
positions are synchronized, the calculated melt-pool area can be
plotted against their XY position as shown in Fig. 1b. The temporal
variation of melt-pool image area (in pixels) is used here as a met-
ric for melt-pool uniformity. The AMMT uses the digital command
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Fig. 1. In-situ MPM image registration. (a) Images fully synchronized with laser positions through digital commands. (b) MPM pixel values and area superimposed over the
location they were taken.
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file as an intermediate interface file, making it accessible, editable,
or available for spatial registration of process monitoring data, as
in Fig. 1b.
3. Example residual heat effect under constant laser power

Melt-pool morphology is an important process signature indi-
cating the level of process stability. To demonstrate the effect of
dynamic residual heat on melt-pool morphology, a
3 mm � 2 mm rectangular area (Fig. 2) was scanned on a nickel
alloy (IN625) bare metal plate with constant laser power of
195 W, scan speed of 1000 mm/s, laser spot size of 85 mm in diam-
eter, and hatch spacing of 0.1 mm. To maintain constant speed dur-
ing the build, the scan lines are programmed to overshoot
(skywrite) when changing directions (blue lines in Fig. 2a). Over-
Fig. 2. Melt-pool variation under constant laser power and speed. (a) Programmed lase
where each scan line starts, which coincides with the locations of the larger melt-pool si
referred to the web version of this article.)
shoot time is 4.24 ms here. The MPM camera captured
20,000 frames/s, and melt-pool area within each frame is plotted
in Fig. 2b. This shows a clearly heterogeneous melt-pool size
despite constant process parameters, primarily due to the residual
heat effect.
4. Residual heat factor (RHF)

The scan path is made of discrete points defined by the digital
command (Fig. 3a). The preheating on point i by a previously
scanned point k is assumed dependent on three factors: (1) dis-
tance between i and k (dik), (2) elapsed time since k was scanned
(tik), and (3) the laser power (Lk) at point k. Specified time T and
radius R threshold values ignore points scanned too long ago or
too far away. A numerical value, referred to as residual heat factor
r power. (b) Resulting melt-pool area mapped to XY position. Red arrows indicate
ze. (For interpretation of the references to colour in this figure legend, the reader is



Fig. 3. Residual heat factor. (a) Discretized scan path from digital command. Elapsed time < T is indicated by purple dotted line and distance < R indicated by red circle. (b)
RHF model developed from the scan strategy in Fig. 2 with R = 0.29 mm and T = 6 ms. (c) Laser power adjusted based on RHF model in (b). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. RHF parameter optimization. (a) RHF adjusted laser power plots in (R,T) parameter space. (b) Corresponding measured melt-pool areas. (c) Spline interpolation of the
melt-pool area variability (1r). (d) Enlarged view of the melt-pool area plot for the location indicated by the arrows in (b) and (c).
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(RHF) defined by Eq. (1), may be assigned to each point to describe
this reheating condition, where Si is the set of previous scanned
points, Si = {tik < T \ dik < R, where i > k} as shown in Fig. 3a. Si
is empty while R = 0 mm.

RHFi ¼
X

k2Si
R� dik

R

� �2 T � tik
T

� �
Lk ð1Þ

Eq. (1) assumes the reheating is linearly proportional to time
and square-proportional to distance. R and T values are chosen
as tuning parameters, and RHF value is computed for each point
listed in the digital command file. Fig. 3b demonstrates normalized
RHF for the scan described by Fig. 2a with R = 0.29 mm and
T = 6 ms, which generally replicates the melt-pool area variation
in Fig. 2b. The commanded laser power L is adjusted based on
the RHF according to Eqs. (2) and (3), where Lo = original laser
power, C = power adjustment factor, and RHFN = normalized RHF.
The three tuning parameters R, T and C are optimized by observing
their relative effect on the experimental temporal variation of the
melt-pool size as explained below. C is heuristically set to 0.25,
resulting in a laser power range of 146.25 W to 195 W. Fig. 3c plots
the adjusted laser power.

L ¼ Lo � 1� Cð Þ þ C � 1� RHFNð Þð Þ ð2Þ
RHFN ¼ min
RHF

mean RHFð Þ þ std RHFð Þ ;1
� �

ð3Þ
5. Experimentally tuning RHF

For experimental optimization, the laser power is adjusted
based Eqs. (1)–(3) using a range of R = 0 mm to 0.99 mm and
T = 1 ms to 8 ms, as shown in Fig. 4a. R = 0 mm (hence all Si is
empty) is equivalent to baseline (constant power). A total of 55
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rectangles scanned, with 5 as baseline and 50 with RHF-based laser
power control.

Fig. 4b shows the measured melt-pool area maps corresponding
to these conditions. The standard deviation of melt-pool area (in
pixels) is calculated for each (R,T) combination, and cubic-spline
interpolated to form the contour plot in Fig. 4c. Minimum melt-
pool area variation with r = 60.5 pixels was determined at
R = 0.29 mm and T = 6 ms (indicated with arrow), resulting in
27% reduction compared with the baseline (r = 76.7 pixels).
RHF-optimized melt-pool area plot in Fig. 4d shows visible
improvement compared to the baseline plot Fig. 2b.

Fig. 4c shows that effective values of (R,T) are bounded by
[0.1 mm to 0.7 mm, 4.5 ms to 8 ms]. Under similar laser parame-
ters and material, melt pool length and width was 0.75 mm and
0.1 mm, respectively [12]. Overshoot (skywriting) time between
tracks when the laser turns off and the melt pool cools was
4.24 ms. Though not conclusive, these indicate R and T are on
the same dimensional scale as melt pool phenomena.

6. Summary and future work

Better laser power control in LPBF has potential to reduce
defects, control residual stress or microstructure, or improve the
processing speed. A residual heat factor (RHF) model was devel-
oped, which simplifies the dynamic reheating effect of a scanned
melt-pool into a single parameter. Laser power was continuously
adjusted based on RHF to reduce local variability of melt-pool area
measured via coaxial camera by 27% compared to baseline. While
melt-pool area was used as an objective to optimize RHF parame-
ters here, future efforts will combine geometry [8] and reheating
based control parameters to optimize other part qualities.
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