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Coupled-mode theory (CMT) has been widely used in optics and photonics design. Despite its
popularity, several different formulations of CMT exist in the literature, and their applicable range is
not entirely clear, in particular when it comes to high-index-contrast photonics platforms. Here we
propose an improved formulation of CMT and demonstrate its superior performance through numer-
ical simulations that compare CMT-derived quantities with supermode calculations and full wave
propagation simulations. In particular, application of the improved CMT to asymmetric waveguides
reveals a necessary correction in the conventional phase matching condition for high-index-contrast
systems, which could lead to more accurate photonic circuit designs involving asymmetric elements.

I. INTRODUCTION

Coupled-mode theory (CMT) is a simple, yet power-
ful method which has been widely used in many disci-
plines of physics and engineering [1, 2]. In the field of
optics/photonics, CMT has proven to be an indispens-
able tool for optimizing coupling between various pho-
tonic components such as waveguides and resonators, de-
spite the availability of commercial softwares that are
capable of performing electromagnetic simulations with-
out approximation [3, 4]. This is because a full three-
dimensional (3-D) simulation for typical photonic struc-
tures still takes a significant amount of computing time
and resources. On the other hand, the CMT-based ap-
proach only needs the electromagnetic fields from indi-
vidual components, whose simulation can often be simpli-
fied to 2-D by utilizing the inherent geometric symmetry.
As a result, CMT provides a significant speedup in the
device design and optimization compared to approaches
based on full 3-D numerical simulations [5–13].

To illustrate the CMT formulation in the context of
coupling between adjacent photonic structures, here we
use two coupled waveguides – a system of great practical
relevance (e.g., in directional couplers) – as an exam-
ple. Our methodology is as follows: we first review exist-
ing CMT formulations and examine how key quantities
produced by these approaches compare against exact su-
permode calculations. We discuss the physical origin of
observed differences in the context of superposition rules
that are often the starting point for CMT, but which do
not necessarily satisfy electric and magnetic field bound-
ary conditions at interfaces or even the self-consistency
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of Maxwell’s equations themselves (e.g., that the electric
and magnetic fields cannot be independently specified).
We use this insight to propose a new improved CMT
formalism that obey Maxwell’s equations and boundary
conditions (at least for the dominant field components),
and examine how these results compare to both super-
mode calculations and full wave propagation simulations
in the specific case of asymmetric waveguides, where ex-
isting CMTs tend to most egregiously fail.

Being a first-order perturbation method, a general two-
mode CMT would take the following form [2, 14]:

da(z)

dz
= iΓa(z), (1)

where a(z) ≡ [a1(z) a2(z)]T with aj(z) representing the
normalized power amplitude for the waveguide mode
j (j = 1, 2) propagating in the z direction. Γ =
[γ11 γ12; γ21 γ22] is a 2×2 matrix with γij representing the
coupling coefficients between the two waveguide modes
(i, j = 1, 2). While in some cases it is necessary to ex-
tend the above two-mode CMT to include more than one
mode from each waveguide [15], which itself is a straight-
forward process, the two-mode CMT formulation is suf-
ficient for many applications. This is because in a typ-
ical coupling scenario, only a limited number of modes
from each waveguide would contribute to the coupling
process, while the rest of the modes are strongly phase
mismatched and therefore can be ignored [2]. In addition,
the modes under consideration in Eq. 1 are typically well
confined in their respective waveguide geometries, result-
ing in insignificant coupling to radiation modes which can
often be neglected in the first-order approximation. For
this reason, the system can be considered as lossless, and
the coupling matrix Γ becomes real after proper phase
normalization (see discussions below) [4, 8].

The two eigenvalues of Eq. 1 are found as γ± = (γ11 +



2

γ22)/2 ±
√

(γ11 − γ22)2/4 + γ12γ21 [2]. Combined with
appropriate initial conditions at z = 0, aj(z) can then be
determined. For instance, for a1(0) = 1 and a2(0) = 0,
the maximum power transfer ratio from waveguide 1 to
2 is obtained as [4]:

Tmax
21 =

|γ21|2∣∣(γ11−γ222 )2 + γ12γ21

∣∣ . (2)

A similar equation can be obtained for Tmax
12 by switch-

ing the subscripts in Eq. 2. From these results, we see
that if |γ11 − γ22| � max(|γ12|, |γ21|), the maximum
power transfer ratio between the two waveguides is much
less than 100 %, a scenario commonly depicted as being
phase-mismatched [4]. On the other hand, if |γ11 − γ22|
is comparable or smaller than max(|γ12|, |γ21|), efficient
power transfer between the two waveguides would occur.
In fact, one can identify the exact phase-matching con-
dition as γ11 = γ22. In this case, power conservation
requires |γ21| = |γ12|. This is because if |γ21| 6= |γ12|
when γ11 = γ22, the maximum power transfer ratio from
one waveguide to the other (Tmax

21 or Tmax
12 ) will be larger

than 100%, which is clearly unphysical. As a result, we
conclude that the maximum power transfer ratio in the
phase-matched scenario has to be 100 % (assuming there
is no loss in the coupling process).

II. MAJOR EXISTING CMT FORMULATIONS

Major existing CMT formulations can be summarized
by the following formula [2]:

Γ =
∆β

2

[
1 0
0 −1

]
+

[
P11 P12

P21 P22

]−1 [
κ11 κ12

κ21 κ22

]
, (3)

where ∆β ≡ β1−β2 is the intrinsic phase mismatch (βj is
the propagation constant of the waveguide mode j when
isolated), and Pij and κij are defined as

Pij =
1

4

∫∫
(e∗i × hj + ej × h∗i ) · ẑdS, (4)

κij =
ω

4

∫∫
(ε− εj) e∗i · ejdS, (5)

where ej , hj , and εj are the electric field, magnetic field,
and permittivity of the waveguide mode j when isolated
(j = 1, 2), respectively; ε denotes the permittivity of the
coupled waveguide system (note that εj and ε are as-
sumed to be uniform along z but can have distributions
in the x-y plane, which is the waveguide cross section);
and dS ≡ dxdy denotes the integration in the waveguide
cross section. Pjj in Eq. 4 represents the propagating
power of waveguide mode j and hence equals one when
normalized. In addition, a nonzero P12 (= P ∗21) indi-
cates that the two waveguide modes are not necessarily
orthogonal to each other due to field overlap [16]. By
properly choosing the relative phase of the two waveg-
uide modes, we can always make P12 real. For the rest of

the paper, we define a real parameter X to represent this
power overlap factor in the CMT formulation (X = P12).
Finally, κij can be understood as a first-order dipole per-
turbation from the waveguide mode j (δPj ≡ (ε− εj)ej)
to the waveguide mode i (i, j = 1, 2) [17]. By adopting
the same phase choice for a real P12, κij coefficients are
all real and hence γij will also be real.

The CMT formula described in Eq. 3 was primarily
developed in the 1980s by a number of authors (Streifer,
Hardy, Haus, Chuang, among others) [2, 16–18]. To show
that this theory (hereafter referred to as CMT-X) is con-
sistent with our discussion following Eq. 2, we use the
following identity [18] (also see Appendix A):

κ12 − κ21 = P12∆β. (6)

A straightforward calculation for Γ in Eq. 3 then results
in:

γ11 − γ22 =
γ12 − γ21

X
=
κ11 − κ22 + ∆β

1−X2
, (7)

showing explicitly that when the phase matching con-
dition is satisfied (i.e., γ11 = γ22 for which ∆βXPM =
κ22 − κ11), γ12 = γ21. Another widely used CMT
formulation, initially developed by Snyder, Yariv, et
al., only focuses on the cross-coupling terms (i.e., κ12

and κ21), while intentionally neglecting the self-coupling
terms (i.e., κ11 and κ22) and the power overlap factor
between the two waveguide modes (i.e., X) [3, 19]. This
simple CMT formulation (hereafter referred to as CMT-
O) can be obtained from Eq. 3 by forcing κ11 = κ22 = 0
and P12 = P21 = 0. As a result, the phase matching con-
dition is reduced to γ11 − γ22 = ∆β = 0, which is com-
monly used in the weak-coupling regime but is generally
different than that predicted by the CMT-X formulation.
We want to point out that CMT-O also satisfies power
conservation in the phase-matched scenario. This is be-
cause when ∆βOPM = 0, γ12(= κ12) equals γ21(= κ21)
according to Eq. 6.

An effective way to examine the accuracy of various
CMT formulations is to compare the eigenvalues of Eq. 1
(γ±) to the exact propagation constants of the coupled
system (i.e., the supermode propagation constants de-
noted as β±) [20]. We start with a discussion for sym-
metric waveguides, for which the phase matching con-
dition of CMT-X and CMT-O is identical and satisfied
since κij = κji and ∆β = 0. For ease of compar-
ison, we define δβsum ≡ (β+ + β− − β1 − β2)/2 and
δβdiff ≡ (β+ − β−)/2. For symmetric waveguides, δβdiff

characterizes the coupling strength while δβsum gives
rise to additional phase induced by the coupling process
[8, 21]. Their corresponding variables in the CMT formu-
lation are defined based on the the eigenvalues of Eq. 1
as δγsum ≡ (γ+ +γ−)/2 and δγdiff ≡ (γ+−γ−)/2. Specif-
ically, CMT-O and CMT-X predict [2]:

CMT-O : δγsum = 0, δγdiff = κ12; (8)

CMT-X :δγsum =
κ11 −Xκ12

1−X2
, δγdiff =

κ12 −Xκ11

1−X2
.

(9)
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FIG. 1. Numerical comparisons of various CMT formulations
for 2-D symmetric waveguides propagating in the z direction:
CMT-O (black dotted line), CMT-X (dashed red line) and
CMT-M (blue circles). The quantities σamp and σphase are
defined as σamp ≡ (δγdiff−δβdiff)/δβdiff and σphase ≡ (δγsum−
δβsum)/δβdiff , which quantify how the CMT-based estimates
related to coupling strength and phase compare with the exact
supermode calculations realized using a finite-element method
eigenmode solver. (a) and (b): transverse-electric (TE) polar-
ization, whose only nonzero electric field component is Ey, for

a fixed V ≡ πW
√
n2

core − n2
clad/λ0 = 0.75, where λ0 = 1 µm

is the wavelength, W is the waveguide width, and ncore and
nclad are the refractive indices of the waveguide core and
cladding, respectively. In this example we choose gap = W .
The inset in (b) plots the power overlap factor in the CMT-X
theory (X = P12). (c) and (d): transverse-magnetic (TM)
polarization, whose only nonzero magnetic field component is
Hy, for a fixed V = 1.8 and gap = W/3. The inset in (d)
plots the ratio between κ11 and κ12 defined in Eq. 5. Differ-
ent values for V are used for the TE and TM polarizations to
achieve a similar mode confinement.

The results shown in Eqs. 8 and 9 become identical
if |κ11| � |κ12| and |X| � 1. However, neither con-
dition is necessarily satisfied in practice in high-index-
contrast waveguides. This can be seen from the nu-
merical example provided in Fig. 1 for 2-D symmet-
ric waveguides, where we define two quantities, σamp ≡
(δγdiff−δβdiff)/δβdiff and σphase ≡ (δγsum−δβsum)/δβdiff ,
which quantify how the CMT-based estimates related to
coupling strength and phase compare with the exact su-
permode calculations (the latter determined by a finite
element method eigenmode solver). While both formula-
tions perform reasonably well for the transverse-electric
(TE) polarization (Figs. 1(a) and 1(b)), where for 2-D
waveguides the only electric field component is Ey, the
CMT-X formulation is more accurate in the prediction
of δβsum (Fig. 1(b)). Note that here the error in estimat-
ing δβsum through a CMT approach is normalized by the
coupling coefficient δβdiff, considering that the induced
phase from coupling is a product of δβsum and the cou-

pling length Lc, with the latter inversely proportional to
δβdiff. The relatively large errors in estimating δβsum in
the CMT-O approach can be understood by comparing
Eq. 8 to Eq. 9: while for the TE polarization the self-
coupling term κ11 is typically much smaller than κ12,
the power overlap factor X may become significant (see
the inset of Fig. 1(b)), leading to appreciable errors in
δβsum if neglected.

In spite of its overall better performance for the TE po-
larization, the CMT-X formulation produces erroneous
results for the TM polarization in high-index-contrast
waveguides [22]. One such example is provided in
Figs. 1(c) and 1(d), where the errors for both δβdiff and
δβsum based on the CMT-X formulation diverge as we
increase the refractive index contrast between the waveg-
uide core and cladding (we note that for 2-D waveguides,
Hy is the only magnetic field component for TM polariza-
tion). Surprisingly, the CMT-O formulation still works
reasonably well despite the lack of justification for ig-
noring κ11 and X. In fact, for the TM polarization the
self-coupling term κ11 defined in Eq. 5 can be even larger
than κ12 (see the inset of Fig. 1(d)), resulting in signif-
icant errors in the CMT-X formula (Eq. 9) if κ11 is not
modeled correctly.

The divergent errors in CMT-X were revealed to stem
from the incorrect assumptions made in its derivation
[23]. While multiple approaches exist for deriving the
CMT-X formula shown in Eq. 3, one invariable assump-
tion is that the transverse electric field (ET (z) with“T”
denoting the transverse coordinates) and magnetic field
(HT (z)) of the coupled system can be expressed as su-
perposition of individual waveguide modes [2]. That is,

ET (z) = a1(z)E1T + a2(z)E2T , (10)

HT (z) = a1(z)H1T + a2(z)H2T , (11)

where EjT (HjT ) denotes the transverse electric (mag-
netic) field of the individual waveguide mode j (j = 1, 2).
For the TM polarization in 2-D waveguides, one can eas-
ily verify that the assumption for the electric field fails
to satisfy the required boundary condition for the Ex

component in Fig. 1(c). Moreover, the two superposi-
tion rules specified by Eqs. 10 and 11 are not necessarily
compatible with each other, as the electric and magnetic
fields are intimately connected through Maxwell’s equa-
tions and therefore cannot be independently assigned.

III. IMPROVED CMT AND DISCUSSIONS

For the above reason, in this work we only adopt
the superposition rule for the magnetic field alone (i.e.,
H(z) =

∑
j aj(z)Hi), for which the required boundary

conditions hold for both polarizations. The electric field
is then obtained by applying Maxwell’s equations, result-
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ing (details in Appendix A):

E(z) =
i

ωε
∇×

∑
j

aj(z)Hj


=
∑
j

aj(z)
εj
ε

Ej +
i

ωε

daj(z)

dz
ẑ ×Hj ,

(12)

which is different than the assumption made in Eq. 10 for
the electric field. With the aid of this result, a corrected
version of Eq. 3 for symmetric waveguides is derived as
(details in Appendix A):

P ′ij =
1

4

∫∫ (εi
ε

e∗i × hj +
εj
ε

ej × h∗i

)
· ẑdS, (13)

κ′11 =
n2

clad

n2
core

κ11, κ′12 = κ12. (14)

While Eqs. 13 and 14 reduce to Eqs. 4 and 5 respec-
tively for low-index-contrast materials, there are two im-
portant corrections for the CMT formulation when the
index contrast is large enough. First, Eq. 14 suggests
that for the self-coupling term, we should use κ′11 which
is significantly smaller than κ11 used in the CMT-X the-
ory for high-index-contrast waveguides. Second, Eq. 13
indicates that the power overlap factor X should also
be modified (P ′12), which is numerically smaller than P12

used in the CMT-X theory (examples are provided in the
inset of Fig. 2). In fact, these two corrections partially
justify the assumptions made in the CMT-O formulation
regarding κ11 and X (both forced to be zero). Numer-
ical results for the TM polarization based on the modi-
fied CMT formulation (hereafter referred to as CMT-M),
with two examples provided in Figs. 1(c)-(d) (blue cir-
cles), indeed confirm that it consistently produces more
accurate prediction in δβsum, while yielding essentially
the same results as the CMT-O formulation for δβdiff.
The application of the CMT-M formulation for the TE
polarization, as shown by blue circles in Figs. 1(a)-(b),
also produces reasonable results which have a slightly
worse percentage error than those based on the CMT-X
theory.

The failure of the CMT-X theory for the TM polariza-
tion in high-index-contrast waveguides and the improved
results based on the CMT-M formulation underscores two
important principles in the electromagnetic theory: satis-
fying the boundary conditions as well as Maxwell’s equa-
tions. For TM-like modes the dominant magnetic field
is Hy, rendering the magnetic field a natural choice for
the superposition rule in the CMT derivation [24]. A
close inspection of the CMT-M formulation reveals that
the resulting electric field Ex satisfies the correct bound-
ary conditions though the Ez component fails to do so
(see Appendix A for details). However, since the CMT-
M formulation satisfies Maxwell’s equations, such errors
can be largely suppressed due to the variational principle
(which removes errors to the first order) [2]. In contrast,
the CMT-X formulation violates Maxwell’s equations by
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FIG. 2. Numerical comparisons of various CMT formula-
tions for the TE-like polarization (whose dominant electric
field components are Ex and Ez) in 3-D symmetric waveg-
uides (note this TE-like polarization in 3-D corresponds to
the TM polarization in 2-D if we reduce the y dimension us-
ing the effective index method): CMT-O (black dotted line),
CMT-X (dashed red line) and CMT-I (blue circles). V ≡
πW

√
n2

core − n2
clad/λ0 with λ0 = 1 µm. (a) and (b): nclad=1,

nsub = 1.444. In this example we choose V = 3, W/H = 2
and gap = W/5; (c) and (d): nclad = nsub = 1.444. In this
example we choose V = 2, W/H = 1.01 and gap = W/5.
The inset in (b) and (d) plots the power overlap factors in
the CMT-X (X = P12 for the dashed red line) and CMT-M
theories (X = P ′12 for the blue circles). As in Fig. 1, σamp and
σphase provided a comparison of the CMT-derived quantities
with the exact supermode quantities determined from finite
element method simulations.

assigning the electric and magnetic fields of the coupled
system simultaneously for the TM polarization, leading
to divergent first-order errors as evidenced in Figs. 1(c)
and 1(d). This new understanding of CMT also allows us
to explain the superior performance of the CMT-X the-
ory for the TE polarization from a different perspective:
given in this case the dominant electric field is Ey (see
Fig. 1(a)), we can apply the superposition rule for the
electric field alone (i.e., E(z) =

∑
j aj(z)Ei) and derive

the magnetic field from Maxwell’s equations. Following
the exact same procedure, we can show that this ap-
proach leads to the CMT-X formulation (see discussions
in Appendix A). In this sense, a unified understanding
of the CMT-X and CMT-M theories has been developed
in this work, with the former based on the superposi-
tion rule for the electric field and the latter based on the
superposition rule for the magnetic field.

Given the superior performance of the CMT-X and
CMT-M formulations in their respective regimes, an im-
proved CMT (termed as CMT-I) can be formulated by
combining their unique features (see Appendix A for de-
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Formulations Power-overlap maxtrix P Coupling matrix K Comments

CMT-X

[
P11 P12

P21 P22

] [
κ11 κ12

κ21 κ22

]
Works well for the TE polarization (2D)
and TM-like polarization (3D). It however
produces divergent errors for the TM po-
larization (2D) and TE-like polarization
(3D) in high-index-contrast waveguides

CMT-O

[
P11 0
0 P22

] [
0 κ12

κ21 0

]
Neglecting the self-coupling terms κ11 and
κ22 and the power overlap factor P12(P21)
works in practice in many cases though it
lacks justification from the existing theo-
ries, and becomes less accurate as waveg-
uide asymmetry increases

CMT-M

[
P ′11 P ′12

P ′21 P ′22

] [
κ′11 κ12 + ∆β(W12 − P12)

κ21 − ∆β(W12 − P12) κ′22

]

Works well for the general case though
its performance is slightly worse than the
CMT-X formulation for the TE polariza-
tion (2D). Notably, it removes the erro-
neous error of the CMT-X formulation and
justifies the use of the CMT-M formulation
for high-index-contrast waveguides

CMT-I

[
P I

11 P I
12

P I
21 P I

22

] [
κI

11 κI
12

κI
21 κI

22

]
Improved CMT combining unique features
from CMT-X and CMT-M, which can be
considered as a generalized version for both
2D and 3D waveguides

TABLE I. Comparisons of various CMT formulations with detailed information provided in Appendix B. All the variables
except W12 for the CMT-M formalism have been defined in the main text, which is introduced in Appendix A and needed for
the case of asymmetric coupling.

tails):

P Iij =
1

4

∫∫ (εi
ε

e∗ixhjy − e∗iyhjx +
εj
ε

ejxh
∗
iy − ejyh

∗
ix

)
dS,

(15)

κIii =
ω

4

∫∫
(ε− εi)

[εi
ε

(
|eix|2 + |eiz|2

)
+ |eiy|2

]
dS,

(16)

κIij(i 6= j) =
ω

4

∫∫
(ε− εj)

[
e∗i · ej −

βi − βj
εω

ejxh
∗
iy

]
dS.

(17)

Numerical simulations carried out for 3D symmetric
waveguides in Fig. 2 confirm that this improved CMT
indeed provides an overall better performance than the
other two, using the quantities σamp and σphase that
quantify the difference between CMT-derived values and
exact supermode simulations. At the same time, the sim-
ilar performance of the CMT-M and CMT-O formula-
tions in estimating the coupling strength δβdiff and cou-
pling phase δβsum justifies the widespread use of the sim-
ple coupled-mode theory (i.e., CMT-O) for high-index-
contrast waveguides in certain applications [10]. Table 1
summarizes the principal differences between the CMT
formulations described in this work with more detailed

information provided in the Appendix.

So far our discussion has been limited to symmetric
waveguides. We now examine these CMT formulations
in the context of asymmetric waveguide coupling. In
this case, the exact phase matching condition predicted
by CMT-X and CMT-I is generally different than that
based on CMT-O, whose phase matching condition is
simply ∆βOPM = 0, or β1 = β2. To investigate their
difference, we carry out numerical simulations based on
fully vectorial wave propagation between two asymmet-
ric waveguides. As illustrated in Fig. 3(a), our model
comprises two asymmetric waveguides, with a waveguide
mode with unit power launched at the lower input [21].
We examine the phase matching condition by varying the
upper waveguide width and coupling length and compare
the obtained power transfer ratio between the simula-
tion and various CMT formulations. As can be seen in
Fig. 3(b), CMT-O and CMT-I (which is reduced to CMT-
M in this 2-D example) predict the phase-matched W2 to
be 340 nm and 320 nm, respectively. The wave propa-
gation results shown in Fig. 3(c) confirm that CMT-I is
more accurate, achieving a maximum power transfer of
98.5 % (limited by the scattering loss) for W2 = 320 nm
(blue solid line in Fig. 3(c)) while W2 = 340 nm (black
dotted line in Fig. 3(c)) based on CMT-O only reaches
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monitored. Both waveguides are terminated with perfectly
matched layers (PMLs), and the overall scattering loss is less
than 2%. The phase matching condition is determined by
varying the upper waveguide width W2 and coupling length
Lc, with nclad=1, ncore1 = 1.8, ncore2 = 2.5, W1 = 800 nm,
gap = 50 nm, and λ0 = 1.55 µm. (b) Phase matching condi-
tion (zero-crossing points) predicted by different CMT formu-
lations. (c) Simulated power transfer ratio T21 for different
W2 and Lc based on wave propagation, with the blue solid
line (W2 = 320 nm) and the black dotted line (W2 = 340
nm) corresponding to the phase matched condition predicted
by the CMT-I theory and the CMT-O theory, respectively.
(d) Comparison between the simulated maximum T21 for var-
ied W2 (magenta solid line) and the predictions from various
CMT formulations (color scheme same as in (b)).

a peak coupling efficiency of 90 %. This example con-
firms that the phase-matching condition in high-index-
contrast materials is not necessarily β1 = β2, which may
require correction arising from the self-coupling terms in
the coupling process. Finally, comparing the simulated
maximum transfer ratio from Eq. 2 and plotted as a ma-
genta solid line in Fig. 3(d) for different waveguide widths
W2 (and hence differing values of (β1 − β2)/β1) with the
results from various CMTs, we find the CMT-I formu-
lation again provides the overall best agreement. It is
worth pointing out that the maximum T21 predicted by
CMT-O and CMT-I can slightly exceed 100 % in the
phase-mismatched regime, which is an inherent limita-
tion in such coupled-mode formulations [18].

IV. CONCLUSION

In summary, an improved coupled-mode theory was
developed for photonics platforms with high index con-
trast. Moreover, our work provides new insight into the
applicable range of existing CMT formulations. It theo-
retically justifies the use of simple coupled-mode theory
for high-index-contrast photonic elements under certain
circumstances, while revealing a necessary correction in
its phase matching condition for the coupling between
asymmetric elements. While our discussion in this work
is focused on two waveguides, it would be straightforward
to extend our theoretical framework to including multi-
ple waveguides or converting it to the time domain for
coupling description between waveguides and resonators
or that of multiple cavities [4, 5, 25]. As such, we believe
the proposed coupled-mode theory will find a plethora of
applications and lead to more accurate designs in various
photonics platforms.
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Appendix A: Derivation of the CMT formulations

In this section, we provide a detailed derivation of the
modified coupled-mode formulation as well as numerical
examples to compare its performance with existing CMT
formulations.

Our approach follows closely to the one developed by
Chuang [18]. For two arbitrary waveguide modes, they
should satisfy the following Maxwell’s equations (assum-
ing exp(iβz − iωt) format):

∇×H(j) = −iωε(j)E(j), (A1)

∇×E(j) = iωµH(j), (A2)

where the superscript j denotes the mode index (j =
1, 2) and ε(j) is the corresponding permittivity (here we
focus on the coupling between dielectric waveguides so
permeability µ is assumed to be the same). We proceed
by multiplying H(2)∗ to both sides of Eq. A2 for j = 1
(dot product) and then multiplying H(1) to the complex
conjugate of Eq. A2 for j = 2. Adding the resultant
two equations together to cancel their right-side term,
we obtain the following equation with the aid of Eq. A1:

d

dz

∫∫ (
E(1) ×H(2)∗ + E(2)∗ ×H(1)

)
· ẑdS

=iω

∫∫ (
ε(1) − ε(2)

)
E(1) ·E(2)∗dS.

(A3)

If we take the two modes as the two waveguide modes
under consideration, i.e., E(1) = E1 ≡ e1 exp (iβ1z)
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(ε(1) = ε1) and E(2) = E2 ≡ e2 exp (iβ2z) (ε(2) = ε2)
using the notations in Eqs. 4 and 5 in the main text, we
can prove Eq. 6 in a straightforward fashion.

In general, a coupled-mode formulation can be derived
based on Eq. A3 by taking E(1)(H(1)) as the electro-
magnetic fields of the coupled system with ε(1) = ε and
E(2)(H(2)) as one of the individual waveguide modes i
with ε(2) = εi (i = 1, 2) [18]. As discussed in the main
text, one typical assumption for E(1)(H(1)), as adopted
by Chuang, Haus, et.al.[2], is that

E
(1)
T (z) = a1(z)E1T + a2(z)E2T , (A4)

H
(1)
T (z) = a1(z)H1T + a2(z)H2T . (A5)

The z components of EM waves can then be obtained
using the other two Maxwell’s equations, i.e., ∇ ·D = 0
and ∇ ·H = 0, resulting in:

E(1)
z ≈ a1(z)

ε1
ε

E1z + a2(z)
ε2
ε

E2z, (A6)

H(1)
z ≈ a1(z)H1z + a2(z)H2z. (A7)

Substituting Eqs. A4-A7 to Eq. A3 for E(1)(H(1)) leads
to the CMT-X formulation displayed in Eq. 3 in the main
text.

However, there are two major issues with the CMT-X
approach for high-index-contrast waveguides. First, the
assumption for the transverse electric field could violate
the boundary conditions, especially for the TM polar-
ization as discussed in the main text (Ex component in
Fig. 1(c)) [22, 23]; and second, the assumptions made
for the transverse electric and magnetic fields in Eqs. A4
and A5 are not necessarily compatible with each other.
In fact, one key basis leading to Eq. A3 is that the elec-
tric/magnetic fields must satisfy Eqs. A1 and A2 simul-
taneously, indicating that they are intimately related to
each other and therefore cannot be assigned indepen-
dently.

For the above reasons, here we only use the super-
position rule for the magnetic field (i.e., H(1)(z) =∑
j aj(z)Hj) and deduce the electric field following

Eq. A1. A straightforward calculation results

E(1)(z) =
i

ωε
∇×

∑
j

aj(z)Hj


=
∑
j

aj(z)
εj
ε

Ej +
i

ωε

daj(z)

dz
ẑ ×Hj .

(A8)

To see the difference of electric field between these two
approaches, we use the TM polarization in the 2D case
as an example, for which the only nonzero component in
the magnetic field is Hy. In this case, Eq. A8 can be
simplified as:

E(1)
x =

∑
j

aj(z)
εj
ε

Ejx −
i

ωε

daj(z)

dz
Hjy, (A9)

E(1)
z =

∑
j

aj(z)
εj
ε

Ejz. (A10)

One immediately sees that Ex in Eq. A9 now satisfies the
required boundary condition while Ex in Eq. A4 fails to
do so. On the other hand, the Ez component given by
Eq. A10 is the same as Eq. A6, neither of which offers
the correct boundary condition for Ez (which has to be
continuous across waveguide boundaries). However, we
notice that Eq. A3 is essentially a quadratic in form with
respect to the electric fields, suggesting that it is capa-
ble of tolerating their errors to the first-order (which is
the basis of variational principle) provided that E and
H satisfy the Maxwell’s equations shown in Eqs. A1 and
A2 [23]. In this sense, the errors in Ez (Eq. A10) can
be mitigated to a large extent since we have explicitly
satisfied Maxwell’s equations through Eq. A8. By com-
parison, the CMT-X formulation prioritizes Eqs. A4 and
A5 over Eqs. A1 and A2. As a result, it cannot guarantee
the removal of first-order errors originated in the incor-
rect boundary conditions, as evidenced in the divergent
errors observed in Figs. 1 and 2.

We can now substitute the deduced electric field
(Eqs. A9 and A10) into Eq. A3 for E(1), along with
E(2) = Ei and H(2) = Hi (i = 1, 2). Using the slow-
varying approximation, we only need items up to the
first-order:

∑
j

d
(
aje

i(βj−βi)z
)

dz

∫∫ (εj
ε

ej × h∗i + e∗i × hj

)
· ẑdS

−
∑
j

daj
dz

d
(
ei(βj−βi)z

)
dz

∫∫
i

ωε
h∗iT · hjT dS

=
∑
j

aje
(βj−βi)ziω

∫∫
(ε− εi)εj

ε
e∗i · ejdS

+
∑
j

daj(z)

dz
e(βj−βi)z

∫∫
ε− εi
ε

e∗i × hj · ẑdS

(A11)

The above equations can be simplified by defin-
ing ã1(z) ≡ a1(z) exp (∆βz/2) and ã2(z) ≡
a2(z) exp (−∆βz/2), with ∆β ≡ β1 − β2. We want
to point out that the results presented in the main text
should be interpreted for ãj(z) (i.e., we have removed
the tilde there). With some algebra, we arrive at

d

dz

[
ã1(z)
ã2(z)

]
= i

[
∆β
2 0

0 −∆β
2

] [
ã1(z)
ã2(z)

]
+i

[
P ′11 P ′12 −∆βH12

P ′21 + ∆βH21 P ′22

]−1

×
[

κ′11 κ′12 + ∆βW12

κ′21 −∆βW21 κ′22

] [
ã1(z)
ã2(z)

]
,

(A12)
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where

P ′ij ≡
1

4

∫∫ (εi
ε

e∗i × hj +
εj
ε

ej × h∗i

)
· ẑdS, (A13)

Wij ≡
1

4

∫∫ (εj
ε

e∗j × hi + ei × h∗j

)
· ẑdS, (A14)

Hij ≡
1

4ω

∫∫
1

ε
h∗iT · hjT dS, (A15)

κ′ij ≡
ω

4

∫∫
(ε− εi) εj

ε
e∗i · ejdS. (A16)

In Eq. A12, the term ∆βH12(∆βH21) can be neglected
given that both ∆β and |H12|(|H21|) are small. Compar-
ing k′ij defined in Eq. A16 to κij defined in Eq. 5 in the
main text, we immediately conclude that:

κ′11 =
n2

clad

n2
core2

κ11, κ
′
22 =

n2
clad

n2
core1

κ22 (A17)

κ′12 = κ∗21, κ
′
21 = κ∗12. (A18)

For symmetric waveguides, the above results are reduced
to Eq. 14 in the main text. In the more general case,
where ∆β 6= 0, we can use Eq. 6 to further simplify
Eq. A12. For example, using the identity: κij − κ∗ji =
(βi − βj)Pij , we obtain:

κ′12 + ∆βW12 = κ∗21 + ∆βW12 = κ12 + ∆β(W12 − P12),
(A19)

κ′21 −∆βW21 = κ∗12 −∆βW21 = κ21 + ∆β(W21 − P21),
(A20)

while Wij − Pij can be easily calculated based on their
definition as

Wij − Pij =
1

4

∫∫
εj − ε
ε

e∗j × hi · ẑdS. (A21)

While the above derivation only relies upon the super-
position rule for the magnetic field and therefore in prin-
ciple should be applicable in the general case, we find
in practice it works best for the TM polarization for 2D
waveguides (and by extension, the TE-like modes in 3D
waveguides). This makes sense considering that the dom-
inant magnetic field for the TM polarization is Hy. On
the other hand, for the TE polarization, the dominant
electric field is Ey. In this case, we can take the superpo-

sition rule for the electric field (i.e., E(1) =
∑
j aj(z)Ej),

and then derive the magnetic field using Eq. A2:

H(1) =
1

iωµ
∇×

∑
j

aj(z)Ej


=
∑
j

aj(z)Hj +
1

iωµ

daj(z)

dz
ẑ ×Ej .

(A22)

Substituting the obtained E(1) and H(1) into Eq. A3, we
find the second term in Eq. A22 can be neglected since it
will produce an expression similar to ∆βH12 in Eq. A12.

As a result, we reproduce the result of the CMT-X for-
mulation (Eq. 3 in the main text) from a different per-
spective. That is, instead of viewing CMT-X as a result
of assumptions made in Eqs. A4 and A5, it is actually
based on the superposition rule for the electric field as
well as Maxwell’s equations.

Moreover, we want to clarify one common misconcep-
tion, that the CMT can be further improved by em-
ploying the “correct” dipole perturbation based on their
boundary conditions [2, 23]. For example, in Ref. [23] a
correction field was introduced for Ex in the self pertur-
bation so that it satisfies the required boundary condi-
tion. Mathematically, this means we compute the cou-
pling coefficients κij in the following form:

κCii =
ω

4

∫∫
(ε− εi)

[εi
ε
|eix|2 + |eiy|2 + |eiz|2

]
dS,

(A23)

κCij(i 6= j) =
ω

4

∫∫
(ε− εj) e∗i · ejdS. (A24)

Using the same example shown in Figs. 1(c)-(d) for the
TM polarization, we compare this approach (termed as
CMT-C) to the CMT-X and CMT-M formulations in
Fig. A1. As can be seen, whether we use the PMij (Eq. 15)
or Pij (Eq. 4) coefficients for the CMT-C model (termed
as CMT-C1 and CMT-C2, respectively, in Fig. A1), its
performance actually is worse than the CMT-M formula-
tion. The answer again lies in the fact that this correction
field approach fails to satisfy Maxwell’s equations by in-
dependently assigning the electric and magnetic fields,
thus resulting in first-order errors in the CMT formula-
tion.

Appendix B: Summary of key quantities and
comparison of CMT formulations

In this section, we provide a systematic definition of
various CMT formulations used in this work to help the
readers track different notations. We start by grouping
parameters that are already defined in the text:

• Intrinsic phase mismatch (see Eq. 3) ∆β ≡ β1−β2;

• Conventional power overlap coefficient Pij used by
the CMT-X theory (see Eq. 4)

Pij =
1

4

∫∫
(e∗i × hj + ej × h∗i ) · ẑdS,

• Conventional coupling coefficient κij used by the
CMT-O and CMT-X theories (see Eq. 5)

κij =
ω

4

∫∫
(ε− εj) e∗i · ejdS,
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FIG. A1. Extended numerical comparisons of various CMT formulations for the TM polarization in 2-D symmetric waveguides:
CMT-O (black dotted line), CMT-X (dashed red line), CMT-M (blue circles), CMT-C1 (cyan line) and CMT-C2 (magenta
line). All the simulation parameters are the same as Figs. 1(c) and (d), i.e.,V = 1.8, gap = W/3 and λ0 = 1 µm.

• Modified power overlap coefficient P ′ij in the CMT-
M theory (see Eqs. 13 and A13)

P ′ij =
1

4

∫∫ (εi
ε

e∗i × hj +
εj
ε

ej × h∗i

)
· ẑdS,

• Modified coupling efficient κ′ij in the CMT-M the-
ory (see Eq.14 for the symmetric case and Eqs. A16-
A18 for the general case)

κ′ij ≡
ω

4

∫∫
(ε− εi) εj

ε
e∗i · ejdS. (B1)

• Auxiliary power overlap coefficient Wij which is a
hybrid version of Pij and P ′ij (see Eq. A14)

Wij ≡
1

4

∫∫ (εj
ε

e∗j × hi + ei × h∗j

)
· ẑdS (B2)

Note that Wij and Pij allow us to connect κij to
κ′ij (i 6= j) through Eqs. A19 and A20.

• Finally, to take advantage of the superior perfor-
mance of the CMT-X theory for the TE (2D) polar-
ization and CMT-M theory for the TM (2D) polar-
ization, we have proposed an improved CMT the-
ory by combining their unique features. The new
power overlap and coupling coefficients are defined
as (see also Eq. 15-17):

P Iij =
1

4

∫∫ (εi
ε

e∗ixhjy − e∗iyhjx +
εj
ε

ejxh
∗
iy − ejyh

∗
ix

)
dS,

κIii =
ω

4

∫∫
(ε− εi)

[εi
ε

(
|eix|2 + |eiz|2

)
+ |eiy|2

]
dS,

κIij(i 6= j) =
ω

4

∫∫
(ε− εj)

[
e∗i · ej −

βi − βj
εω

ejxh
∗
iy

]
dS.

These coefficients are constructed such that they
are reduced to the CMT-X and CMT-M formu-
lations for the TE and TM polarizations, respec-
tively.

The various CMT formulations are all given by Eq. 1
and Eq. 3, with different definitions of the power overlap
matrix P and the coupling coefficient matrix K as listed
in Table I.
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