
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Online Improvement of Condition-Based
Maintenance Policy via Monte Carlo Tree Search

Michael Hoffman , Eunhye Song, Michael P. Brundage, and Soundar Kumara

Abstract— Often in manufacturing systems, scenarios arise
where the demand for maintenance exceeds the capacity of
maintenance resources. This results in the problem of allocating
the limited resources among machines competing for them.
This maintenance scheduling problem can be formulated as a
Markov decision process (MDP) with the goal of finding the
optimal dynamic maintenance action given the current system
state. However, as the system becomes more complex, solving
an MDP suffers from the curse of dimensionality. To overcome
this issue, we propose a two-stage approach that first optimizes
a static condition-based maintenance (CBM) policy using a
genetic algorithm (GA) and then improves the policy online via
Monte Carlo tree search (MCTS). The static policy significantly
reduces the state space of the online problem by allowing us
to ignore machines that are not sufficiently degraded. Further-
more, we formulate MCTS to seek a maintenance schedule
that maximizes the long-term production volume of the system
to reconcile the conflict between maintenance and production
objectives. We demonstrate that the resulting online policy is an
improvement over the static CBM policy found by GA.

Note to Practitioners—This article proposes a method of
scheduling maintenance in complex manufacturing systems in
scenarios where there is frequent competition for maintenance
resources. We use a condition-based maintenance policy that
prescribes maintenance actions based on a machine’s current
health. However, when several machines are due for mainte-
nance, a maintenance technician must choose between multiple
competing jobs. While a common approach is to establish rules
that dictate how maintenance jobs should be prioritized, such
as the first-in, first-out rule, the goal of this work is to improve
upon static policies in real time. We do this by strategically
evaluating sequences of maintenance actions and playing out
many “what–if” scenarios to see how the system will behave
in the future. Implementation of the proposed method relies on
the construction of a simulation model of the target system.
This model is capable of retrieving the current state of the
physical system, including the degradation state of machines,
the availability of maintenance resources, and the distribution

Manuscript received March 15, 2021; revised May 25, 2021; accepted
June 4, 2021. This article was recommended for publication by Editor
F.-T. Cheng upon evaluation of the reviewers’ comments. This work was
supported by the National Institute of Standards and Technology through
the Graduate Measurement Science and Engineering Fellowship. The work
of Eunhye Song was supported by the National Science Foundation under
Grant DMS-1854659. (Corresponding author: Michael Hoffman.)

Michael Hoffman, Eunhye Song, and Soundar Kumara are with the
Department of Industrial and Manufacturing Engineering, Pennsylvania State
University, University Park, PA 16802 USA (e-mail: hoffman@psu.edu;
eus358@psu.edu; u1o@engr.psu.edu).

Michael P. Brundage is with the National Institute of Standards and Tech-
nology, Gaithersburg, MD 20899 USA (e-mail: michael.brundage@nist.gov).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASE.2021.3088603.

Digital Object Identifier 10.1109/TASE.2021.3088603

of parts throughout buffers in the system. We present several
simulation experiments that demonstrate the improvement in
system performance that our approach provides. Future work
will aim to improve the efficiency of maintenance prioritization
through online learning as well as more accurately identify
manufacturing system configurations that will yield the greatest
benefit of these methods.

Index Terms— Condition-based maintenance (CBM), genetic
algorithm (GA), Monte Carlo tree search (MCTS).

I. INTRODUCTION

THE goal of maintenance in manufacturing is to support
the availability and productivity of machines in the sys-

tem. Implementation of maintenance is typically accomplished
by using available system and machine data to develop a
“policy” that dictates where and when maintenance should be
scheduled. When downtime required for maintenance activities
interferes with the established production plan [1], decision
makers must evaluate the tradeoff between them. In 2016,
the Annual Survey of Manufactures found that maintenance
costs for American manufacturers exceeded U.S. $50 billion
annually [2]. This statistic accounts for costs attributed to
labor, materials, and equipment used for maintenance but fails
to consider the cost of lost production due to asset downtime.
Significant downtime can result in failure to meet production
objectives, particularly if a large portion of maintenance is
unplanned.

In this work, we develop a maintenance framework that uses
real-time system state information to schedule maintenance
in support of system throughput by avoiding lost production
through unnecessary idling of important machines. The frame-
work provides a policy that aims to strategically schedule
downtime for maintenance so that throughput disruption is
avoided as much as possible. The proposed method can be
applied to multicomponent systems of arbitrary configuration
as well as to those with constrained maintenance capacity.

We classify maintenance jobs to be either corrective, indi-
cating the “repair or replacement of components as a result of
failure,” or preventive, which includes the “repair or replace-
ment of components at predetermined intervals/criteria” [3].
In general, corrective maintenance is more costly and
time-consuming than preventive maintenance [4]. This cost
and time increase is due to the severity of the damage as
well as the uncertainty of a corrective maintenance task. For
example, changing the oil on an engine every 3000 miles is a
routine, generally low-cost maintenance task (preventive), and

1545-5955 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6755-111X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

however, repairing or replacing the engine due to complete
engine failure when not regularly changing oil (corrective) can
be time-consuming and expensive in terms of the replacement
cost and lost production. As such, preventive maintenance is
desirable so that unplanned corrective maintenance is avoided.

By optimizing a maintenance policy, we attempt to bal-
ance the tradeoff of overmaintenance and undermaintenance.
If maintenance jobs are scheduled too frequently, maintenance
costs will be higher than necessary and downtime due to repair
will be frequent. If jobs are not scheduled often enough, then
there is a higher risk of costly machine failure between repairs.
In order to optimize maintenance, it is useful to first classify
the policy based on the set of decisions and available data (see
the review in [5] for a thorough taxonomy of maintenance
policies). In this work, we focus on a type of preventive
maintenance known as condition-based maintenance (CBM),
which relies on prescribing maintenance actions as a function
of a machine’s current state.

CBM has become popular with the proliferation of sen-
sors and online data. CBM policies aim to identify the
proper time to perform maintenance based on the real-time
“health” condition of machines using information from inter-
nal or external sensors, product or process data, or routine
inspections. Generally, a machine’s health will deteriorate
over time until it completely fails. An effective CBM policy
will identify a point before this complete failure at which
maintenance should be performed. Although this problem
can be formulated as a Markov decision process (MDP) as
reviewed in Section II, it becomes prohibitively expensive to
solve using traditional methods as the problem scale increases
and simplifying modeling assumptions are relaxed. Instead,
another thread of research is finding a set of static health index
thresholds at which to schedule maintenance for each machine.
In optimizing these thresholds, the goal is to maximize the
long-term average performance of the system; however, this
problem is also challenging due to a combinatorially large
solution space of health indices and lack of an analytical
expression of the performance measure. The goal of this work
is to find an optimal CBM policy for a general multicomponent
manufacturing system that is subject to maintenance capacity
constraints.

Our approach is to first find a static CBM policy that
maximizes the throughput using a genetic algorithm (GA).
We use a static queueing priority discipline whenever the
number of machines due for maintenance exceeds the available
maintenance capacity. The output of the GA is a health index
threshold for each machine that determines when a machine
will request maintenance.

Once a static CBM policy is found, it is adopted until a
maintenance scheduling conflict occurs. We solve an MDP
problem online whenever the number of machines requesting
maintenance exceeds the available maintenance capacity to
gain possible improvement upon the performance of the static
policy. Here, what we mean by “online” is that the static
policy is updated by incorporating the real-time information
of the system. The state space for the MDP is reduced
significantly compared to the original problem since we only
consider taking a maintenance action for a machine that has

exceeded its health index threshold as specified by the static
CBM policy. Thus, for each machine, health states below the
threshold can be merged together in the online scheduling
problem. For the solution method, we adopt Monte Carlo tree
search (MCTS) to efficiently navigate the state–action space
under a given computation budget. The result of this search is
the “best action” in the form of which machine to repair next
given the current state of machines. This procedure is repeated
each time a maintenance resource must choose between two
or more pending maintenance jobs. Our proposed approach
seeks optimal maintenance decisions in a dynamic state space
with the goal of maximizing system performance.

As defined in [6], online scheduling problems are distin-
guished by incomplete information due to either a lack of
knowledge of future jobs, unknown duration of scheduled jobs,
or unknown times between machine failures. The problem
formulated in this work has each of these characteristics and so
we refer to our method of maintenance conflict resolution as an
“online improvement” of the static policy. This is in contrast
to use of the term “online” elsewhere in maintenance opti-
mization literature to refer to online parameter estimation for
nonstationary system processes. For example, Elwany et al. [7]
and Chen et al. [8] updated the parameters of the degradation
process for a single-component system as more degradation
observations are gathered over time.

Our contribution can be summarized as follows:
1) a framework for optimizing CBM for systems of arbi-

trary structure;
2) online improvement of a static maintenance policy using

real-time system state information;
3) consideration of a capacity on maintenance resources.

The rest of this article is organized as follows. Section II
reviews the existing CBM literature. The problem statement is
in Section III, and the methodology is outlined in Section IV.
Section V shows experiment results, and finally, conclusions
are given in Section VI.

II. LITERATURE REVIEW

The goal of CBM is to perform maintenance only when
necessary by monitoring the machine status either contin-
uously or periodically. Maintenance is scheduled when an
abnormal signal, such as those from sensor readings or other
sources, is identified [9]. This approach, when performed
correctly, avoids unnecessary repairs on a healthy machine and
prevents costly breakdowns. A CBM policy typically specifies
maintenance actions as a function of a machine’s current state.
In addition to identifying the optimal state–action mapping,
there is the challenge of prioritizing maintenance jobs when
maintenance resources are limited. There has been substantial
research in the area of condition monitoring and CBM in a
variety of contexts. This section examines the literature most
relevant to the problem that is addressed by this work.

The selection of a CBM policy is dependent on the assumed
mode of deterioration; a discrete-time Markov degradation
process is particularly well-suited for CBM. Under this model,
machines begin in a perfect health state and move to states
of increased degradation over time according to the specified

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HOFFMAN et al.: ONLINE IMPROVEMENT OF CBM POLICY VIA MCTS 3

degradation state transition matrix. The advantages of this
model are that we only need to know the current state of
a machine to estimate its future degradation and the discrete
states provide a well-defined and intuitive domain for the CBM
decision variables [10]. This model also allows for variations,
such as sudden failures in the form of system shocks [11] or
stochastic dependence of degradation among machines [12].
Examples of previous work that employ the continuously
monitored discrete health state Markov model for maintenance
optimization problems include [13]–[17].

In multicomponent manufacturing systems, the routing
configuration of machines has a substantial impact on the
formulation of the CBM policy optimization problem. Down-
time events due to maintenance or failure of a machine
can propagate through a system causing other machines to
become starved or blocked [18]. Because of this interaction
among machines, an independently optimized policy for a
single machine may not be optimal when the machine is
examined in the context of a larger manufacturing system [19].
Such dependence is designated in [20] as “performance
dependence.” Much of the previous work on maintenance
optimization problems can be classified by the type of com-
ponent configuration it considers, including series, parallel,
series–parallel, k-out-of-N arrangements, and various combi-
nations of these. A thorough description of each arrangement
in the context of reliability is given in [21]. Often, an optimal
policy is derived under the assumptions of the system configu-
ration. However, many complex real-world systems cannot be
characterized by one of these configurations, yet little previous
work has allowed for arbitrary system structure. For instance,
Gupta and Lawsirirat [22] and Nguyen et al. [23], [24]
optimized CBM for general system configurations but relied
on the assumption that maintenance activities are instantaneous
and that there is no limit to the number of components that can
be repaired simultaneously. Maintenance duration is imposed
in [25], yet maintenance capacity is unlimited. A capacity on
maintenance resources is a common real-world constraint that
this work also aims to address.

Constraining maintenance capacity increases the complexity
of a maintenance optimization problem because there will be
cases where multiple machines are competing for the same
maintenance resource. These situations impose the additional
challenge of resolving such conflicts.

One class of maintenance policies that deal explicitly with
maintenance capacity is selective maintenance. Often, under
a selective maintenance policy, each job consumes some
amount of constrained resources (such as time or labor) during
a “maintenance break” for the entire system. Maintenance
breaks occur between two consecutive production missions
and the objective when scheduling maintenance is usually
to minimize maintenance time or cost or to maximize asset
reliability during the next mission. This class of policies was
first introduced in [26] and a thorough review of recent work
in selective maintenance is given in [27]. Although selective
maintenance accounts for maintenance capacity, having pre-
determined maintenance breaks and fixed mission duration is
not always applicable. In a realistic manufacturing setting,
unplanned failures can occur at any point in time and need

to be addressed immediately, whereas selective maintenance
does not allow production to be interrupted until the next
maintenance break.

Other recent work that has considered maintenance capacity
includes [13], which deals with a series–parallel system (a
serial line of subsystems each with multiple components in
parallel) with a limited number of maintenance workers. They
assume that n machines are in a system and there are at
least n − 1 maintenance resources available, implying that
there is no instance where a maintenance resource must
decide among multiple machines to maintain. Meanwhile,
de Smidt-Destombes et al. [28] and Moghaddass et al. [29]
optimized the maintenance policy for a k-out-of-N system
(a system of N identical components of which at least k must
be functional for the system to be operational) with mainte-
nance capacity. Since all machines are identical, the choice of
which ones to repair has no impact on system performance.

A system consisting of nonuniform machines each with
multiple levels of degradation as well as constrained main-
tenance capacity will have a significantly larger state space.
In [14], the optimal CBM policy for stochastically and eco-
nomically dependent components is a mapping of optimal
maintenance actions to each possible system state. They use
a factored MDP and approximate linear programming to
overcome the exponential growth of the state space. Their
formulation, however, relies on the assumption that the system
contains only two-machine subsystems arranged in parallel
and is not generalizable to more complex arrangements.

Maintenance priority assignment is used in [30] to schedule
jobs under maintenance capacity. They seek the best priority
arrangement (which is equivalent to a static sequence of jobs)
for pending jobs in a system of a given state. Although this
approach addresses the problem of scheduling maintenance
on heterogeneous machines under a fixed capacity, it uses a
predetermined maintenance schedule that does not adapt to the
evolving state of the system. Even if a schedule performs well
compared to common scheduling heuristics (first-in, first-out
(FIFO), shortest processing time first (SPTF), and so on),
it may not necessarily be the best policy in every scenario.
In [31], FIFO is improved by using a priority heuristic based
on the concept of the opportunity window for maintenance
jobs that minimizes the disruption to system production.
However, the priority measure considers each job in isolation
and does not accurately evaluate the impact that a sequence
of jobs has on system performance. There is a need for a
method of dynamic maintenance scheduling that makes the
best scheduling decisions under the current conditions.

The literature reviewed thus far has thoroughly studied the
optimization of CBM policies under a variety of configura-
tions. However, simplifying assumptions have been made in
previous work that limits the effectiveness of these main-
tenance strategies in a generalized dynamic manufacturing
setting with maintenance capacity. Our proposed approach
improves upon this work by first seeking an optimal set of
static maintenance thresholds that serve to reduce the size of
the problem state space. We then update this policy online
when needed by formulating and solving an MDP using
MCTS.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

III. SYSTEM DESCRIPTION

See [32] for a classification and description of various types
of production systems. We focus on discrete manufacturing
systems with a finite maintenance capacity that may be greater
than 1. In particular, our method can be applied not only
to serial lines but also to complex manufacturing systems,
assuming that a simulation model of the system can be
constructed (see Fig. 4 for an example of such a system).
In this section, we further elaborate on the target system.

A. Notation

We define the major notation used throughout this article in
the following.

1) n: Number of machines in the system.
2) Mi : Label of the i th machine in the system. Machines

Mi and Mi+1 are not necessarily adjacent.
3) ti : Cycle time of machine Mi .
4) Pi : Degradation transition matrix of machine Mi .
5) Hi(t): Health index of machine Mi at time t .
6) hi : Integer-valued health index threshold at which CBM

is scheduled for machine Mi .
7) hmax: Health index at which a machine undergoes fail-

ure.
8) x = {h1, h2, . . . , hn}: CBM maintenance policy of the

system.
9) Sj : A station consisting of at least one machine in

parallel. Multiple machines in a station are assumed to
be identical.

10) xS = {hS1 , hS2, . . . , hSm }: Station-level CBM policy
where maintenance threshold hS j is applied to all
machines at station Sj .

B. Machine Degradation

Systems subject to a CBM strategy assume that the health
condition of a machine can be monitored either periodi-
cally or continuously. Continuously monitored signals, such
as vibration data, acoustic data, or temperature, are now
commonplace in many manufacturing settings as sensing and
data communication become increasingly cost-effective [33].
Furthermore, multiple disparate signals can be aggregated into
a monotonic composite health index that reflects the state of
machine degradation for the purpose of maintenance decision
support [34]. We assume that this health index is continuously
observable and model its behavior over time as a discrete-time
Markov chain where higher states represent increased degra-
dation and wear. Machines undergo time-based degradation,
meaning that the degradation of a working machine continues
even if it is idle due to blockage or starvation.

A machine Mi is considered to be in perfect health at time
t when its health index is equal to 0, (Hi(t) = 0). Eventually,
the machine will reach the maximum health state at future
time t ′, indicating that the machine has failed (Hi(t ′) = hmax).
The degradation parameters, including hmax, may be different
across machines in the system, but for ease of exposition,
we assume that it is the same in the following. Any time a
machine receives maintenance, either preventive or corrective,
its health index is restored to 0 once maintenance is finished,
although this assumption can be relaxed easily.

Fig. 1. Example of Markovian machine degradation.

The degradation transition matrices are assumed to be upper
triangular. This follows the monotonicity assumption of the
health index measure by ensuring that a machine cannot
transition to a healthier state without the intervention of a
maintenance action. An example of machine degradation over
time is shown in Fig. 1. In this example, the machine reaches
its threshold for maintenance at time t = 6 and is restored to
perfect health at t = 8. The machine reaches its maintenance
threshold again at t = 14, but is not repaired immediately, per-
haps because maintenance resources are occupied elsewhere in
the system. The machine reaches failure at t = 16, at which
point it can only be restored by corrective repair.

Although we do not demonstrate them in this work, gen-
eral Markov degradation transition matrices that forego the
assumption of an upper triangular structure are compatible
with our method. Such a model implies that a machine may
transition to a state of lesser degradation without the interven-
tion of a maintenance action. In these instances, a machine
should request maintenance once its degradation level reaches
the threshold for maintenance. If the machine later transitions
to a degradation state below the threshold before receiving
maintenance, the maintenance request should persist and the
machine should continue to be considered for maintenance.

In this work, we specify the machine degradation transition
probabilities, though several methods exist for estimating a
Markov degradation transition matrix from observed data
(see [35], [36]).

C. Maintenance Queue

If the number of machines in the system exceeds the
capacity for maintenance, it is possible that a scenario will
eventually arise where we must choose which machine to
repair first and which jobs to defer. To assist with these
scheduling decisions, machines waiting for maintenance enter
a virtual maintenance queue. The maintenance queue contains
machines that are failed and require corrective action as well
as functional machines that are awaiting preventive repairs.
Under CBM, a machine enters the maintenance queue when
its health reaches the CBM threshold prescribed by the policy.
When a maintenance resource becomes available, it chooses a
machine to repair from among those in the queue.

D. Assumptions

The following assumptions are made regarding the behavior
of the system examined in this work.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HOFFMAN et al.: ONLINE IMPROVEMENT OF CBM POLICY VIA MCTS 5

Fig. 2. Procedure for static policy optimization and online improvement. Once the optimal static policy is found, the system operates as usual until a
maintenance conflict occurs (the number of machines in the queue exceeds the available maintenance capacity). We then use MCTS to find the best action,
begin the associated repair, and continue operating the system.

1) Each machine operates at its full capacity unless it is in
the failed state.

2) Machines produce identical discrete parts that are
processed for the duration of its cycle time and then
placed downstream.

3) When a machine fails, any part in process is discarded.
4) Any maintenance action on a machine will restore that

machine to perfect health.

IV. METHODOLOGY

We formulate the CBM optimization problem in two parts:
static CBM threshold optimization and its online improvement
whenever there are competing maintenance jobs. The two parts
of this formulation are summarized in Fig. 2. The static CBM
policy reduces the state space by excluding relatively healthy
machines from consideration for maintenance. This state-space
reduction allows MCTS to avoid allocating its search budget to
evaluating the possible action of repairing a healthy machine,
which is not likely to be optimal if there are other machines
in more advanced degradation states.

A. Static Policy Optimization

The optimization objective is to find a CBM policy that
maximizes the expected production volume of the system (in
number of units) over a fixed time horizon. The decision
variables of the policy are the health index thresholds for
machines at which maintenance is scheduled. Recall that a
policy is denoted by x = {h1, h2, . . . , hn}. For n machines with
a maximum health state of hmax, there are (hmax)

n possible
solutions. Since we consider a constrained maintenance capac-
ity, the threshold for each machine reflects the time at which
maintenance is requested, which is not necessarily the time
at which maintenance is executed. If the health of a machine
reaches its threshold for maintenance when no maintenance
resources are available, the machine will wait until an ongoing
maintenance action is completed. The optimal maintenance
policy will account for this potential waiting time and assign
maintenance thresholds accordingly.

As the complexity of a manufacturing system increases,
it can quickly become difficult to analytically model its
performance without imposing unrealistic simplifying assump-
tions [37]. For this reason, we use simulation to model the
behavior of the system and estimate the expected production
volume under a given policy. The solution space of policies
grows exponentially as the number of machines increases,
so we employ a GA to seek an optimal policy.

GAs are a metaheuristic method of problem-solving that
attempts to replicate evolutionary behavior observed in
nature. A population of individuals (or maintenance poli-
cies) “evolves” over time by selecting the best candidates,
as determined by a fitness function, to produce the succeeding
generation. Starting with an initial set of random individuals,
a new population is generated by reproduction and added to
the total population. The best individuals from this group
are then chosen to produce the next generation, and the
process repeats until some termination criteria are met. The
problem of optimizing a CBM policy is well-suited for GAs
as this approach is robust and effective for large, complex
manufacturing systems [38].

We apply GA as it is described in [39]. For the CBM
policy optimization problem, we use a candidate policy x =
{h1, h2, . . . , hn} as a value-encoded individual. The fitness of
each individual is determined by the production volume that
is obtained by the system over a fixed time horizon when sim-
ulated under the policy it represents. Individuals are selected
for reproduction with likelihood proportional to their estimated
fitness so that better solutions are more likely to be chosen to
aid in the creation of the next generation. Once two individuals
are selected for reproduction, an offspring is produced using
uniform single-point crossover, that is, for two parent policies
x1 = {h1

1, h1
2, . . . , h1

n} and x2 = {h2
1, h2

2, . . . , h2
n}, we choose

a position uniformly between 0 and n (inclusive) to serve as
the crossover point. Elements to the left of this point in x1 are
combined with elements to the right of this point in x2 to form
a complete policy and create a new individual. For example,

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

if the crossover point is m, the offspring of x1 and x2 would
be {h1

1, . . . h1
m, h2

m+1, . . . h2
n}.

To maintain diversity in the population, there is a small
chance of mutation in each element of a newly created individ-
ual. If mutation occurs, the element changed to a random value
on its domain. We also employ an elitist strategy in which
the best subset of individuals from the current generation is
carried over into the new generation. This approach improves
the performance of the GA by retaining good solutions once
they are identified [40]. For our implementation, we use a
population size of 30 and a mutation probability of 0.01.

B. Online Improvement of Static Policy

To improve upon the static policy that applies FIFO to
resolve maintenance scheduling conflicts, we use Monte Carlo
tree search (MCTS) to seek the best machine to maintain when
a conflict occurs in online fashion. We formulate MCTS online
each time a maintenance resource becomes available in the
system and there is more than one machine in the maintenance
queue. MCTS has seen success in its application to artificial
intelligence in games by using a single-player stochastic game
formulation or an MDP, where there is one decision maker and
the state transition is random.

An MDP is defined by a tuple M = 〈S, A, P, R, γ 〉, where
S is the finite state space, A is the finite action space, P is
the transition function such that P(s, a, s′) is the probability
of transitioning to state s′ by taking action a ∈ A in state s,
R is the reward function that gives the expected immediate
reward of transitioning to state s′ after taking action a in s,
R(s, a, s′), and γ ∈ [0, 1] is the discount factor. Since we
consider the infinite horizon case, we set γ < 1 so that the
cumulative rewards over time converge to a finite sum [41].
In general, a discount factor closer to 0 favors obtaining earlier
rewards. A larger discount factor, on the other hand, gives
more preference to deferred rewards that occur further from
the initial state. The return in the initial state s0 is given by

Gπ (s0) = R(s0, a0, s1) + γ R(s1, a1, s2) + · · ·
=

∞∑
k=0

γ t (sk) R(sk, ak, sk+1) (1)

where s0, s1, s2, . . . is the series of states encountered fol-
lowing a sequence of actions determined by policy π , which
maps each state to an action, and t (sk) is the integer-valued
simulation clock when it enters sk . The goal is to identify the
policy π that maximizes the expected return.

For the maintenance scheduling problem, the state of the
system is defined by the health index for each machine,
remaining processing time for machines with a part in
progress, and elapsed repair time for machines under repair
as well as the current level of each buffer. In practice, this
method requires that this information is readily available
in real time. As discussed previously, we assume that the
health of each machine is known continuously through state-
of-the-art condition monitoring techniques. In most modern
manufacturing environments, information regarding the work
in progress at each machine and the current buffer levels are
typically available through the use of manufacturing execution

system (MES) software or similar technologies [42]. For
machines currently under repair, we need to estimate the dis-
tribution of the remaining repair time in order to simulate the
future behavior from the current point in time. Since the time
to repair distribution is known, we can find the appropriate
conditional probability distribution of the remaining repair
time, given the time that has already elapsed. This initial
current state is denoted s0.

The state of a system at time t can be represented as the
set of state variables for each component in the system. For
a machine Mi , the health state variable is −1 if it is under
repair and 0 if Hi(t) < hi and Hi(t) ∈ [hi , hmax] otherwise.
We use a health state of 0 to indicate a general “healthy” state
for machines whose health does not exceed their threshold
for maintenance. There are therefore hmax − hi + 3 possible
encoded health states for Mi .

The remaining process time is encoded as −1 if Mi is failed,
under repair, or starved (it is in an operational state and does
not have a part), 0 if it is blocked (it is in an operational state
and holding a completed part and cannot place it downstream),
or ti − ui if it is holding a part that has been processed for
duration ui ∈ [0, ti − 1]. The remaining process time can take
on one of ti + 2 values for each machine.

The elapsed repair time of a machine is encoded −1 if it is
not under repair or ri if it began repair at time t−ri . Therefore,
for a general time to repair distribution G, the remaining repair
time on Mi (q) is distributed G(q|q ≥ ri). The repair state can
be simplified in the case of geometrically distributed repair
times; the repair state can be represented as a binary variable
with 1 indicating that a machine is currently under repair and
0 indicating otherwise.

Finally, the level of each buffer is integer-valued between
0 and its maximum capacity, b j . Combining each of these
state variables, we obtain a numerical state vector, which
allows for convenient representation and comparison of states.
In particular, the total size of the state space for a system
consisting of n machines subject to geometric repair times
and m buffers can be bounded above by

|S| ≤
[

n∏
i=1

(hmax − hi + 3) · (ti + 2) · 2

]
·
⎡
⎣ m∏

j=1

(b j + 1)

⎤
⎦.

(2)

Notice that the upper bound increases exponentially with
each additional machine or buffer. However, the upper bound
tends to be loose since some included states are not valid.
For instance, states where the number of machines under
repair exceeds the capacity for maintenance will never be
encountered.

From each state s, the available set of actions A(s) is to
repair a machine currently in the maintenance queue or, if the
queue is empty, do nothing and wait until a machine enters
the queue. The maximum number of possible actions in a
particular state is therefore equal to the number of machines
currently in the maintenance queue, which is again upper
bounded by n. When executing an action, the transition to
the new state is sampled using simulation since the transition
function P is unknown. The reward of a state s is the ratio

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HOFFMAN et al.: ONLINE IMPROVEMENT OF CBM POLICY VIA MCTS 7

of observed production in units to the ideal production in that
state since the initial state, where the ideal production is the
number of units that would be produced if machines in the
system experienced no downtime. For example, R(s0, a0, s1)
is equal to the proportion of ideal production obtained between
time t (s0) and time t (s1). Since the ideal production is
the maximum that is achievable and the minimum possible
production count is 0, R(s, a, s′) ∈ [0, 1].

Given this MDP formulation, each node of the search tree
represents a unique state–action sequence that starts from
the current state, s0. Choosing action a0 from this state
results in traversing an edge of the tree from s0 to s1.
Thus, a node of depth d represents a state–action sequence
s0, a0, s1, a1, . . . , ad−1, sd .

The MCTS procedure, as described in [43], includes four
basic steps that are repeated until a specified search budget
is expended: selection, expansion, simulation, and backprop-
agation. MCTS is an anytime algorithm, meaning that it can
be terminated after any duration of time or any number of
iterations. In practice, the run time of the algorithm can
be terminated depending on the amount of time available
for making maintenance decisions. Each of these steps is
described in detail within the context of the maintenance
scheduling problem in the following.

1) Selection: The tree is initialized with the root node,
which represents the real system in its current state s0.
Since the tree contains only one node at the first iteration,
the selection step is trivial. For the node selection policy
beyond the first iteration, we must choose an action from
each node and sample the future state that results from taking
that action in the current state. We use the action selection
strategy described in [44] and the upper confidence bound for
trees (UCT) algorithm proposed in [45] to evaluate candidate
actions. Given the set of possible actions in state s, A(s),
an action a∗ is chosen such that

a∗ = max
a∈A(s)

(
R̄a + 2Cp

√
2 ln n

na

)
(3)

where R̄a is the average reward from taking action a from
the current node, Cp is the exploration constant, n is the
number of times that the current node has been visited, and
na is the number of times that action a has been chosen so
far. Larger values of Cp will favor the search of less visited
actions, whereas smaller values will cause the search to spend
more time evaluating promising actions. Because Ra ∈ [0, 1],
we choose Cp = 1/

√
2, which has been shown to be ideal for

rewards in this range [45].
Once an action is selected, the resulting future state is

sampled by simulating the execution of that action. The node
selection process is repeated recursively until we reach either
an unexpanded node (as defined under the expansion step) or
a terminal node (as defined under the simulation step).

2) Expansion: A node is considered “expanded” if every
available action from that node has been sampled at least once.
Otherwise, the node is unexpanded. If an unexpanded node is
encountered during the node selection procedure, we randomly
select a valid action that has not yet been chosen and execute

that action to sample a future state. A new node representing
this future state is then added to the current search tree.
We simulate from the new node to obtain an estimate of its
reward.

3) Simulation: The rollout policy used in the simulation step
determines how we obtain an outcome from an intermediate
nonterminal node. The default policy chooses random children
nodes (i.e., selecting random available actions) until finding
a leaf node of sufficient depth. The reward at each node is
the production volume that is observed over the elapsed time
horizon divided by the ideal production over that horizon.
We use a discount factor of γ = 0.9624, which results in 99%
of the cumulative reward at the root node being obtained
within 2 h of the initial time.

4) Backpropagation: After the simulation result is obtained,
the statistics are updated for nodes along the path from the
simulated leaf node to the root. These statistics include the
number of visits to each node and their cumulative reward.
The number of visits is incremented only for nodes that were
chosen by the node selection policy. Nodes visited during the
rollout of the simulation step are not considered visited.

5) Termination: Once the search budget is expended,
we have an estimation of the expected reward for each action
available in the current state s0. This reward represents the
expected proportion of ideal production that is achieved over
the specified 6-h evaluation horizon. Typically, in MCTS,
the action with the highest average observed reward is chosen
as the best. However, with a fixed search budget, we may
not be able to conclude that a single action is statistically
significantly better than the others. We therefore use statistical
testing to find the best candidate actions and apply knowledge
of the system to resolve ties among such actions.

To find the best set of actions, we first use a one-way
analysis of variance to test the hypothesis that each sample
of rewards shares an equal mean. If this hypothesis is not
rejected, we cannot conclude that the mean rewards for each
action are different, and thus, we include all available actions
in the best set. Otherwise, we use Tukey’s honestly significant
difference (HSD) test, a multiple comparison test for deter-
mining whether the mean of several samples is significantly
different. This test overcomes the inflated type I error that may
occur when conducting pairwise statistical tests independently.

Tukey’s HSD test provides a pairwise comparison of the
mean reward for each action. From this result, we choose
the actions for which there is no statistically significantly
better action as the best set. If there is more than one
potential action in this set, we select the action of repairing
the machine with the earliest request for maintenance. This
method of breaking ties among the best actions ensures that
the scheduling procedure will not perform worse than FIFO
in the cases where MCTS cannot clearly identify a single best
action.

C. Alternative Scheduling Disciplines

In addition to FIFO and MCTS, we compare several other
commonly used methods of maintenance conflict resolution:
SPTF, longest processing time first (LPTF), and Birnbaum
importance.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 3. Four-machine production line.

Under an SPTF discipline, the machine in the maintenance
queue with the shortest expected repair time is chosen first.
Since we consider two types of maintenance jobs, preventive
and corrective, SPTF results in preferring preventive jobs
over corrective ones. If there are multiple machines awaiting
preventive maintenance, we break ties according to FIFO.

Similar to SPTF, under LPTF, we choose maintenance jobs
with longer expected repair times. This strategy results in a
preference for completing corrective jobs earlier. Ties in this
case are also broken with FIFO.

The Birnbaum importance aims to quantify the structural
importance of each component in a system [46]. It has been
used effectively for maintenance prioritization in complex
manufacturing systems by identifying machines with a greater
potential to disrupt system throughput and selecting these
critical machines for prioritized maintenance [23], [47]. Con-
sider, for example, the four-machine system shown in Fig. 3.
If machine M1 has failed while M2, M3, and M4 are func-
tioning, it blocks the throughput of the entire system since
each part produced must pass through M1. However, if M2 has
failed while the rest of the machines are working, the system
throughput is not disrupted since parts can traverse through M3

or M4 as alternatives to M2 due to the parallel arrangement of
these machines.

When calculating the Birnbaum importance, the operational
state of each machine Mi is represented by a binary variable
yi , where

yi =
{

1, if Mi is operational

0, if Mi is failed
(4)

and the state vector of the system is y = (y1, y2, . . . , yn). The
system state is described by the binary function φ(y) where

φ(y) =
{

1, if the system is operational

0, otherwise.
(5)

For the purposes of this calculation, we consider the system to
be operational if there is at least one path of working machines
that allows parts to completely traverse through the system.
The Birnibaum importance of machine Mi is then given by

I Bi =
∑

(·i ,y)(φ(1i , y) − φ(0i , y))

2n−1
(6)

where (·i , y) is the set of all 2n−1 state vectors with yi ∈ {0, 1},
φ(1i , y) is the system state with yi = 1, and φ(0i , y) is the sys-
tem state with yi = 0. Therefore, the term φ(1i , y) − φ(0i , y)
is equal to 1 if a failure on Mi would change the system
state from operational to nonoperational. In these cases, Mi

is considered to be critical to the functionality of the system.

Fig. 4. Six-station complex production line.

TABLE I

STATIONS FOR SYSTEM CONFIGURATIONS A AND B

Machines that are deemed critical in a higher proportion of
system states are assigned a higher measure of importance and
should be prioritized for maintenance. If multiple machines
due for maintenance are tied for the highest importance, then
one is selected randomly.

Each of these scheduling rules serves as a baseline rule
for obtaining a static policy to which our proposed online
scheduling method is compared.

V. RESULTS

In this section, we compare the performance of the online
scheduling improvement to static CBM policies for the com-
plex production line shown in Fig. 4 under the two machine
configurations outlined in Table I. For each arrangement,
we consider machines in a parallel station (such as machines
M3, M4, and M5 in this example) to be identical with a
common cycle time and degradation rate.

We first optimize the static CBM policy using GA under the
aforementioned static scheduling rules and then improve each
policy using MCTS. We use the same maintenance threshold
for each machine at a station when applying the CBM policy.

For each example shown, machines at stations S1–S6 have
constant cycle times of 10, 60, 180, 40, 20, and 10 min,
respectively. Each buffer has a maximum capacity of ten parts.
Also, in all scenarios, the duration of maintenance follows the
geometric distribution, which is the distribution of X number
of independent Bernoulli trials with a specified probability
of success that are needed until one success is observed.
For success probability p, the probability mass function is
P(X = k) = (1 − p)k−1 p and the expected value of X is
1/p. We choose p = 1/20 for all preventive maintenance
jobs and consider several success probabilities for corrective
maintenance in the following experiments.

We use the matrix Pi for the degradation transition matrix
of machine Mi of the form shown in (7), as shown at the
bottom of the next page. In this matrix, pi is the probability
of degrading by one unit at each time step or the degradation
rate of Mi . We also allow for the possibility of sudden failures
from any health state as indicated by the probability f j .

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HOFFMAN et al.: ONLINE IMPROVEMENT OF CBM POLICY VIA MCTS 9

TABLE II

STATION-LEVEL BIRNBAUM IMPORTANCE FOR NINE-MACHINE

LINE CONFIGURATIONS A AND B

TABLE III

EXPERIMENTAL SYSTEM CONFIGURATION SETTINGS

For each of the following results, we set f j = 0.005 · (j + 1)
for all machines. This results in an increasing probability of
sudden failure at higher states of degradation. Bear in mind
that our method allows much more complex upper triangular
degradation matrices than (7).

A. Maintenance Policy Optimization

We demonstrate the optimization of the CBM policy for
the system in Fig. 4 where each machine is subject to a
degradation rate of pi = 0.03, the maintenance capacity
is 3, and corrective maintenance duration is geometrically
distributed with success probability 1/60 (configuration 10 in
Table IV). We use a warm-up period of one week to
achieve the steady-state performance and a time horizon of
one week for evaluation. Since the dynamics of the system
are stationary, the duration of the evaluation horizon will not
affect optimization as long as the system is observed in its
steady state. To justify this warm-up period, we consider the
average throughput (in parts per day) over time of this system,
as shown in Fig. 5. System throughput is measured as the rate
at which finished parts leave the system, which is equivalent
to the observed rate of production of station S6 in this arrange-
ment of machines. At time t = 0, the system is empty and
all machines begin in a perfectly healthy state. As the buffers
become populated, the throughput of the system eventually
converges to an approximately constant level. Beyond this
point, the throughput is stable, and therefore, we can conclude
that the system is in its steady state.

Fig. 6 shows the convergence of the solution under the
Birnbaum priority scheduling averaged over 30 runs of the

Fig. 5. Average throughput of the system over 28 days. The vertical line at
a time of one week marks the end of the chosen warm-up period.

Fig. 6. Estimated objective function value over 250 generations averaged
across 30 runs with a shaded 95% confidence interval of the mean value.

GA. Across these runs, the best station-level policy found
was xS = {7, 8, 10, 10, 7, 10} (recall that hmax = 10) with an
average objective function value of 419.01 units produced over
the one week evaluation period.

Fig. 7 shows the improvement in production throughput
under the optimal policy when using MCTS scheduling.
MCTS was applied each time a maintenance scheduling
conflict occurred. The improved policy provides an average
throughput increase of 3.37 parts per day or 23.60 parts per
week. This is a 6.19% improvement for this configuration.

B. Scheduling Problem Instance

We demonstrate the online policy improvement by gener-
ating an instance of maintenance scheduling conflict in the
system described in Section V-A by simulating the system
until four machines are waiting in the maintenance queue.
We formulate the online scheduling problem at the point in
time when the maintenance resource is released and must now
decide which machine to repair next.

At simulation time t = 366 min of the replication, a main-
tenance resource completes a repair on machine M13 and

Pi =

⎡
⎢⎢⎢⎢⎢⎣

1 − (pi + f0) pi f0

1 − (pi + f1) pi f1

. . .
...

1 − (pi + fhmax−1) pi + fhmax−1

1

⎤
⎥⎥⎥⎥⎥⎦ (7)

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

TABLE IV

SYSTEM CONFIGURATION EXPERIMENT RESULTS

Fig. 7. Average throughput comparison of FIFO and MCTS scheduling over
one week of production. The shaded region shows a 95% confidence interval
for each average throughput.

observes machines M1, M4, M11, and M14 with respective
health states 6, 10, 10, and 4 in the maintenance queue.
Machines M8 and M12 are currently under repair, while the
remaining machines are in use. We must allocate the available
capacity to conducting a repair on a machine in the queue.

According to the default Birnbaum priority scheduling pol-
icy as outlined in Table II, machine M1 should be repaired
as it has the highest Birnbaum importance in this system.
Instead, we apply the online improvement procedure described
in Section IV-B to attempt to find a better maintenance action.

In addition to the health states of each machine, we first
gather the necessary additional information about the current
system state, including the remaining cycle time of each
machine and the current level of each buffer. In the current
state, we also indicate that machines M8 and M12 are under-
going corrective repair. This information forms the initial state
from which we conduct MCTS to seek the optimal action.

With the initial state specified in the simulator, we run the
MCTS for 1000 iterations. The resulting best action is to repair
machine M14, which is awaiting preventive maintenance.

Maintaining M14 is identified as the best action because it
is estimated to maximize the reward function stated in (1),
indicating that this action provides the greatest expected dis-
counted production volume in the current state. The action is
carried out in the real-world system and it continues to operate
until another maintenance scheduling conflict occurs.

C. System Configuration Experiments

In this section, we examine the performance of the online
maintenance policy improvement on a variety of systems under
different parameters. The system configuration factors and the
corresponding levels are given in Table III. A full-factorial
design of these four factors results in 24 system configurations.
For each configuration, we find the optimal static CBM policy
for each of the baseline scheduling heuristics described in
Section IV-C using the GA, as described in Section IV.

We then simulate each system under its optimal policy using
each baseline heuristic for maintenance conflict resolution
and again using our online policy improvement via MCTS
for comparison. We use a one-week warm-up period and
a one-week evaluation horizon to measure the production
observed under each method. The results are summarized
in Table IV.

In Table IV, for each static scheduling heuristic, we give
the baseline production volume and the production obtained
under MCTS scheduling as well as the relative improvement
MCTS provides. An asterisk in the p column signifies a
p-value less than 0.05 for the one-sided two-sample t-test
for equal mean production volume, indicating that MCTS
provides a significant improvement over the corresponding
static heuristic. In 90 of the 96 cases studied, MCTS either
improves or preserves the performance of the static policy.

The throughput improvement obtained from MCTS schedul-
ing strongly depends on the system configuration parameters

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HOFFMAN et al.: ONLINE IMPROVEMENT OF CBM POLICY VIA MCTS 11

and the resulting behavior of the system. For example, if main-
tenance conflicts occur very rarely in a system (such as in
the case of a high maintenance capacity or machines with
low degradation rate), then there will be few opportunities to
apply MCTS to make scheduling decisions. This will result
in approximately equal performance to any static scheduling
heuristic. On the other hand, if machines degrade more quickly
and maintenance resources are scarce, we expect to see more
maintenance conflicts and instances of online scheduling via
MCTS. Among the system configurations studied in this work,
MCTS scheduling provided a 10% or greater increase in
throughput only in cases where maintenance resource utiliza-
tion was at least 90%.

Under certain system configurations, it may also be possible
to derive an optimal or near-optimal heuristic for maintenance
scheduling by inspection of the system. Consider, for example,
a system with n machines arranged in parallel where the cycle
time of machine Mi is i minutes. A simple and effective
heuristic would be to repair the machine with the shortest cycle
time first since it offers the greatest contribution to the overall
system throughput. In this scenario, it is unlikely that MCTS
scheduling would result in a significantly higher productivity
over this static heuristic.

Based on these results, we expect our proposed method
of online static policy improvement to offer the greatest
throughput increase for systems with a high rate of mainte-
nance resource utilization as well as a sufficiently complex
configuration for which an effective static heuristic cannot
easily be derived.

VI. CONCLUSION

We have demonstrated the performance of GA in static
CBM policy optimization and MCTS for improving the policy
online. MCTS is effective, especially when the maintenance
resource utilization is high. It overcomes the limitations of
simple scheduling heuristics by looking ahead to the future
to evaluate the outcome of sequential maintenance decisions.
Although MCTS has performed well in the examples shown in
this work, for very large problems, it may require significant
run time to converge to a good solution. This can be bur-
densome in instances where there is very little time to make
maintenance decisions, such as the sudden occurrence of a
critical failure.

Future work includes examining the effectiveness of MCTS
over heuristic scheduling for arbitrary manufacturing systems.
For example, if a system consists of very reliable machines
that require infrequent maintenance, then it may be rare for
scheduling conflicts to occur. A simple priority policy, such as
FIFO, would be effective if the average maintenance utilization
level is very low as seen from our experiments. Under these
conditions, the effort required to implement an MCTS schedul-
ing policy may not be worthwhile. We identified several such
cases for a system of particular arrangement under various
parameter settings, but doing the same for generalized system
structure is also of interest. Furthermore, the application
of MCTS to the maintenance scheduling problem can be
improved by learning from the results of each search to
influence future decisions. If the MCTS problem is formulated

and solved for a particular system state, the information can
likely be used again if a scheduling conflict arises in the future,
while the system is in a similar state.

ACKNOWLEDGMENT

Contribution from Penn State was supported in part by Allen
E. Pearce and Allen M. Pearce endowment.

REFERENCES

[1] A. Berrichi, L. Amodeo, F. Yalaoui, E. Châtelet, and M. Mezghiche,
“Bi-objective optimization algorithms for joint production and mainte-
nance scheduling: Application to the parallel machine problem,” J. Intell.
Manuf., vol. 20, no. 4, p. 389, 2009.

[2] U.S. Census Bureau. (2016). 2016 Annual Survey of Manufactures.
[Online]. Available: https://www.census.gov/programs-surveys/asm.html

[3] Railway Applications—Heating, Ventilation and Air Conditioning
Systems for Rolling Stock—Part 1: Terms and Definitions, Stan-
dard ISO 19659-1:2017, International Organization for Standardization,
Aug. 2017.

[4] T. Wireman, “Maintenance organizations,” in Benchmarking Best Prac-
tices in Maintenance Management. New York, NY, USA: Industrial Press
Inc., 2004, ch. 3, pp. 55–84.

[5] K. Khazraei and J. Deuse, “A strategic standpoint on maintenance
taxonomy,” J. Facilities Manage., vol. 9, no. 2, pp. 96–113, May 2011.

[6] S. Albers, “Online scheduling,” in Introduction to Scheduling, Y. Robert
and F. Vivien, Eds. Boca Raton, FL, USA: CRC Press, 2009, ch. 3.

[7] A. H. Elwany, N. Z. Gebraeel, and L. M. Maillart, “Structured replace-
ment policies for components with complex degradation processes and
dedicated sensors,” Oper. Res., vol. 59, no. 3, pp. 684–695, Jun. 2011.

[8] N. Chen, Z.-S. Ye, Y. Xiang, and L. Zhang, “Condition-based mainte-
nance using the inverse Gaussian degradation model,” Eur. J. Oper. Res.,
vol. 243, no. 1, pp. 190–199, May 2015.

[9] X. Jin et al., “The present status and future growth of maintenance in
US manufacturing: Results from a pilot survey,” Manuf. Rev., vol. 3,
p. 10, Jan. 2016.

[10] X. S. Si, W. Wang, C. H. Hu, and D. H. Zhou, “Remaining useful life
estimation—A review on the statistical data driven approaches,” Eur. J.
Oper. Res., vol. 213, no. 1, pp. 1–14, 2011.

[11] L. Yang, X. Ma, and Y. Zhao, “A condition-based maintenance model for
a three-state system subject to degradation and environmental shocks,”
Comput. Ind. Eng., vol. 105, pp. 210–222, Mar. 2017.

[12] N. Rasmekomen and A. K. Parlikad, “Condition-based maintenance of
multi-component systems with degradation state-rate interactions,” Rel.
Eng. Syst. Saf., vol. 148, pp. 1–10, Apr. 2016.

[13] M. Marseguerra, E. Zio, and L. Podofillini, “Condition-based mainte-
nance optimization by means of genetic algorithms and Monte Carlo
simulation,” Rel. Eng. Syst. Saf., vol. 77, no. 2, pp. 151–165, Aug. 2002.

[14] Y. Zhou, T. R. Lin, Y. Sun, and L. Ma, “Maintenance optimisation
of a parallel-series system with stochastic and economic dependence
under limited maintenance capacity,” Rel. Eng. Syst. Saf., vol. 155,
pp. 137–146, Nov. 2016.

[15] C. D. Dao and M. J. Zuo, “Optimal selective maintenance for multi-state
systems in variable loading conditions,” Rel. Eng. Syst. Saf., vol. 166,
pp. 171–180, Oct. 2017.

[16] C. D. Dao and M. J. Zuo, “Selective maintenance of multi-state systems
with structural dependence,” Rel. Eng. Syst. Saf., vol. 159, pp. 184–195,
Mar. 2017.

[17] Y. Zhou, Y. Guo, T. R. Lin, and L. Ma, “Maintenance optimisation of a
series production system with intermediate buffers using a multi-agent
FMDP,” Rel. Eng. Syst. Saf., vol. 180, pp. 39–48, Dec. 2018.

[18] X. Gu, S. Lee, X. Liang, M. Garcellano, M. Diederichs, and J. Ni,
“Hidden maintenance opportunities in discrete and complex production
lines,” Expert Syst. Appl., vol. 40, no. 11, pp. 4353–4361, Sep. 2013.

[19] D. I. Cho and M. Parlar, “A survey of maintenance models for multi-unit
systems,” Eur. J. Oper. Res., vol. 51, no. 1, pp. 1–23, Mar. 1991.

[20] M. C. A. O. Keizer, S. D. P. Flapper, and R. H. Teunter, “Condition-
based maintenance policies for systems with multiple dependent com-
ponents: A review,” Eur. J. Oper. Res., vol. 261, no. 2, pp. 405–420,
Sep. 2017.

[21] C. E. Ebeling, An Introduction to Reliability and Maintainability Engi-
neering. New York, NY, USA: McGraw-Hill, 2004.

[22] A. Gupta and C. Lawsirirat, “Strategically optimum maintenance of
monitoring-enabled multi-component systems using continuous-time
jump deterioration models,” J. Qual. Maintenance Eng., vol. 12, no. 3,
pp. 306–329, Jul. 2006.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[23] K.-A. Nguyen, P. Do, and A. Grall, “Condition-based maintenance
for multi-component systems using importance measure and predictive
information,” Int. J. Syst. Science, Oper. Logistics, vol. 1, no. 4,
pp. 228–245, Oct. 2014.

[24] K.-A. Nguyen, P. Do, and A. Grall, “Multi-level predictive maintenance
for multi-component systems,” Rel. Eng. Syst. Saf., vol. 144, pp. 83–94,
Dec. 2015.

[25] Y. Liu and H.-Z. Huang, “Optimal replacement policy for multi-state
system under imperfect maintenance,” IEEE Trans. Rel., vol. 59, no. 3,
pp. 483–495, Sep. 2010.

[26] W. Rice, C. Cassady, and J. Nachlas, “Optimal maintenance plans under
limited maintenance time,” in Proc. 7th Ind. Eng. Res. Conf., 1998,
pp. 1–3.

[27] W. Cao, X. Jia, Q. Hu, J. Zhao, and Y. Wu, “A literature review on
selective maintenance for multi-unit systems,” Qual. Rel. Eng. Int.,
vol. 34, no. 5, pp. 824–845, Jul. 2018.

[28] K. S. de Smidt-Destombes, M. C. van der Heijden, and A. van Harten,
“On the availability of a k-out-of-N system given limited spares and
repair capacity under a condition based maintenance strategy,” Rel. Eng.
Syst. Saf., vol. 83, no. 3, pp. 287–300, Mar. 2004.

[29] R. Moghaddass, M. J. Zuo, and M. Pandey, “Optimal design and main-
tenance of a repairable multi-state system with standby components,”
J. Stat. Planning Inference, vol. 142, no. 8, pp. 2409–2420, Aug. 2012.

[30] Z. Yang, Q. Chang, D. Djurdjanovic, J. Ni, and J. Lee, “Maintenance
priority assignment utilizing on-line production information,” J. Manuf.
Sci. Eng., vol. 129, no. 2, pp. 435–446, Apr. 2007.

[31] M. Hoffman, E. Song, M. Brundage, and S. Kumara, “Condition-based
maintenance policy optimization using genetic algorithms and Gaussian
Markov improvement algorithm,” in Proc. PHM Soc. Conf., vol. 10,
no. 1, 2018, pp. 1–9.

[32] J. Li and S. M. Meerkov, Production Systems Engineering. New York,
NY, USA: Springer, 2008.

[33] A. K. S. Jardine, D. Lin, and D. Banjevic, “A review on machinery diag-
nostics and prognostics implementing condition-based maintenance,”
Mech. Syst. Signal Process., vol. 20, no. 7, pp. 1483–1510, Oct. 2006.

[34] K. Liu, A. Chehade, and C. Song, “Optimize the signal quality of the
composite health index via data fusion for degradation modeling and
prognostic analysis,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 3,
pp. 1504–1514, Jul. 2017.

[35] H.-S. Baik, H. S. Jeong, and D. M. Abraham, “Estimating transition
probabilities in Markov chain-based deterioration models for manage-
ment of wastewater systems,” J. Water Resour. Planning Manage.,
vol. 132, no. 1, pp. 15–24, Jan. 2006.

[36] Y. Tsuda, K. Kaito, K. Aoki, and K. Kobayashi, “Estimating Markov-
ian transition probabilities for bridge deterioration forecasting,” Struct.
Eng./Earthquake Eng., vol. 23, no. 2, pp. 241s–256s, 2006.

[37] A. Alrabghi and A. Tiwari, “State of the art in simulation-based
optimisation for maintenance systems,” Comput. Ind. Eng., vol. 82,
pp. 167–182, Apr. 2015.

[38] K. A. H. Kobbacy, Artificial Intelligence in Maintenance. London, U.K.:
Springer, 2008, pp. 209–231.

[39] S. J. Russell and P. Norvig, “Reinforcement learning,” in Artificial
Intelligence: A Modern Approach, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2010, ch. 20.

[40] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[41] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[42] B. S. D. Ugarte, A. Artiba, and R. Pellerin, “Manufacturing execution
system—A literature review,” Prod. Planning Control, vol. 20, no. 6,
pp. 525–539, Sep. 2009.

[43] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-Carlo tree
search: A new framework for game Ai,” in Proc. AIIDE, 2008, pp. 1–2.

[44] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus, “An adaptive sampling
algorithm for solving Markov decision processes,” Oper. Res., vol. 53,
no. 1, pp. 126–139, Feb. 2005.

[45] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved Monte-Carlo
search,” Univ. Tartu, Tartu, Estonia, Tech. Rep. 1, 2006, vol. 1.

[46] Z. W. Birnbaum, “On the importance of different components in a
multicomponent system,” Washington Univ. Seattle Lab Stat. Res.,
Seattle, WA, USA, Tech. Rep. 54, 1968.

[47] S. Si, M. Liu, Z. Jiang, T. Jin, and Z. Cai, “System reliability allocation
and optimization based on generalized Birnbaum importance measure,”
IEEE Trans. Rel., vol. 68, no. 3, pp. 831–843, Sep. 2019.

Michael Hoffman received the Ph.D. degree in
industrial engineering and operations research from
The Pennsylvania State University, State College,
PA, USA, in 2021.

He is currently a Graduate Measurement Science
and Engineering Fellow of the National Institute
of Standards and Technology (NIST), Gaithersburg,
MD, USA, where he is a member of the Knowl-
edge Extraction and Application for Manufacturing
Operations Project. Previously, he was a Walker
Graduate Assistant with the Materials and Manu-

facturing Division, Applied Research Laboratory, The Pennsylvania State
University. His research interests include intelligent manufacturing systems
and simulation for industrial maintenance decision support.

Eunhye Song received the Ph.D. degree in industrial
engineering and management sciences from North-
western University, Evanston, IL, USA, in 2017.

She is currently the Harold and Inge Marcus
Early Career Assistant Professor with the Depart-
ment of Industrial and Manufacturing Engineering
and an Associate of the Institute for Computa-
tional and Data Sciences, The Pennsylvania State
University, State College, PA, USA. Her research
interests include simulation design of experiments,
uncertainty and risk quantification, and simulation
optimization.

Dr. Song is an Active Member of the INFORMS Simulation Society and has
served on the Society’s Underrepresented Minorities and Women Committee.
She was a recipient of the National Science Foundation CAREER Award and
was a Finalist of the 2020 INFORMS Junior Faculty Interest Group Paper
Competition.

Michael P. Brundage received the Ph.D. degree in
mechanical engineering from Stony Brook Univer-
sity, Stony Brook, NY, USA, in 2015.

He is currently an Industrial Engineer with the
Informational Modeling and Testing Group at the
National Institute of Standards and Technology
(NIST), Gaithersburg, MD, USA. He serves as the
Project Leader for the Knowledge Extraction and
Application for Manufacturing Operations Project
in the Model-Based Enterprise Program. His work
contributes to guidelines for intelligent maintenance.

He is part of a task group for creating an ASME Prognostics Health
Management (PHM) Standards Committee. He worked closely with ASTM
International E60.13 in the development of a guideline for sustainable man-
ufacturing performance indicators (ASTM E3096-17). He has authored over
20 peer-reviewed publications. His research interests include smart manu-
facturing diagnostics for intelligent maintenance, sustainable manufacturing
performance measurement, smart manufacturing capability assessment, and
manufacturing knowledge visualization.

Dr. Brundage has chaired multiple ASME MSEC Symposia and industry
forums/workshops at NIST.

Soundar Kumara is currently the Allen, E., and
Allen, M., Pearce Professor of Industrial Engineer-
ing at Pennsylvania State University, University
Park, PA, USA. He is also with the School of
Information Sciences and Technology, Pennsylvania
State University. His research interests are in smart
manufacturing, large-scale networks, sensing and
control, the Industrial Internet of Things (IIoT), and
machine learning in manufacturing and healthcare.

Prof. Kumara is a fellow of the Institute of Indus-
trial Engineers (IIE), the International Academy of

Production Engineering (CIRP), the American Association for Advancement
of Science (AAAS), and the American Association of Mechanical Engi-
neers (ASME). He has guided 60 Ph.D. and 75 M.S. students.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 30,2021 at 14:46:46 UTC from IEEE Xplore. Restrictions apply.

