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ABSTRACT 
Multi-scale multi-physics computational models are a promising 

tool to provide detailed insights to understand the process-

structure-property-performance relationships in additive 

manufacturing (AM) processes. To take advantage of the 

strengths of both physics-based and data-driven models, we 

propose a novel hybrid modeling framework for laser powder 

bed fusion (L-PBF) processes. Our unbiased model integration 

method combines physics-based data and measurement data for 

approaching more accurate prediction of melt pool width. Both 

a high-fidelity computational fluid dynamics (CFD) model and 

experiments utilizing optical images are used to generate a 

combined dataset of melt pool widths. From this aggregated 

dataset, a hybrid model is developed using data-driven modeling 

techniques, including polynomial regression and Kriging 

methods. The performance of the hybrid model is evaluated by 

computing the average relative error and compared with the 

results of the simulations and surrogate models constructed from 

the original CFD model and experimental measurements. It is 

found that the proposed hybrid model performs better in terms 

of prediction accuracy and computational time. Future work 

includes a conceptual introduction on the use of an AM ontology 

to support improved model and data selection when constructing 

hybrid models. This study can be viewed as a significant step 

towards the use of hybrid models as predictive models with 

improves accuracy without the sacrifice of speed. 
 

Keywords: Additive manufacturing, Laser powder bed fusion, 

Hybrid model, Melt pool width, Gaussian process/Kriging, Data-

driven surrogate model, Ontology 

1. INTRODUCTION 
Metal additive manufacturing (AM) produces metallic parts by 

fusing materials in a layer-by-layer fashion directly from a 3D 

CAD model [1]. Laser powder bed fusion (L-PBF) is the most 

common AM process used for the fabrication of metallic 

components. In the L-PBF process, a thin powder layer is spread 

on a substrate and a laser beam selectively melts and fuses 

powder with neighboring particles and previous layer. This 

process is repeated until the final part is formed. L-PBF has 

tremendous potential of producing metallic parts with complex 

geometry, internal structures, and conformal heating/cooling 

channels for a wide range of applications including aerospace, 

automotive, and biomedical implants [2–4]. Compared to 

conventional manufacturing techniques, L-PBF has many 

advantages as it allows to locally control microstructures by 

varying process parameters so that parts with desirable 

mechanical properties can be produced  [5,6]. It also minimizes 

material wastes and reduces lead time [7]. While offering many 

advantages, the L-PBF process also faces challenges such as 

inconsistent part quality and defects in  terms of porosity, poor 

surface finish, delamination, crack formation, and residual 

stress [8]. Without proper control mechanisms, these challenges 

can lead to unstable mechanical properties and poor dimensional 

accuracy on produced parts.  

To overcome these challenges and help develop process 

control mechanisms, there have been many research efforts that 

have aimed to understand the influence of different process 

parameters and material properties on part quality [9,10]. The 

research efforts can be broadly categorized as experimental-

based and physics-based investigations. The experimental-based 

investigation is more realistic as it directly captures observed 

physical phenomena occurring during the process. However, this 
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approach can be time consuming and costly while lending itself 

to inherent process variabilities and sensor calibration errors that 

cause large measurement uncertainty [11]. Additionally, not 

every process parameter can be measured. For these reasons, 

amongst others, interest in computational models for AM 

continues to rise.  

For the L-PBF process, computational models have been 

widely used to simulate the heat transfer, fluid flow, and phase 

transformations in L-PBF process and estimate the temperature 

fields, flow velocities, melt pool characteristics, solidification 

rate, and residual stress [12,13]. Although these computational 

models are promising tools to understand the physics of the 

process, their prediction accuracy can be potentially affected by 

the assumptions used during model formulation [14]. In addition 

to modeling assumptions, inaccurate selection of model 

parameters, such as absorption coefficient and material 

properties, also leads to significant discrepancy between 

computationally predicted and experimental results [15]. 

Furthermore, even though high fidelity physics-based models 

describe the L-PBF process in detail, solving these models is 

time consuming due to the complex physics.  

Overall, physics-based models suffer from prediction 

accuracy caused by uncertainties that are associated with the 

modeling assumptions made about the L-PBF process. The 

prediction accuracy of the experimental-based investigations is 

highly affected by sensor noise and measurement uncertainties 

due to the inherent complexity and stochastic nature of the 

process. Alterations to each approach have sought to compensate 

for their drawbacks. For instance, reduced-order physics-based 

models have been sought to reduce computational demands, 

though the tradeoff is they can be less accurate. Highly complex, 

multi-variable experiments of processes like L-PBF are also 

difficult to implement due to their high cost and time 

requirements. We propose that the most effective way to 

overcome the challenges associated with each approach is to 

develop a model that embraces the advantages of each approach.  

In this study, we propose a hybrid model by intertwining 

physics-based simulation data and experiment-based empirical 

data for the prediction of output quantities of interest (QoIs) in 

L-PBF process. To develop an unbiased model which integrates 

computational and experimental data, data-driven modeling 

techniques including polynomial regression and Gaussian 

process/Kriging methods, which are suitable for multi-

dimensional problems having limited data, are employed. Melt 

pool width is chosen as our primary output QoI since the melt 

pool plays a significant role in determining the microstructure, 

residual stresses, and mechanical properties of a part fabricated 

by L-PBF process [16]. A CFD model is used to predict melt pool 

widths for various combinations of laser power and scan speed. 

Empirical data is obtained from ex-situ melt pool width 

measurement data taken from single-track experiments with 

similar process parameters.  

In developing the hybrid model, a polynomial regression 

method is first applied to construct the initial simulation-based 

surrogate model using data from a CFD model. Then, the Kriging 

method is applied to model the residual error between 

experimental and computational results. An adaptive modeling 

method is used to iteratively update the Kriging model to 

improve the predictive errors of the surrogate model. to improve 

the model, measurement data are iteratively selected by updating 

sample points using the maximum average relative error as a 

determining factor. The performance of the hybrid model is 

evaluated by comparing the relative error to the individual 

simulation-based and experiment-based surrogate models. It is 

found that the hybrid model performs better in terms of 

prediction accuracy and computational time. Once the hybrid 

model is developed, making predictions on a new set of input 

variables is straightforward. 

This paper is organized as follows: in Section 2, we briefly 

review the prior research efforts on the physics-based 

computational models focusing on thermal models and data-

driven modeling approaches used in L-PBF AM. Then we 

provide an overview of the CFD model, the data-driven 

modeling techniques used in this study, and the hybrid model 

development methodology in Section 3. In Section 4, we 

demonstrate the proposed methodology to develop a hybrid 

model for melt pool width prediction and analyze its 

performance using CFD simulation data and measurement data. 

A conceptual use of AM ontology for model selection is 

introduced in Section 5. Section 6 presents the concluding 

remarks of the current study and future work. We view this work 

to be an essential step to developing fast and accurate hybrid 

models that compliment both physics-based and experimental 

approaches to improve L-PBF part quality. 

2. BACKGROUND  
Though L-PBF has shown to be a capable technology for 

producing complex parts, challenges remain, e.g., inconsistent 

part properties with defects. Part defects are often attributes to 

porosity in the fabricated parts, surface roughness, anisotropy in 

microstructure, residual stresses, delamination, and cracks [17]. 

Physics-based modeling techniques are based on cause-effect 

principles in physics, such as fluid dynamics, thermodynamics, 

heat transfer, and kinetics. While such techniques provide 

invaluable insight into the general behavior of a process, fall 

short in predicting defect generation and propagation and final 

part quality for a specific process implementation. There are at 

least three reasons for that: (a) a complete set of process variables 

may not be obtainable due to a lack of knowledge regarding the 

process, (b) unknown complex energy and material behaviors in 

the process, such as non-linear interactions, and (c) the physics-

based models have not been validated due to limitation in 

available measurement techniques. 

AM data analytics includes measured data, data fusion, data 

analysis, statistical methods, and machine learning [18]. Real 

data are acquired from in-situ or ex-situ sensors. To model the 

process, the relations between inputs and outputs are created by 

data-driven modeling techniques. Data-driven models can be 

employed to model the non-linear relationship between sensor 

outputs with process parameters and predict output quantities of 

interest for different sets of input variables. However, as stated 

previously, the measurement data used to build the data-driven 



 3 Copyright © 2020 by ASME 

models are affected by uncertainties related to error in sensor 

calibration and noise, imprecise measurement methods, and 

variations in the measurements. The following subsections 

review relevant works associated with each of these modeling 

approaches.  

2.1. Physics-based thermal models 
There have been tremendous efforts in the last decade in 

developing computational models to simulate powder layer 

deposition, powder-laser interactions, melt pool formation, 

solidification and grain growth, and residual stress and 

deformation with different levels of fidelity in the L-PBF 

process [12–14,19]. The term fidelity used in this context is 

based on the different physical phenomena captured by the 

computational models. For instance, a model that captures a 

larger number of phenomena refers as high-fidelity, whereas, low 

fidelity is the one with least number of phenomena. 

Physics-based computational modeling has been crucial to 

understanding process-structure-property relations in metal AM 

[20], and these models have come in different varieties. With 

regard to the transient manufacturing process, thermal models 

based on the semi-analytical, the finite element, and finite 

volume methods have been developed. The semi-analytical 

Rosenthal-based low-fidelity thermal models can solve the heat 

conduction equation for temperature profile and melt pool 

geometry [21,22]. However, they neglect physical phenomena 

such as the effective powder layer, laser spot diameter, and other 

phenomena related to heat transfer and fluid flow. Typically, the 

finite element medium-fidelity models can provide a thermal 

history of an entire part being built [23–26], but they do so by 

purely considering heat conduction and neglecting the fluid flow 

behavior within the melt pool. This simplification can lead to 

predictions of inaccurate temperature fields. For example, 

Manvatkar et al [27] showed that by ignoring Marangoni 

convection in the molten melt pool, cooling rates in laser assisted 

AM may be overestimated by as much as double the correct 

values. Conversely, Gan et al [28] demonstrated that 

incorporation of fluid-flow and vaporization can significantly 

enhance a model ability to accurately predict melt pool geometry, 

peak temperature and surface topology. For these reasons, 

several high-fidelity models based on the finite volume method 

and CFD have been developed to account for additional physics 

within the melt pool [29–34]. 

Ensuring the accuracy of high-fidelity models requires an 

extensive use of well-designed and highly controlled 

experiments for validation. Due to extremely high temperatures, 

violent metallic powder spattering, and highly complex physics 

occurring at multiple length scales within very short time scales, 

it is difficult to conduct in-situ measurements in the L-PBF 

process. Typically, as is the case for Ghosh et al [35], ex-situ 

measurements are used for numerical validation. It is apparent 

that assumptions and simplifications made about the process can 

significantly affect a computational model’s predictive 

capabilities.  

 

2.2. Data-driven models  
Data-driven modeling methods, as a more stochastic approach, 

have been deployed to analyze AM data. Different data-driven 

approaches have been implemented to construct surrogate 

models from experiment-based empirical data and physics-based 

simulation data. Data-driven surrogate models that rely on 

empirical data can help estimate data points in a new design 

space and evaluate correlations between input parameters and 

output QoIs [36,37]. In addition, simulation-based data-driven 

surrogate models aim support a black-box approach to reduce the 

high computational cost of high-fidelity simulations [38]. Data-

driven machine learning techniques have been used in AM for 

different applications throughout the AM lifecycle [39].  

Using experiment-based empirical data, Fathi and 

Mozaffari [40] developed a data-driven framework to relate 

process parameters including laser power, scan speed, and 

powder flow rate to melt pool depth and deposition height for the 

laser-based direct energy deposition (DED) process. Similarly, 

Lu et al. [41] used a neural network to map process parameters 

to deposition height for the DED process. Since obtaining 

measurement data for such complex processes is difficult and 

time consuming, in lieu of empirical data, researchers have used 

physics-based simulation data to develop data-driven surrogate 

models. From the semi-analytical Rosenthal-based thermal 

model, Yang et al. [42] developed a Dynamic Variance-

Covariance Matrix (DVCM) method to investigate the influence 

of input parameters such as laser power, scan speed, absorption 

coefficient, and thermal diffusivity on melt pool width for L-PBF 

process. Kamath [43] built data-driven surrogate models from 

the Eagar-Tsai thermal model using regression trees and 

Gaussian process regression to predict melt pool depth for the L-

PBF process. Recently, Tran and Lo [44] developed an approach 

to optimize process parameters such as laser power, scan speed, 

and layer thickness using artificial neural network (ANN) for L-

PBF process.  

The previous works focused on developing data-driven 

surrogate models based on either experiment-based empirical 

data or physics-based simulation data to predict output QoIs. As 

measurement data contain errors and uncertainties associated 

with sensor calibration and noise, imprecise measurement 

methods, and variation in the process; and physics-based 

simulation data have uncertainty associated with modeling 

assumptions, numerical approximation, and variability in input 

parameters, data-driven surrogate models that are developed 

solely from empirical data or simulation data may exhibit 

variable predictive capabilities. Therefore, hybrid models that 

embraces the advantages of experiment-based and simulation-

based approaches are needed. 

In general, physics-based models typically do an acceptable 

job at predicting output QoIs in a wide range of input variables. 

However, there are multiple sources of uncertainty in these 

computational models that can cause significant prediction 

errors [15]. On the other hand, data-driven modeling techniques 

often rely on a specific system to help find the relationships 

between inputs and outputs, and without the explicit knowledge 

of the physical behavior of the system [45]. In such scenarios, 
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due to data sparsity, extrapolation is limited and careful selection 

of training data, training algorithm, and model complexity is 

required [46]. The proposed hybrid model offers an approach 

where extrapolation can be done for a wide input of parameter 

ranges while capturing the complex and highly non-linear 

behavior of the L-PBF process [46]. 

3. HYBRID MODEL DEVELOPMENT  
As mentioned above, researchers have developed various 

approaches by utilizing different scales, disciplines, and 

perspectives to overcome the complexity of AM processes. All 

these efforts can significantly improve knowledge mining in 

AM. However, these efforts also raise more challenges in data 

filtering, algorithm selection, and model integration. Different 

simulations, for example, may only work under specific 

conditions if they were developed based on different physical 

phenomena. It is also hard to guarantee consistency between 

different datasets from various sources. Another typical issue is 

the stochastic error observed between computational and 

experimental data. This error may initiate from the fundamental 

hypothesis or numerical approach of the simulation. However, 

physical experiments cannot benefit from selective simplifying 

assumptions like simulations. Hence, experimental results tend 

to include more complicated physical phenomena than those 

obtained from a simulation. Thus, even high-fidelity simulations 

cannot truly match the real experimental data based on different 

AM machines, labs, and material.  

Modifications applied to physics-based models can 

potentially address the above issues. This section presents the 

development of an unbiased model integration method to 

combine computational and experimental data to provide 

accurate predictions regardless of the sample size and fidelity of 

the data. The high-fidelity physics-based model, though requires 

higher computational cost, has the freedom to generate a vast 

amount of data. On the other hand, the experimental data is 

assumed to be ground truth but usually limited and expensive to 

sample. 

Figure 1 shows the proposed hybrid modeling framework 

for the L-PBF process. Various combinations of process 

parameters, physics-based models and experimental 

measurement techniques provide datasets with inherent 

uncertainties [47–49]. Then, multiple sampling methods filter 

through each dataset to systematically create subsets of the data 

to be used for training and validation. Once these data subsets 

are determined, they are used in conjunction with data-driven 

models to build simulation-based and experiment-based 

surrogate models. To improve the accuracy of these surrogate 

models, a hybrid model that combines the physics-based data 

and experimentally measured data using an unbiased model 

integration method is created. With this framework in mind, a 

brief overview of the physics-based CFD model and data-driven 

approaches used in the current study is provided, and the 

workflow and algorithm of the proposed hybrid model are 

discussed in detail in this section.  

3.1. Brief details on CFD model 
A well tested, three dimensional, transient, thermal-fluid flow 

model for L-PBF [28,29] is adapted to compute temperature and 

velocity fields to generate the data referenced in this work. The 

thermal-fluid flow model solves for conservation of mass (Eqn. 

1), momentum (Eqn. 2), and energy (Eqn. 3) to consider liquid 

flow within the melt pool driven by Marangoni convection.  

 
∂ρ

∂𝑡
+

∂ρ𝑢𝑖

∂𝑥𝑖

= 0 (1) 
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where 𝑡 is the time, 𝑢𝑖 is the i𝑡ℎ component of the velocity, μ is 

the viscosity, 𝑝 is the pressure, h is the enthalpy, T is the 

temperature, ρ is the density, k is the thermal conductivity, and β 

is the thermal expansion coefficient. In this work, 𝐵 is a small 

parameter with a value of 10−3 to avoid division by zero and δ 

is the approximate primary dendritic spacing, which was set to 

1m. Additionally, enthalpy is related to temperature according 

to the following: 

 

ρh = ∫ ρcpdT
T

0

+ ρLfl (4) 

 

where cp is the specific heat capacity, L is the latent enthalpy of 

fusion, and fl is the volume fraction of liquid phase. 

The thermal boundary condition including the heat source 

model at the metal-gas interface is specified as: 

 

qener =
2Qη

πrb
2 exp (

−2((x − Vst)2 + y2)

rb
2 )

− hc(T − T∞) − σsε(T4 − Tref
4 ) 

 

(5) 

 

where Q is the laser power, η is the absorptivity, 𝑟𝑏 is the laser 

beam radius, Vs is the scanning speed, hc is the convective heat 

transfer coefficient, T∞ is the ambient temperature, σs is the 

Stefan-Boltzmann constant, ε is the emissivity, and T𝑟𝑒𝑓 is the 

reference temperature. 

The momentum boundary condition at the liquid-gas 

interface is: 

 

𝐹𝐿/𝐺 = γ𝑛κ + ∇𝑆𝑇
𝑑γ

𝑑𝑇
 (6) 

 

where γ is the surface tension coefficient, 𝑛 is the outward 

pointing normal of the surface, and κ is the curvature of the 

surface. The thermophysical properties of Inconel 625 and 

approximated processing conditions used in the simulations are 

summarized in Table 1. Densities taken from [50] for ambient 

and liquidus temperatures are used for the solid and liquid 

densities, respectively. Additionally, viscosity at the liquidus 

temperature taken from [51] was assumed to maintain a constant 

value within the melt pool. Temperature-dependent polynomial 

functions were fitted to experimental measurements [52] of 

thermal conductivity and specific heat capacity for the solid 

phase. 
 

Table 1: Thermophysical properties and processing conditions 

used for the thermal-fluid flow model 

Physical Property Value Reference 

Solid density (kg ∙ m3) 8440 [50] 

Liquid density (kg ∙ m3) 7640 [50] 

Solidus temperature (K) 1563 [51] 

Liquidus temperature (K) 1623 [51] 

Solid specific heat capacity 

(J ∙ kg−1 ∙ K−1) 

0.2437𝑇
+ 338.39 

[52] 

Liquid specific heat capacity 

(J ∙ kg−1 ∙ K−1) 

709.25 [50] 

Solid thermal conductivity 

(W ∙ m−1 ∙ K−1) 

0.01530𝑇
+ 5.2366 

[52] 

Liquid thermal conductivity 

(W ∙ m−1 ∙ K−1) 

30.078 [50] 

Latent heat of fusion  

(KJ ∙ kg−1 ∙ K−1) 

29.0 [50] 

Dynamic viscosity (Pa ∙ s) 7 × 10−3 [51] 

Coefficient of Thermal 

expansion (K−1) 
5 × 10−5 [51] 

Preheat temperature (K) 353 -  

Laser spot radius (m) 45 - 

3.2. Data-driven modeling techniques  
This section aims to introduce the data-driven modeling 

techniques used in this study, namely the polynomial regression 

(PR) and Kriging methods. In general, the PR model uses the 

training data to estimate the optimal parameters of the 

polynomial formulation. On the other hand, the Kriging method 

offers an interpolation approach from which the prediction is 

derived based on correlations to existing data. The mathematical 

formulation of the predictive model can be expressed as: 

 

𝑦(�̃�) = 𝑓(�̃�) + 𝜀 (7) 

where y(x̃) represents the exact solution for new point x̃, f(x̃) is 

a hypothetical function derived statistically from data that 

produces the model estimate, ε is error, and x̃ represents a set of 

input variables. For different modeling approaches, the 

composition of each of these elements could be different.   

3.2.1. Polynomial regression (PR) method 
Similar to linear regression, PR formulates the relationship 

between the input variables 𝑥 and the outcome 𝑦 with higher-

order variation [53]. The efficiency and accuracy of PR make it 

popular in various engineering domains. The quadratic 

polynomial function can be presented as: 

 

�̂� = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑗𝑖

 

 

(8) 

 

where 𝛽0, 𝛽𝑖, 𝛽𝑖𝑖 , and 𝛽𝑖𝑗 are regression coefficients, and 𝑘 is the 

number of design variables.  
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3.2.2. Kriging method 
Unlike traditional parametric modeling methods that can derive 

specific formulations, the Kriging method predicts a result based 

on the spatial correlation between an estimated data point and 

existing data points [54,55]. The general form of the Kriging 

approach can be presented as: 

𝑍𝐸 = �̅� + ∑ 𝜆𝑖(𝑍𝑖 − �̅�)

𝑛

𝑖=1

 

 

(9) 

where Z̅ represents the regional mean value of the response 

and λi is the distance-correlated weight value, which is 

determined by computing the spatial correlation.  

To calculate the weight factor, λi, one should first compute 

the spatial correlation 𝑅 between data points. The value of the 

spatial correlation can be derived from: 

 

𝑅(𝜃, 𝑥𝑖 , 𝑥𝑗)  =  ∏ 𝑒𝑥𝑝(−𝜃𝑖(𝑥𝑖,𝑙 − 𝑥𝑗,𝑙)
2)

𝑛

𝑙=1

 

 

(10) 

 

where 𝑥𝑖,𝑙 is the 𝑙𝑡ℎ component of the 𝑖𝑡ℎ vector 𝑥𝑖 [56]. 

𝑅(𝜃, 𝑥𝑖 , 𝑥𝑗) depends on the location of points 𝑥𝑖 and 𝑥𝑗 and the 

correlation parameter, 𝜃. 

3.3. Hybrid modeling approach  
This section discusses development of the hybrid model based 

on a combination of computational and experimental data. The 

hybrid model applies a polynomial regression method to 

construct the initial simulation-based surrogate model using 

computational data obtained from the aforementioned CFD 

model (Section 3.1.). The Kriging method is then applied to 

model the residual error between computational and 

experimental results, using an adaptive modeling method to 

iteratively update the model and reduce the predictive errors of 

the hybrid model. Figure 2 outlines our workflow for the hybrid 

AM model construction. 

3.3.1. Workflow of hybrid modeling approach 
The proposed method uses physics-based computational data 

from a CFD model to construct the initial surrogate model by 

applying the polynomial regression method. This model can 

generally represent trends, but may include significant error 

when compared to the experimental data. The next step is to 

model the residual error between computational and experiment 

results. An adaptive modeling method can iteratively update the 

Kriging model to reduce the predictive errors of the hybrid model 

[57,58,59]. The process adaptively adjusts the training and 

validation datasets to approach higher predictive accuracy. To 

evaluate the hybrid model performance, the Average Relative 

Error Magnitude (AREM) is deployed for individual and global 

validation [58]. The formulation of AREM can be expressed as: 

 
 

𝐴𝑅𝐸𝑀 =
1

𝑚
(

∑ |𝑦𝑖 − �̂�𝑖|
𝑚
𝑖=1

𝑦𝑖

)     (𝑦𝑖 ≠ 0) 

 

(11) 

 

where 𝑦𝑖 is the observed value from given data, �̂� is the value 

predicted by the surrogate model of the data points that were not 

selected to construct the surrogate model, and 𝑚 is the number 

of data points. 

3.3.2. Algorithm for hybrid model development 
This section provides the algorithmic approach to build the 

proposed AM hybrid model. We first generate 𝑁𝑠𝑖𝑚 simulation 

data to construct the initial surrogate model. Similarly, 𝑀𝑚𝑒𝑎𝑠  

experimental data are measured to improve and validate the 

hybrid model. The adaptive Kriging model starts with 𝑀𝑖𝑛 initial 

experimental data points and 𝑀𝑢𝑝 additional points for updating. 

To validate the final hybrid model, 𝑀𝑣𝑎𝑙 experimental data points 

are used. Therefore, the training-validation data ratio is 

(𝑀𝑖𝑛 + 𝑀𝑢𝑝) ∶  𝑀𝑣𝑎𝑙 . The case study in Section 4 uses a total of 

72 simulation data points and 21 experimental data points. Here, 

it is important to note that, in the limited number of experimental 

data, the predetermined number of validation data can be reached 

before the error value is less than the threshold. In this case, all 
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the remaining validation datapoints will be used to validate the 

hybrid model. This situation can be avoided by providing a 

greater number of experimental data.  

 

Algorithm for hybrid modeling approach 

Step 1: Generate experimental and computational data 

Step 2: Construct initial surrogate model 

Step 2.1: Construct initial surrogate model using 𝑁𝑠𝑖𝑚 by 

PR method 

Step 2.2: Set target threshold for error comparison 

Step 2.3: Validate the surrogate model using additional 

simulation data 

if error > threshold   do  

Back to Step 1 and generate more simulation 

data 

else  

Simulation-based surrogate model is ready and 

proceed to Step 3 

end if 

Step 3: Prepare the training and validation datasets of 𝑀𝑚𝑒𝑎𝑠  

experimental data 

Step 3.1: Compare the results of the surrogate model 

against 𝑀𝑚𝑒𝑎𝑠 experimental data  

Step 3.2: Select 𝑀𝑖𝑛 experimental data points with largest 

error to construct the initial training dataset 

Step 3.3: Store the rest of the data that would be used as 

validation dataset 

Step 4: Construct the hybrid model 

Step 4.1: Calculate the residual error between results from 

surrogate model and experimental training 

dataset 

Step 4.2: Build the surrogate model for residual error by 

Kriging method 

Step 4.3: Combine the PR and Kriging methods to 

construct the hybrid model 

Step 5: Hybrid model validation 

Step 5.1: Use the validation dataset to validate the hybrid 

model 

Step 5.2: Set target threshold for error comparison 

if error > threshold do  

if data > 𝑀𝑣𝑎𝑙 do 

Add an 𝑀𝑢𝑝 additional data point with 

largest error to the training dataset 

end if 

else  

Validate the hybrid model using validation 

dataset and proceed to Step 6 

end if 

Step 5.3: Eliminate the selected data point from the 𝑀𝑣𝑎𝑙  

validation dataset 

Step 5.4: Go back to Step 4 to validate the hybrid model 

Step 6: Approach the final hybrid model 

4. CASE STUDY: HYBRID MODELING OF MELT POOL 

WIDTH  

This section demonstrates the proposed hybrid model presented 

in Section 3.3 and discusses its performance by comparing it 

against computational and experimental data. As previously 

stated, melt pool widths obtained from CFD model and 

measurement data are used as output QoIs to demonstrate the 

hybrid model’s capabilities. The primary input variables used for 

the simulations and experiments are laser power and scan speed. 

The range of laser power used for the simulations and 

experiments is from 49W – 285W and 100W – 195W, 

respectively. Whereas, the scan speed used for both the 

simulations and experiments ranges from 100mm/s – 1400mm/s. 

4.1. Data for hybrid model 
The experiments were performed on Inconel 625 bare plates and 

ex-situ measurements were conducted to record melt pool widths 

using optical microscope [60]. The melt pool widths were 

measured from the optical image of a 1mm long scan track by 

manually tracing the edges of the track and averaging the 

distance between the traces at different locations as shown in 

Figure 3(a). The average and standard deviation of the measured 

melt pool widths at different combinations of laser power and 

scan speed are given in Table 2. Similarly, the thermal CFD 

model is simulated as shown in Figure 3(b), and melt pool widths 

are extracted for a given input variables. The simulation results 

for the corresponding experimental data along with the relative 

percentage error are also given in Table 2.  

The average relative percentage error of the simulations 

against measurement results is 20.78%. This highlights that the 

physics-based computational model by itself induces major 

discrepancy against the experimental data. This discrepancy may 

be due to the different assumptions taken during model 

formulation including powder particle distribution, spattering of 

molten metal, gas-liquid-solid interaction, mass loss due to 

chemical reactions, and others. This discrepancy is due to model 

uncertainty and also the uncertainty associated with 

measurements, including sensor error and imprecise 

measurement methods [15,22]. 
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Figure 3. Experimental-based melt pool width from optical image [60] (a) and melt pool region from the CFD simulation model (b) 

Table 2. Melt pool widths: measurement, simulation, and % 

relative error 

No. 

of  

Run 

Laser  

power  

(W) 

Scan  

speed 

(mm/s) 

Melt pool width (m) % 

relative 

error 
Measurement  

with St. dev 

Simu-

lation 

1 100 100 259.77 (8.22) 175 32.63 

2 100 200 177.26 (4.73) 146 17.64 

3 100 400 123.39 (7.73) 120 2.75 

4 100 600 86.79 (3.43) 110 26.74 

5 100 1000 73.918 (2.47) 94.1 27.30 

6 100 1200 72.123 (2.87) 88.2 22.29 

7 100 1400 68.932 (2.19) 90 30.56 

8 150 200 225.87 (11.16) 161 28.72 

9 150 400 166.96 (9.90) 132 20.94 

10 150 600 146.89 (8.70) 121 17.63 

11 150 800 105.73 (5.15) 110 4.04 

12 150 1000 86.922 (3.26) 110 26.55 

13 150 1200 93.365 (4.62) 105 12.46 

14 150 1400 85.735 (5.34) 101 17.80 

15 195 100 362.25 (13.33) 206 43.13 

16 195 200 256.05 (16.98) 167 34.78 

17 195 400 188.7 (10.69) 142 24.75 

18 195 600 149.62 (5.28) 130 13.11 

19 195 800 126.3 (4.33) 120 4.99 

20 195 1000 107.17 (4.55) 113 5.44 

21 195 1200 90.15 (4.97) 110 22.02 

4.2. Implementation of the proposed hybrid model  
Figure 4 shows the schematic framework for the case study 

implementation of the hybrid model for melt pool width 

prediction. First, the CFD model is simulated and 72 data points 

of melt pool widths were extracted for the given combinations of 

laser power and scan speed, as shown in PV map (left) in Figure 

4. Similarly, experimental data provided 21 data points of melt 

pool widths are measured for the given combinations of laser 

power and scan speed, as shown in the PV map (right). All 

simulation data are used to construct the initial surrogate model 

using a polynomial regression method. The adaptive Kriging 

model starts with 5 initial data points and 10 additional points for 

updating. As a result, 6 experimental data points are excluded 

from the model construction and are used to validate the model. 

The training-validation data ratio is 15:6. The hybrid model is 

then used to predict melt pool widths for other possible 

combinations of laser power and scan speed in the design space 

with good accuracy and computational time.  

The accuracy of the proposed hybrid model mainly depends 

on the accuracies and the number of computational and 

experimental data used and the data-driven techniques applied. 

Obtaining more experimental data used for training, updating, 

and validating the proposed hybrid model is crucial for 

improving the accuracy.   

 

 

(a) 

(b) 
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Figure 4 Schematic implementation framework of hybrid model of melt pool width  

 

4.3. Verification of Surrogate models  
To develop and evaluate the hybrid model, both computational-

based and experimental-based surrogate models are constructed 

using corresponding data. To evaluate the accuracy of these 

surrogate models and compare them with the original simulation 

and measured data, model verification is conducted for the same 

processing parameters. The computational-based surrogate 

model is compared to the original CFD model as shown in Figure 

5(a) and (b), and the average error is about 5%. The cause of this 

discrepancy may be due to the variabilities in data-driven 

modeling approaches. Similarly, the experimental-based 

surrogate model has around 10% difference when compared to 

the original measurement data as shown in Figure 5(c) and (c). 

This error is mainly attributed to the limited number of 

measurement data points (only 15) used to build the surrogate 

model. 

 

 

Physics-based thermal-fluid flow 

CFD melt pool model 
Experimental-based melt pool 

measurement 

Hybrid Model 
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            (a) Original CFD model     (b) Simulation-based surrogate model 

   

            (c) Original measurement data    (d) Experimental-based surrogate model 

 

Figure 5. Comparison of original simulation model and measurement data with surrogate models 

 

4.4. Performance evaluation of hybrid model 
In order to evaluate the performance of the proposed model, we 

compared the average relative error of hybrid model to the 

experimental-based surrogate model and computational-based 

surrogate model as shown in Figure 6 and Table 3. The blue and 

red dots in the graph represent the measured and predicted results 

with the validation parameters, respectively.  

The results of melt pool widths predicted at the 6 validation 

data points (that are not used in the model construction) using 

the experimental-based surrogate model has an average relative 

error of 13.45%, as shown in Figure 6(a). Similarly, the melt pool 

widths predicted using the simulation-based surrogate model has 

an average error of 12.89% as shown in Figure 6(b). Figure 6(c) 

depicts the prediction of melt pool widths using the proposed 

hybrid model. The hybrid model has an average error of 7.58%. 

Table 3 provides the input parameters used for validation, the 

measured results, simulated results, predictive results from 

experimental-based and simulation-based surrogate models, and 

their deviations from the measured results using percentage 

relative error in parentheses. It can be observed that the hybrid 

model predicted melt pool width with better accuracy than both 

simulation-based and experimental-based surrogate models.  

 

 

Table 3. Comparing the proposed hybrid model to the experimental validation data points 

No. 

of 

Run 

Laser 

power 

(W) 

Scan 

speed 

(mm/s) 

Measurement  

results 

CFD 

simulation 

results 

Experiment-

based surrogate 

model 

Simulation-

based surrogate 

model 

 

Hybrid model 

1 100 200 177.26 146 (17.64%) 204.92 (15.60%) 150.24 (15.24%) 187.71 (5.90%) 

2 150 400 166.96 132 (20.94%) 183.63 (9.98%) 141.91 (15.00%) 148.26 (11.20%) 

3 150 1000 86.922 110 (26.55%) 84.13 (3.21%) 100.94 (16.13%) 95.21 (9.54%) 

4 150 1400 85.735 101 (17.80%) 108.64 (26.72%) 104.52 (21.92%) 92.20 (7.54%) 

5 195 800 126.3 120 (4.99%) 111.82 (11.46%) 118.23 (6.39%) 120.34 (4.72%) 

6 195 1000 107.17 110 (2.64%) 92.53 (13.66%) 110.05 (2.69%) 114.23 (6.59%) 

Average % relative error (15.09%) (13.45%) (12.89%) (7.58%) 

 

5% error 

10% error 
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(a)                                                                                        (b) 

 
(c) 

Figure 6. Melt pool width prediction using (a) experimental-based surrogate model, (b) simulation-based surrogate model, (c) pro-

posed hybrid model 

Therefore, by integrating the physics-based and 

experimentally obtained data using the proposed hybrid 

modeling approach, melt pool widths can be predicted with 

better accuracy. It can be concluded that with a few experimental 

data, the overall prediction accuracy of physics-based numerical 

models can be improved through the proposed approach. Since 

the hybrid model is a data-driven approach, for new sets of input 

parameters, the melt pool widths can be predicted in a few 

seconds. Thus, the hybrid model is computationally efficient 

compared to pure physics-based models. Due to improved 

accuracy and computational efficient, the proposed hybrid model 

better suited for real-time monitoring, control and optimization.  

5. FUTURE WORK: AM ONTOLOGY FOR MODEL SE-

LECTION 

Our case study demonstrated the ability to create a hybrid model 

for a specific application, with comparable parameter sets. 

However, the context under which models are run and 

experiments are conducted is not always as straight forward. To 

help resolve potential discrepancies in the data sources, we 

propose there is a role for ontologies. Ontology can be used to 

capture the rapidly evolving knowledge of the AM process, 

computational models, uncertainty sources, and design for AM 

in an organized structure to help users to interoperate and reuse 

information [47,49,61]. As stated previously, there are numerous 

physics-based models ranging from low-fidelity to medium-

fidelity to high-fidelity. A well-founded AM ontology can be 

used to capture the complex interconnections between these 

models as well as data-driven models and provide useful 

information for model composition towards developing a more 

accurate and reliable predictive metamodel [62,63]. In this 

section, we introduce the conceptual use of AM ontology for 

providing structured information of the different AM models to 

help develop a more accurate hybrid model.  

An ontology consists of various concepts and correlations 

among entities. The AM ontology offered in Moges et al. [47] 
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captures the different features of AM models including 

assumptions, considered and neglected phenomena, model 

inputs and outputs, and uncertainty sources. The ontology 

attempted to capture these features at the five stages of the 

process: powder layer formation, laser-heat source interaction, 

melt pool formation, solidification, and residual stress formation. 

Different physics-based models have been developed to simulate 

each of these stages of the process. For instance, to simulate the 

melt pool behavior in L-PBF, there are Rosenthal-based 

analytical models, FEM thermal models, path-level thermal 

simulation model [64], CFD models, and Lattice Boltzmann 

method (LBM) models [14]. Similarly, to determine the amount 

of absorbed energy by the powder particles, there are different 

methods including radiation transfer, ray tracing, and Beer-

Lambert approach [14]. Since these models are developed based 

on different methods and formulations, they have different pros 

and cons in terms of prediction accuracy and computational time. 

Even some models predict more accurately at a specific region 

of a PV map than the other regions.  

The hybrid model developed in this paper uses 

computationally predicted data obtained from one physics-based 

model namely CFD model. It was shown in Section 4 that this 

hybrid model improves the predictive accuracy of the melt pool 

width compared to the original physics-based model. However, 

in order to further improve the accuracy, instead of using 

simulation data obtained from a single physics-based model, a 

hybrid model that uses different simulation data obtained from 

different physics-based models could be more reliable. For this, 

a systematic approach that leverages the AM ontology is needed 

to select the simulation data obtained from different physics-

based models and integrate them with experimental data to build 

a more precise hybrid model.  

In the future, a more reliable approach need to be developed 

for (a) investigating the capability of different physics-based 

models and data-driven techniques, (b) developing strategic 

approaches to select the different simulation data, (c) integrating 

the different simulation data with the experimental data using 

various data-driven methods. Hence, ontology can be an 

essential tool for strategically selecting models based on their 

inherent key features. Furthermore, incorporating different data-

driven techniques into the existing AM ontology will enable us 

to select and apply a more suitable technique for developing a 

hybrid model to predict other output QoIs.  

6. CONCLUSION  

In this study we proposed a methodology to integrate physics-

based data and experimentally measured data into a hybrid 

model that enables fast and accurate predictions in the L-PBF 

process. We proposed a hybrid model which comprised of data 

generated from both numerically predicted and experimentally 

recorded melt pool widths for various combinations of laser 

power and scan speed. The numerical results were obtained from 

a thermal CFD model and ex-situ cross-sectioning was used to 

gather the experimental results.  

In our hybrid modeling approach, we first constructed an 

initial simulation-based surrogate model using simulation data 

by applying the polynomial regression method. Then, we applied 

the Kriging method to model the residual error between the 

simulated and experimental results using an adaptive modeling 

method to reduce predictive errors of the hybrid model. The 

performance of the proposed model is evaluated by comparing 

predicted results of melt pool widths from a CFD model, a 

simulation-based surrogate model, an experimental-based 

surrogate model, and the hybrid model against experimentally 

measured data. The results showed that on average, the hybrid 

model had the highest accuracy out of all the models. 

Additionally, due to improved accuracy and computational 

efficiency, the proposed hybrid model better suited for real-time 

process control.  

In order to further improve the accuracy of the hybrid model, 

instead of using data obtained from a single physics-based 

model, integrating data obtained from multiple physics-based 

models with experimentally measured data could be more 

reliable. To address this, AM ontology can be used as an essential 

tool to help understand the capability of the different physics-

based models and data-driven techniques and select the most 

accurate model at a specific region in the PV map. In the future, 

the knowledge captured in AM ontology can be leveraged for 

developing a more accurate hybrid modeling approach by 

providing predictive capabilities of multiple models. We view 

this work as a step towards effectively and efficiently utilizing 

physics-based models, data-driven approaches, experimental-

based measurement data, and AM ontology to build reliable and 

robust predictive models that can be applied for L-PBF process 

control.  
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