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Low-energy magnons in the chiral ferrimagnet Cu2OSeO3: A coarse-grained approach
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We report a comprehensive neutron scattering study of low energy magnetic excitations in the breathing
pyrochlore helimagnetic Cu2OSeO3. Fully documenting the four lowest energy magnetic modes that leave
the ferrimagnetic configuration of the “strong tetrahedra” intact (|h̄ω| < 13 meV), we find gapless quadratic
dispersion at the � point for energies above 0.2 meV, two doublets separated by 1.6(2) meV at the R point,
and a bounded continuum at the X point. Our constrained rigid spin cluster model relates these features to
Dzyaloshinskii-Moriya (DM) interactions and the incommensurate helical ground state. Combining conventional
spin wave theory with a spin cluster form factor accurately reproduces the measured equal time structure factor
through multiple Brillouin zones. An effective spin Hamiltonian describing complex anisotropic intercluster
interactions is obtained.

DOI: 10.1103/PhysRevB.101.144411

I. INTRODUCTION

Chiral magnets have attracted a great deal of attention
for a long time [1–3]. The absence of inversion symmetry
in the atomic lattice gives rise to twists of magnetization
M(r) in magnetically ordered states, which range from simple
helices to intricate periodic lattices of skyrmions and magnetic
hedgehogs. The microscopic mechanism responsible for the
twisting of magnetization is the spin-orbit coupling manifest-
ing itself in magnetic insulators as the Dzyaloshinskii-Moriya
(DM) interaction of the form M · (∇ × M) in the continuum
approximation [1]. On the atomistic level, the DM interaction
is represented by the pairwise spin interaction Di j · (Si × S j ),
where Di j is a vector specific to the bond connecting spins
Si and S j [4]. Determination of spin interactions in chiral
magnets is very important for the understanding of their
magnetic states.

We present an experimental study of the chiral magnet
Cu2OSeO3 by means of inelastic neutron scattering. This
compound has a cubic lattice symmetry without an inversion
center (space group P213) [5] and exhibits paramagnetic,
helical, conical, and skyrmion-crystal phases as a function of
temperature and applied magnetic field [6–13]. The structural
unit cell has 16 magnetic Cu2+ spin-1/2 ions which makes a
microscopic description at the level of individual spins rather
complex and impractical. Romhanyi et al. [14–17] introduced
a microscopic model with Heisenberg exchange interactions
of five different strengths: JAF

s , JFM
s , JAF

w , JFM
w , JAF

o.o (FM and
AF represent ferromagnetic and antiferromagnetic interac-
tions, respectively), shown in Fig. 1(a). As will be shown be-
low, this model nonetheless misses significant features of the
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low energy magnon spectrum. While these problems might
be remedied by the addition of DM interactions, a further
increase in complexity would be undesirable.

Fortunately, magnetic interactions in Cu2OSeO3 exhibit
a hierarchy of energy scales [14,18,19], which allow for an
efficient modeling at a coarse-grained level, wherein quartets
of strongly interacting spins are treated as effective spins with
weaker interactions between them. Hints of this hierarchy can
be seen in the inelastic neutron spectrum shown in Fig. 1(b).
It reveals four strongly dispersing magnon bands at low
energies (0–12 meV) separated by a large gap from high
energy magnon bands with a relatively weak dispersion (25–
33 meV). The low energy branches are spin waves where spins
within each strongly coupled tetrahedron precess in phase
with each other and can be described by a single effective
spin within a coarse-grained model [Figs. 1(c) and 1(d)], while
the high energy magnons are associated with the intracluster
interactions. To bring out the interactions that are relevant
for the complex phase diagram and ordered structures, we
focus on the low energy intercluster magnons in our study.
The coarse-grained picture we adopt enables us to identify and
refine the magnitude of the anisotropic interaction terms rele-
vant to the helical and skyrmionic spin textures in Cu2OSeO3.
We show these terms can be gleaned from specific features
in high resolution neutron scattering spectra at energies well
beyond the collective energy scales of the mesoscopic phases.
We also show how to define the relevant low energy degrees
of freedom for a complex magnetic material with a hierarchy
of energy scales and provide a simple expression for the
corresponding inelastic scattering cross section in terms of a
cluster form factor.

The paper is organized as follows: In Sec. II we present
our detailed inelastic magnetic neutron scattering data for
Cu2OSeO3 with a focus on the new features that they reveal in
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FIG. 1. (a) Structure of the right-handed enantiomer of cubic Cu2OSeO3 (a = 8.911 Å space group P213 [5,20]). Each unit cell contains 16
Cu2+ ions. The two distinct Cu2+ sites are labeled by Cu-1 (white) and Cu-2 (black), respectively. JAF

s (blue, thick) and JFM
s (red, thick) are the

dominant magnetic interactions. (b) The measured inelastic magnetic neutron scattering cross section acquired with incident neutron energy
Ei = 60 meV at T = 4 K. The 4D data set is displayed as slices along a trajectory in momentum space connecting the high symmetry points
�(h, k, l ); X (h, k, l + 1

2 ); M(h, k + 1
2 , l + 1

2 ); and R(h + 1
2 , k + 1

2 , l + 1
2 ). Here h, k, and l are integers. The integration range of perpendicular

Q direction is 0.1 Å−1. (c) Each strong tetrahedron is composed of one Cu-1 and three Cu-2 sites, with AF interactions between Cu-1 and
Cu-2 sites, and FM interactions between Cu-2 sites. This results in an effective spin-1 cluster with a Cu-1 spin antiparallel with three parallel
Cu-2 spin. (d) The effective spins occupy a distorted fcc lattice with effective ferromagnetic intercluster interactions. We define the sites
connected by the bonds JFM

1 and JFM
2 to be nn and nnn, respectively. (e) The measured inelastic magnetic neutron scattering cross section

acquired with Ei = 20 meV, focusing on the energy range indicated by the gray box in (b). (e) The average intensity along the indicated
trajectories in the Brillouin zones centered at (021), (111), (121), and (122) averaging over ±0.05 Å−1 in perpendicular Q directions. For (111)
only data with energy transfers below 10.5 meV is taken into the average since data with higher energy transfer is not covered well due to
kinematic limitations. Four magnon modes are generally observed corresponding to four clusters per unit cell. Additional modes can result
from down-folding due to the incommensurate helimagnetic ground state and domain averaging. The intensity band at 2 meV arises from a
spurious process unrelated to Cu2OSeO3.

the low energy regime. These features will then be related to
DM interactions and the associated incommensurate ground
state through the simplified coarse-grained model introduced
in Sec. III. In Sec. IV we numerically calculate the structure
factors after deriving the effective form factor (details in
Appendix C), and determine the set of interaction parameters
by a pixel to pixel data fit. The resulting best-fit parameters

are listed in Table I, bolstered by a detailed discussion of
the reliability of the fit and the corresponding error bars
in Appendix D 2. The power of the effective model and
its limitations are identified and discussed in Sec. V before
concluding in Sec. VI.

Throughout this paper we use the same lattice structure
conventions as Janson et al. [18], where the coordinates of

TABLE I. Optimized parameters resulting from the pixel to pixel fit, shown in Figs. 2 and 5. These parameters stabilize a helimagnetic
ground state with kh = 0.0143 r.l.u (compared to 0.0145(11) r.l.u from [6]) and with the same magnetic chirality as the lattice chirality [38].
The range of confidence is given for J1, J2, d1, d ′

1, there are four sectors of parameters with J1, J2 and d1, d ′
1 interchanged that produce a similar

quality fit. d2, d3, d ′
2, d ′

3 are not well bound in this fit. See Appendix D 2 for a more detailed discussion of what can be said about these model
parameters based on the neutron data. Specifically, we obtain three empirical constraints on d2, d3, d ′

2, and d ′
3.

Parameter J1 J2 d1 d2 d3 d ′
1 d ′

2 d ′
3

Best fit (meV) −0.58+0.08
−0.03 −0.93+0.10

−0.07 0.24+0.02
−0.03 −0.05 −0.15 −0.16+0.02

−0.03 −0.10 0.36
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FIG. 2. (a)–(j) Inelastic magnetic neutron scattering spectra for Cu2OSeO3 acquired for T = 4 K at high symmetry points in the Brillouin
zone. Red symbols show neutron intensity data averaged over (0.084 Å−1)3 × (0.2 meV) in the 4D Q − h̄ω space. The blue line shows the
result of a highly constrained calculation of the scattering cross section associated with spin waves described by the effective spin-1 model
with the optimized exchange parameters listed in Table I. The FWHM of the peaks (blue) was determined from instrument energy resolution
and a phenomenological relaxation rate �̃ = 0.19 meV to characterize on average the extra physical broadening throughout the Brillouin zone
(see Sec. IV and Appendix D 1). Note the excess broadening of the lower mode at the X point (h)–(j), which we ascribe to two-magnon decay
processes that are kinematically accessible here and effectively destroy the X point single magnon (Fig. 4). As discussed in Sec. III, we expect
two twofold degenerate modes at R. In the measured cross section at high momentum, a third mode at 6.9 meV can also be observed. The
intensity of this mode averaged over (0.084 Å−1)3 and integrated over [6,7.8] meV is plotted versus |Q|2 in (k). The linear fit indicates this
mode is a phonon. The 8.4 meV modes marked in (a) and (b) were discussed in Ref. [23]. Error bars in all figures represent one standard
deviation.

16 Cu ions within the unit cell of a right-handed enantiomer
are listed. These are reproduced in Table II of Appendix A.

II. INELASTIC NEUTRON SCATTERING

Single crystals of Cu2OSeO3 were grown by chemical
vapor transport. Approximately 50 crystals were co-aligned
on an aluminum holder for a total sample mass m ≈ 5.1 g
and full width at half maximum (FWHM) mosaic ≈0.5◦.
No provision was made to check individual crystal chiral-
ity or orientation apart from aligning the fourfold axes so
the overall symmetry of the mosaic has approximate cubic
symmetry. Time-of-flight inelastic neutron scattering data
were acquired on the SEQUOIA instrument at the Spallation
Neutron Source. Incoming neutron energies of Ei = 60 and
20 meV were used with the high flux chopper operating at
240 Hz and the high resolution chopper operating at 180 Hz,
respectively. The corresponding FWHM elastic energy resolu-
tion was 3 and 0.5 meV, respectively. The data were acquired
at T = 4 K which is far below the critical temperature Tc =
58 K. The sample was cooled using a closed-cycle refriger-
ator, and rotated through 180◦ in 0.5◦ steps about the (hh̄0)
axis. These same spectrometer settings were used to measure

vanadium incoherent scattering for absolute normalization
of the differential scattering cross section. The total beam
time accumulated was 0.0655 A h for Ei = 60 meV and
0.0673 A h for Ei = 20 meV. The data were analyzed in
Mantid [21] where background contributions were masked
and subsequently symmetrized in the m3̄m Laue class using
Horace [22].

The Ei = 60 meV inelastic neutron scattering cross section
in Fig. 1(b) shows a large (≈13 meV) energy gap separating
the four lowest branches from higher energy modes. The
Ei = 20 meV data are displayed as a false-color image in
Fig. 1(e) and as energy cuts at representative high symmetry
points R( 1

2 , 5
2 , 1

2 ), X (1, 2, 1
2 ), M( 1

2 , 2, 1
2 ), and �(1, 2, 2) in

Fig. 2. The high symmetry points are defined as �(h, k, l );
X (h, k, l + 1

2 ); M(h, k + 1
2 , l + 1

2 ); and R(h + 1
2 , k + 1

2 , l +
1
2 ) with h, k, and l integers. While broadly consistent with
the prior work [14], our high-resolution data reveal important
new features: (1) A splitting at the R point �R = 1.6(2) meV
between the two modes with dominant intensity (previously
reported by Tucker et al. [17]), whereas the Heisenberg model
of Romhányi et al. [14] implies fourfold degeneracy. A third
mode between 6 and 8 meV can also be observed at R points
for high momentum transfer. Consistent with Ref. [17], we
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identify this mode as a phonon [Fig. 2(k)] based on the |Q|2
dependence of the integrated intensity [24]. (2) Near the X
point there is a dramatic broadening of the lower branch [be-
tween 4 and 8 meV in Fig. 1(e)], where the Heisenberg model
[14] calls for twofold degeneracy. (3) The optical modes at
the � point at 11.6 meV, which in the Heisenberg model is
triply degenerate, is split into three modes with splitting �o

� =
0.7(3) meV, see Appendix D 2 c. In the following we will
show that these features directly reflect symmetry-allowed
DM interactions and the associated incommensurate nature of
the ground state.

As apparent in Fig. 1(e), the low energy parts (<2 meV) of
the inelastic magnetic scattering at � points overlap with the
tails of elastic coherent and incoherent nuclear and magnetic
scattering as a result of the finite energy resolution of the
measurements. To resolve magnetic scattering in this low en-
ergy regime, we used the MACS instrument [25] at the NIST
Center for Neutron Research in a separate experiment on the
same sample. The final energy was fixed at E f = 2.4 meV
resulting in a FWHM elastic energy resolution 0.08 meV. The
data were acquired at T = 1.6 K. We were able to resolve
magnon dispersion with energy transfers from h̄ω = 0.2 to
1.2 meV. The data were processed using the software DAVE
[26] and folded assuming cubic symmetry.

A fixed h̄ω = 1.15 meV slice of MACS data near the
�(1, 1̄, 1̄) zone center is shown in Fig. 3(a). Within ex-
perimental accuracy, the dispersion is isotropic. Notice the
four pointlike signals outside the rings in Fig. 3(a). These
are remnants of Bragg diffraction of 2.4 meV neutrons dif-
fusely scattered from the monochromator that were partially
subtracted as described in Appendix E 1. We approximate
the dispersion as E (q) = Dq2 + �� , where q is the distance
from the � point, D is the spin wave stiffness, and �� is
a possible anisotropy gap. Taking into account the coarse
out-of-plane Q resolution of MACS and its energy resolution
as described in Appendix E 2, a pixel-to-pixel fit to the data
yields D = 67(8) meV Å2, which is slightly larger than the
previous neutron report [16] and the overall model parameters
in Table I, which fit the SEQUOIA data of higher energy
transfers and correspond to D = 58(2) meV Å2 where the
latter range indicates the orientational anisotropy. The data
place an upper bound of 0.1 meV on �� , which is consistent
with other experiments [27,28]. Figures 3(c) and 3(d) com-
pare the angular average neutron scattering intensity data to
the resolution smeared intensity distribution anticipated for
the best-fit coarse-grained model indicated in Table I. Here the
effects of momentum and energy resolution were taken into
account as described in Appendix E where we also discuss
evidence for the incommensurate ground state in the form of
a physical momentum space broadening of low energy modes.

III. SPIN WAVE MODEL

Without compromising accuracy, great simplification in
modeling the low energy spin dynamics of Cu2OSeO3 can be
achieved by treating each strong tetrahedron as a rigid clus-
ter with an effective spin S = 1. The corresponding coarse-
grained lattice shown in Fig. 1(d) is a distorted fcc lattice with
the same space group P213 as the original lattice. There are
two different types of ferromagnetic interaction between the

FIG. 3. (a) Constant h̄ω = 1.15(15) meV slice through MACS
data near the Q0 = (11̄1̄) zone center. The spin wave signal forms
a circle, which indicates isotropic dispersion. (b) Spin wave model
calculation using the parameters in Table I and numerically con-
voluting with the instrumental resolution described in Appendix
E. (c) Q‖ − ω intensity map of MACS data following azimuthal
averaging around Q0. Due to the azimuthal averaging, the error
bars of the pixels are inversely proportional to Q‖. The pixels near
Q‖ = 0 (for example, bright pixels at h̄ω = 0.4, 0.6, 0.9 meV) have
significantly larger error bars compared to the pixels of finite Q‖
and are thus less reliable. (d) Calculated Q‖ − ω intensity map using
parameters in Table I and the same azimuthal averaging as for the
experimental data. Data in (a) and (c) share the same color scale and
were not independently normalized. Calculation results in (b) and
(d) share the same normalized color scale. Dashed lines in (c) and
(d) mark the lowest accessible energy transfer (0.2 meV) in the
MACS experiment.
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effective spins. As shown in Figs. 1(a) and 1(d), we define the
bond arising from JAF

w and JAF
o.o to be J1 (nearest neighbor, nn).

The interaction arising from JFM
w is denoted J2 (next nearest

neighbor, nnn). The Hamiltonian for the effective model reads

HJ =
∑
〈i j〉

J1Si · S j +
∑
〈〈i j〉〉

J2Si · S j, (1)

where 〈i j〉 and 〈〈i j〉〉 denote pairs of first and second
neighbors, respectively. We then use the standard Holstein-
Primakoff (HP) substitution for collinear structures and ex-
pand to order of 1/S before setting S = 1. The dispersion
relation for the resulting quadratic magnon hopping model
[Fig. 4(a)] is broadly consistent with the inelastic neutron
scattering data in Fig. 1(e) but dramatically simpler and with
fewer parameters than a microscopic model [14,29]. The
energy of optical modes at the � point (also the bandwidth
of magnon bands below 13 meV) is 8|J1 + J2| ≈ 12 meV,
while the M point splitting reflects the difference between J1

and J2: 4|J1 − J2| ≈ 1.2 meV. Following the previous DFT
calculation [18] and assuming that |J1| < |J2| leads to the
parameters and calculated magnon dispersion in Fig. 4(a)
(magenta). High temperature expansion yields [18] �CW ≈
−4(J1 + J2) = 70 K, which is consistent with the Curie-Weiss
temperature �CW = 69(2) K extracted from high temperature
susceptibility data [20]. However, contrary to the helimagnetic
state of Cu2OSeO3, this model is a FM and it does not yet
account for the previously enumerated features (splitting of
magnon modes at the � and R points, broadening of the lower
magnon branches at the X point) of the high resolution data in
Sec. II nor the helical ground state.

To account for these, we augment the model with symme-
try allowed DM interactions:

HD =
∑
〈i j〉

Di j · (Si × S j ) +
∑
〈〈i j〉〉

D′
i j · (Si × S j ). (2)

The nearest neighbor DM vectors Di j are related to each
other by lattice symmetries and can be expressed in terms
of their coordinates in a local frame, Di j = (d1, d2, d3). The
same applies to the second-neighbor DM vectors D′

i j . The
absence of mirror symmetries in Cu2OSeO3 means there are
no constraints on these six parameters. The DM vectors for
each bond are in Table III of Appendix A. The DM vector
for a representative nn bond is shown in Fig. 4. Determining
the exact ground state and spin wave dispersion relation for
a general set of DM interactions is nontrivial. Appendix A
describes a semiquantitative analysis the results of which we
shall now summarize.

A. R-point splitting

The R-point splitting �R = 1.6(2) meV is closely related
to DM components d1 and d ′

1, which mix the magnon modes
of the four sublattices in the coarse-grained unit cell. Specifi-
cally we find �R = 4|d1 − d ′

1|. Field theoretical analysis [18]
yields the following expression for the helical pitch |kh| ∝
|d1 + d ′

1| when all other DM components are 0. We note that
the splitting at the R point �R is independent of whether the
ground state is incommensurate (whether kh is finite). The
little group of the lattice space group P213 at the R point has
no four-dimensional irreducible representation to protect any

FIG. 4. (a) Magnon dispersion calculated for HJ with J1 =
−0.6 meV, J2 = −0.9 meV (magenta), and for Htot ≡ HJ + HD

with d1 = −d ′
1 = 0.2 meV and all other DM components zero

(green). The general features of the Ei = 20 meV inelastic neutron
data (Figs. 1 and 2) are reproduced. The DM interactions lift the R
point degeneracy as observed in the experimental data [Figs. 2(e)–
2(g)]. The colored background shows the density of states (DOS) of
the two-magnon continuum for each momentum along high symme-
try direction. The unit for the DOS is 1/(Å−1 meV) per unit cell.
(b) Local coordinate system defining DM interactions for nn and nnn
effective spins. Only the DM interaction for a single nn pair D14 is
shown. For nnn (c) a similar set of (d ′

1, d ′
2, d ′

3) projections can be
defined. There are no symmetry constraints on D or D′. Only the
components d1 and d ′

1 contribute to splitting at the R point.
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fourfold degeneracy [30] even when the magnetic structure
is commensurate. It follows that if d1 and d ′

1 were the only
anisotropy parameters, they would be uniquely determined by
�R and kh. While symmetric anisotropic exchange can also
contribute to �R, the absence of a significant � point gap
in the excitation spectrum as indicated by the present data
(�� � 0.1 meV), microwave [27] and specific heat [28] data
however constrain such anisotropy terms.

B. X -point broadening

The lower branch of the X -point magnon dispersion should
be twofold degenerate, because the corresponding little group
of P213 only has two-dimensional irreducible representations
[30]. For an incommensurate ground state, the symmetry of
the magnon Hamiltonian is lowered by the magnetic structure
which selects one particular 〈100〉 direction. Thus the X point
along the magnetic wave vector (defined as Z) is distinguish-
able from the orthogonal X directions. Our measurements are,
however, carried out on a multidomain sample so that X and
Z point data are superimposed. This effect may contribute
to the X -point broadening though it cannot account for the
continuum between 4 and 8 meV at the X point [Figs. 1(e)
and 2(h)–2(j)].

In Fig. 4(a) we also indicate the phase space for two-
magnon states. The color map background indicates areas in
P − E2(P) space where P = p1 + p2 and E2(P) = E (p1) +
E (p2) represents the two-magnon continuum for a given
momentum P. Here E (p1) is the energy of single magnons
given by HJ with momentum p1. We notice the shape of the
two-magnon continuum near the X point and along the MR
edge closely resembles the broadened region of the inelastic
neutron data [see Fig. 1(e)]. This suggests possible one to
two-magnon decay allowed by the noncollinear magnetic
structure, as observed in various magnetic systems [31,32].
The crossing of the single-magnon dispersion through the
two-magnon phase space means the kinematic constraints
(conservation of energy and momentum) are satisfied. This
is a necessary but not sufficient condition for spontaneous
magnon decay [33]. The lower branch of the magnon modes
around the X point can in principle decay into two acoustic
magnons. The density of states (DOS) of the two-magnon
continuum reflects the number of one- to two-magnon decay
channels. However, the resulting linewidth (decay rate) is
controlled by the magnitude of interaction vertices: indeed the
single-magnon modes with most significant broadening (the
lower modes at the X point and the XM and XR edges) do
not coincide with the largest two-magnon continuum DOS.
It is interesting to note, however, that the observed scattering
intensity near the X point closely follows the calculated two-
magnon continuum. This points to the possibility that single-
magnon excitations are completely destabilized in this region
of the Brillouin zone and replaced by two-magnon excitations.

Another possible mechanism for broadening at the said
momenta is magnon-phonon interactions. The previous in-
elastic neutron scattering experiment at T = 70 K [17] re-
ported an acoustic phonon mode around 5 meV and an optical
phonon around 8 meV at the X point. These two phonons
overlap with the broadened lower branches of magnons at the
X point and along the XR edge. The hybridization of crossing

magnon and phonon modes at the zone boundary may play a
role in the apparent magnon decays. A similar explanation was
proposed for magnon softening in ferromagnetic manganese
perovskites [34]. A thorough quantitative analysis is needed
to distinguish between these distinct scenarios.

C. Splitting of optical modes at the � point

The splitting of the optical modes at the � point is affected
by d2, d ′

2, d3, d ′
3, but not by d1 or d ′

1 (Appendixes A and D 2).
In Fig. 4 we show as green lines the magnon dispersion

calculated for Htot ≡ HJ + HD with the same J1, J2 as pre-
viously employed, d1 = −d ′

1 = 0.2 meV, and the remaining
DM components set to 0. This is a special case (d1 = −d ′

1),
in which the DM interactions cancel and lead to a collinear
FM ground state with kh = 0. The experimentally observed
energy splitting at the R point is �R = 1.6 meV. Note the
mode splitting along the XM, XR, and MR edges due to
the multidomain effect. The optical modes at the � point,
however, remain degenerate. By including other components
of the DM interaction the dispersion at the M point is modified
so the relationship 4|J1 − J2| ≈ 1.2 meV associated with the
experimentally determined M-point splitting does not strictly
hold in the following numerical fit.

IV. QUANTITATIVE COMPARISON

To make further progress towards an accurate effective-
spin Hamiltonian Htot for Cu2OSeO3, we use the Matlab
Library SpinW_R3176 [35] to calculate the dynamical struc-
ture factor for approximate single wave vector helical ground
states. Multiple domains are superimposed in our multido-
main sample. Though there exist several theoretical methods
to calculate the ground state wave vector and chirality or
handedness of the magnetic helicoid from microscopic param-
eters [18,36], in this work we use a numerical approach to
obtain the magnetic ground state for a given set of interaction
parameters during the optimization of Htot. First we use the
Luttinger-Tisza method [37] to determine the overall magnetic
wave vector. We then use the Monte Carlo method to optimize
the relative directions of the four effective spins. These steps
are repeated until we obtain a single wave vector state with the
lowest possible energy. We require the resulting wave vector
to be consistent with the magnetic wave vector kh [6] and the
chirality previously determined by SANS [38].

For comparison with the measured neutron scattering cross
section, we must take into account the internal structure of
the effective spin. As detailed in Appendix C, this is accom-
plished by multiplying the effective-spin cross section with
the form factor of a ferrimagnetic tetrahedron. The instru-
mental resolution was handled approximately by replacing
the delta-function spectral function of the idealized spin wave
cross section with a Gaussian energy resolution function. To
the calculated Ei-dependent energy resolution of the instru-
ment, we added a phenomenological width 2�̄ = 0.37 meV
in quadrature to match the experimental FWHM at the R
point (see Appendix D 1 for details). Possible origins of
�̄ include a finite spin wave relaxation rate for the gapless
noncollinear spin structure and apparent broadening due to
the down-folding effects associated with the incommensurate
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FIG. 5. Comparison between an experimental (a) and calculated (b) cross section along a path in momentum space that connects labeled
high symmetry points. The color bars indicate the intensity scale. In (a), the integration range of perpendicular Q direction is ±0.05 Å−1.
(c) The measured and calculated integrated intensity S(Q) [calculated result is multiplied by the constant of proportionality C, see Sec. V (4)].
The excellent agreement throughout multiple zones validates the effective-spin formalism and the use of an effective-spin form factor. Error
bars in (c) represent one standard deviation.

spin structure. The finite Q resolution of the instrument is
not explicitly included and could also in part be the origin
of �̄. We then carry out a pixel by pixel least squares fit of
the measured versus calculated Q and h̄ω dependent intensity.
For each set of interaction parameters in Htot we determined
the constant of proportionality C between model and data by
fitting the equal time structure factor S(Q) = ∫ ∞

0 dωS(Q, ω).
Two enantiomers and three magnetic domains with kh along
different 〈100〉 directions were superimposed in the calculated
S(Q, ω). The corresponding measured vs calculated structure
factor is shown in Fig. 5. For a quantitative examination of
the quality of this constrained fit, Fig. 2 further shows cuts
versus energy of S(Q, ω) at selected high symmetry points
in the Brillouin zone. The best-fit parameters thus extracted
are listed in Table I. The calculated dispersion from this
set of parameters in the energy range below 1.2 meV is
shown in Fig. 3(d) to compare with the MACS data shown
in Fig. 3(c). Resolution effects play a significant role here
and are partially taken into account as described in Appendix
E 2. Momentum space broadening associated with the incom-
mensurate nature of the ground state is also apparent in this
low energy regime (Appendix E 2). Fitting the raw data to an
isotropic quadratic dispersion of the form E (q) = Dq2 + ��

yields D = 67(8) meV Å2, �� = 0.0(1) meV, slightly larger
than the model, which yields D = 58(2) meV Å2 and �� =
0+0.03

−0.01 meV. Note that here we are not probing the lower

energy regime where helimagnons can be expected for q < kh

and h̄ω � 0.1 meV.

V. DISCUSSION

Figures 2 and 5 show good agreement between model and
data both in terms of dispersion and intensity. The effective
model Htot with only four parameters (J1, J2, d1, d ′

1) already
accounts for most of the features of the measured magnon
dispersion, including the R-point splitting which requires
anisotropic interactions [17]. Despite playing a secondary role
and being less bounded by the measured inelastic neutron
scattering data, d2, d ′

2, d3, and d ′
3 are included to account for

the the splitting of the optical modes at the � point and the
broadening of peaks at M. This shows DM interactions can
have a non-negligible influence on magnon spectra beyond the
low energy regime, while still stabilizing an incommensurate
ground state with small kh consistent with previously reported
SANS data. The consistency of the calculated and measured
intensity throughout multiple Brillouin zones validates the
use of an effective form factor for cluster spins and so-
lidifies the hierarchical approach to this compound. Several
discrepancies, however, remain due to the complexity of the
physical system and the limits of the model, which we discuss
individually here.
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(1) Since the ground state is helical and incommensurate,
with real space periodicity 2π

kh
, the period of the magnon

dispersion should be kh in the direction of the wave vector
instead of 1 r.l.u. For a single magnetic domain with kh along
certain 〈100〉 direction, the observable magnon modes at q
with q⊥ = 0 (q⊥ is the component of q perpendicular to kh)
are magnon modes originating from � points (denoted as
q mode) and those from ±Nkh (denoted as q ± Nkh mode
with N � 1). Along the direction of kh (q⊥ = 0), we expect
to observe only q and q ± kh modes if we have a single
kh helical ground state, while the cantings and phase shifts
due to multiple sublattices and possible higher-order spin-
orbital coupling terms may include additional modes with
less weights [39,40]. In our measured cross section, due to
the presence of multiple magnetic domains, we generally
expect to observe q ± Nkh modes at any finite q. For practical
reasons we only include q and q ± kh in the calculation,
therefore all high order folding modes are neglected. A �

point magnetic excitation at 8.4 meV was detected by THz
optical spectroscopy [23], which also can be observed in our
neutron data [see Figs. 2(a) and 2(b)]. It was interpreted as a
magnon folded back from high momentum. This mode does
not appear in our calculation, which is presumably because
our model does not properly take into account such down-
folding effects.

(2) The model treats each cluster as a rigid classical spin-
1, which is equivalent to assuming JAF

s → ∞ when in fact
JAF

s = 12.5 meV [16] is large but finite. As a result, the ground
state will be a superposition of spin-1 and spin-2 states due
to exchange interactions with neighboring tetrahedra [14], as
well as of spin-0 states due to intratetrahedra DM interactions.
The effects of this can be seen in the ratio between the magnon
energy at the � point and the center of the two modes at the
R point. This ratio is strictly 4:3 in the rigid cluster model. In
the measured data, the energy of optical modes at the � point
is around 11.6(2) meV so that the model correspondingly
would predict a center energy of 8.7(2) meV at the R point.
The center energy at the R point is however observed slightly
higher at 9.2(2) meV. This 0.5 meV deviation cannot be
accommodated in the rigid spin-1 model by varying the ex-
change parameters. Instead, the fit procedure leads to a com-
promise as in Fig. 2. This deviation may also be caused by the
magnon-phonon coupling between the two-magnon modes
and the 6.9 meV phonon mode that we identify in Figs. 2(e)–
2(g) and 2(k). A similar phonon magnetochiral effect was
recently proposed in the context of an ultrasound experiment
[41].

(3) The overall broadening of magnon peaks exceeds the
instrument resolutions corresponding to a relaxation rate �̄ =
0.18(5) meV throughout the Brillouin zone. At the X point
between 4 and 8 meV [see Figs. 2(h)–2(j)], the single-magnon
branch actually vanishes and is replaced by continuum scatter-
ing in a region of Q − ω space that closely matches that of the
kinematically allowed two-magnon continuum. The broaden-
ings of the upper magnon branch (around 12 meV) at the
X point also exceeds the average phenomenological FWHM
corresponding to �̄ (see Appendix D 1). We believe these
effects arise from magnon interactions and decay processes
as should be anticipated for a low symmetry and low spin
(S = 1) gapless magnet.

(4) In this study we have used two methods to normalize
the neutron data. The first is vanadium incoherent scatter-
ing, which gives a normalization factor Nv with systematic
uncertainty ≈15%. We further calculate and compare the
Bragg intensities (Appendix B), and get a normalization factor
NB ≈ 1.2Nv with ≈30% uncertainty. Throughout the paper
we have adopted NB for data normalization. The constant
of proportionality C (ratio) between normalized measured
magnetic cross section and calculated cross section is fitted to
be 1.15(5). Considering the presence of phonon cross sections
and background scattering, the calculated result of our rigid
spin-cluster model is consistent with the experimental data
normalized by NB within uncertainty. Besides limitations in
the accuracy of the absolute normalization of the measured
neutron scattering cross section, the following reasons may
also cause discrepancy between calculated and measured
magnetic cross section: (1) The spin density distribution
around Cu2+ may be more extended than for atomic 3d9

electrons [42], even spreading onto the ligand sites. This may
cause a more rapid decrease of the magnetic form factor F (Q)
(see Appendix C) as a function of Q than accounted for in
the analysis. (2) The ground state and low energy excited
states of the system may be more entangled [14,15] than
the rigid limit we take. Such quantum entanglement may
reduce (increase) the effective spin length for each Cu2+ by
admixing spin-0 (spin-2) states into the ground state and the
low energy excited states. (3) The high order folding modes
(q ± Nkh, N > 1) we neglect may cause the distribution of
spectral weights to differ from calculations neglecting these
components. (4) Furthermore, the finite momentum resolution
of the instrument has not been fully quantified and included in
the comparison between model and data.

VI. CONCLUSION

Cu2OSeO3 is a complex low symmetry magnetic material.
The complexity starts with a large structural unit cell con-
taining 16 magnetic ions. The lack of inversion symmetry
gives rise to a chiral magnetic order with a periodicity that
is incommensurate with the crystalline lattice. Understanding
the spectrum of excitation in such a magnet is a nontrivial task
that we dedicated ourselves to in this paper.

We conducted an inelastic neutron scattering experiment
on Cu2OSeO3 focusing on the four lowest magnon branches
and built a quantitative effective spin model that can be the
basis for describing its low energy magnetism. The model
includes DM interactions that stabilize the helimagnetic order.
Features of the magnon spectrum missed in previous experi-
ments and calculations have been quantitatively established
and related to the incommensurability of the magnetic order.
The interaction parameters were obtained by fitting the model
to Q − E slices through four-dimensional inelastic magnetic
neutron scattering data. The resulting coarse-grained model
provides an accurate description of the four lowest energy
branches of the magnon spectrum. The methods exemplified
by this work can be extended to other magnets where dom-
inant interactions lead to the formation of effective spins at
low energies. Our model will facilitate understanding of the
complicated phase diagram of Cu2OSeO3 including the exotic
skyrmion phase.
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APPENDIX A: DETAILS OF THE SPIN WAVE MODEL

In the main text we consider interactions between nn and
nnn clusters. All Ji j and Di j are listed in Table III. Through
gradient expansion and field theory analysis previous studies
indicated a single wave vector helical state [18] at zero field
and low temperature. However, due to the rather low lattice
symmetry, the exact ground state will also involve canting and
phase shifts among the four sublattices. This raises significant
difficulty in analytically determining the exact magnetic struc-
ture with a general set of DM interactions. Furthermore, the
helical modulation mixes spin wave modes with momentum
q and q ± Nkh, with N = 1, 2, . . . and kh is the helical state
wave vector. In the following we will only consider mixings
between q and q ± kh modes.

The R-point splitting can be related to two specific DM
components listed in Table III, namely d1 for nn and d ′

1
for nnn. The reason we have a fourfold degeneracy for the
Heisenberg model H j is partly due to the symmetry of our
coarse-grained lattice structure: we have four sublattices in
the unit cell, ρ1 to ρ4 in Table II. Each sublattice has six nn
and six nnn. For example, sublattice-1(ρ1) has two nn and
two nnn on each of the sublattice 2, 3, and 4, respectively.
Defining ê3 to be the global direction of magnetization for the
collinear ground state, while ê1 and ê2 are the two orthogonal

directions (ê1, ê2, ê3 are chosen to form a right-handed local
frame), we consider small deviations from the ground state
magnetic structure

δSi = αiê1 + βiê2 +
(

1 − α2
i + β2

i

2

)
ê3, (A1)

where i labels the sublattice, and δS, α, and β are functions of
(nx, ny, nz ) (labeling the unit cell). Then the magnon disper-
sion comes from the quadratic terms in αi, βi within a Taylor
expansion of the exchange energy. For a certain sublattice 1,
the change in exchange energy resulting from a deviation in
spin from the ground state configuration can be written as

〈δHJ〉1i = J1δS1 ·
(∑

i∈nn

δSi

)
+ J2δS1 ·

(∑
i∈nnn

δSi

)
. (A2)

The definition of the R point ( 1
2 , 1

2 , 1
2 ) in momentum space is

that in real space we have

αi(nx, ny, nz ) = (−1)nx+ny+nzαi0, (A3)

βi(nx, ny, nz ) = (−1)nx+ny+nzβi0,

in other words δSi (to linear order) change signs from one unit
cell (nx, ny, nz ) to its neighbor [(nx ± 1, ny, nz ), etc]. Consider
the nn terms between sublattice 1 and sublattice 4,

J1δS1(nx, ny, nz ) · [δS4(nx, ny, nz + 1)

+ δS4(nx + 1, ny, nz + 1)]. (A4)

The first term (to quadratic order in α, β) reads

J1

[
α1(nx, ny, nz )ê1 + β1(nx, ny, nz )ê2

+
(

1 − α2
1 + β2

1

2

)
ê3

]
·
(

α4(nx, ny, nz + 1)ê1

+ β4(nx, ny, nz + 1)ê2 +
(

1 − α2
4 + β2

4

2

)
ê3

)

≈ J1

(
−α10α40 − β10β40 − α2

10 + β2
10

2
− α2

40 + β2
40

2

)
.

(A5)

TABLE II. Coordinates of 16 Cu2+ sites in the unit cell of a right-handed enantiomer, where y = 0.88557, a = 0.13479 (not to be confused
with lattice constant), b = 0.12096, and c = 0.87267. The unit cell is plotted in (a), where Cu-1 (white), Cu-2 (black), JAF

s (red), JFM
s (blue),

JAF
w (magenta),JFM

w (cyan), and JAF
o.o (magenta, dashed) are plotted with the same convention as in Fig. 1(a). We use the position of Cu-1 (ρ1 to

ρ4) to represent the position of each cluster.

(a) Unit cell of 16 Cu2+.

Labels Coordinates Labels Coordinates
ρ1 (y, y, y) ρ2 ( 3

2
− y, 1 − y, y − 1

2
)

ρ3 (1 − y, y − 1
2
, 3

2
− y) ρ4 (y − 1

2
, 3

2
− y, 1 − y)

ρ5 (a, b, c) ρ6 (b, c, a)
ρ7 (c, a, b) ρ8 (1 − a, b + 1

2
, 3

2
− c)

ρ9 (b + 1
2
, 3

2
− c, 1 − a) ρ10 ( 3

2
− c, 1 − a, b + 1

2
)

ρ11 (a + 1
2
, 1

2
− b, 1 − c) ρ12 ( 1

2
− b, 1 − c, a + 1

2
)

ρ13 (1 − c, a + 1
2
, 1

2
− b) ρ14 ( 1

2
− a, 1 − b, c − 1

2
)

ρ15 (1 − b, c − 1
2
, 1

2
− a) ρ16 (c − 1

2
, 1

2
− a, 1 − b)

(b) Coordinate Table, the same as in Ref. [19]
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TABLE III. Conventions for the nn and nnn bonds. ri and r j + [m, n, p] label the coordinates of clusters (strong tetrahedra) in units of the
cubic lattice parameter. Ji j and Di j are the Heisenberg and DM interactions between site i and j. We choose the same convention as listed in
Table 3 of [18].

ri r j Ji j Di j ri r j Ji j D′
i j

ρ1 ρ4 + [0, 0, 1] J1 (d1, d2, d3) ρ1 ρ4 + [0, 1, 1] J2 (d ′
1, d ′

2, d ′
3)

ρ1 ρ2 + [0, 1, 0] J1 (d2, d3, d1) ρ1 ρ3 + [1, 0, 1] J2 (d ′
3, d ′

1, d ′
2)

ρ1 ρ2 + [0, 1, 1] J1 (d2, d3, −d1) ρ1 ρ2 + [1, 1, 0] J2 (d ′
2, d ′

3, d ′
1)

ρ1 ρ3 + [1, 0, 0] J1 (d3, d1, d2) ρ1 ρ2 + [1, 1, 1] J2 (d ′
2, d ′

3, −d ′
1)

ρ1 ρ4 + [1, 0, 1] J1 (−d1, d2, d3) ρ1 ρ3 + [1, 1, 1] J2 (d ′
3, −d ′

1, d ′
2)

ρ1 ρ3 + [1, 1, 0] J1 (d3, −d1, d2) ρ1 ρ4 + [1, 1, 1] J2 (−d ′
1, d ′

2, d ′
3)

ρ2 ρ4 + [0,−1, 0] J1 (−d3, d1, d2) ρ2 ρ3 + [0, −1, 0] J2 (d ′
1, −d ′

2, d ′
3)

ρ2 ρ3 J1 (d1, −d2, d3) ρ2 ρ4 + [0,−1, 1] J2 (−d ′
3, d ′

1, d ′
2)

ρ2 ρ4 J1 (−d3, −d1, d2) ρ2 ρ4 + [0, 0, 1] J2 (−d ′
3,−d ′

1, d ′
2)

ρ2 ρ3 + [1, 0, 0] J1 (−d1, −d2, d3) ρ2 ρ3 + [1, −1, 0] J2 (−d ′
1,−d ′

2, d ′
3)

ρ3 ρ4 J1 (−d2, d3, d1) ρ3 ρ4 + [−1, 0, 0] J2 (−d ′
2, d ′

3, d ′
1)

ρ3 ρ4 + [0, 0, 1] J1 (−d2, d3, −d1) ρ3 ρ4 + [−1, 0, 1] J2 (−d ′
2, d ′

3, −d ′
1)

Only the first two terms involve interactions between different
modes and can split the degeneracy, however, sublattice 1 has
another nn of sublattice 4 [the second term in (A4)] which is
exactly one unit cell away, which contributes quadratic terms
as

J1

(
α10α40 + β10β40 − α2

10 + β2
10

2
− α2

40 + β2
40

2

)
(A6)

and exactly cancels the cross terms between sublattice 1
and sublattice 4. A similar cancellation occurs between all
other sublattices and again for nnn terms. The absence of
cross terms between four modes leads to a fourfold degen-
eracy, even though the cubic group has no four-dimensional
irreducible representation. The splitting at the R point then
becomes susceptible to the normally weaker anisotropic inter-
actions.

Strictly speaking, after turning on DM interactions, we will
have a noncollinear ground state. Furthermore, the symmetry
of the magnon hopping model, determined by the underlying
magnetic structure, will be lowered by the helical wave vector
selecting a specific [100] direction. We can still estimate the
impacts of DM interactions following the above logic. The
leading effect of DM interaction (between a certain sublattice
1 and its nn sublattice 4) in the magnon Hamiltoian can
be written as follows:

〈δHD〉1i = D14(0, 0, 1) · [δS1(nx, ny, nz )

× δS4(nx, ny, nz + 1)]

+ D14(1, 0, 1) · [δS1(nx, ny, nz )

× δS4(nx + 1, ny, nz + 1)], (A7)

where D14(0, 0, 1) = (d1, d2, d3) and D14(1, 0, 1) =
(−d1, d2, d3) can be read from Table III. For a crude estimate,
we assume that the ground state is still fairly collinear so
we can still use Eqs. (A1) and (A3) at the R point. This
corresponds to ignoring both the spatial variation of êi and
the fact that magnon mode at the R point will naturally mix
with those at ( 1

2 , 1
2 , 1

2 ) ± Nkh. In other words, since the wave
vector kh measured in the experiment is quite small, we
assume the magnon dispersion corresponding to the actual

incommensurate ground state can be “adibatically” evolved
from some commensurate ground state. In this approximation
we have δS4(nx, ny, nz + 1) ≈ −δS4(nx + 1, ny, nz + 1) so
expression (A7) then reads

[D14(0, 0, 1) − D14(1, 0, 1)] · (δS1 × δS4)

= 2(d1, 0, 0) · (δS1 × δS4) ∝ d1(α10β40 − α40β10).
(A8)

We conclude that since d1 is the only DM component that
survives the summation over nn sublattices of the same type, it
will predominantly contribute to lifting the degeneracy at the
R point by mixing the magnon modes of the four sublattices
in the coarse-grained unit cell. The same argument goes for
the nnn DM component d ′

1. A similar argument works for
the � point, where we have δS4(nx, ny, nz + 1) ≈ δS4(nx +
1, ny, nz + 1), the addition of DM terms contains only d2, d3

for nn (d ′
2, d ′

3 for nnn). Later we will see from numerical
calculation that d2, d3, d ′

2, d ′
3 play major roles in lifting the

degeneracy of optical modes at the � point.
We proceed to provide a more quantitative calculation that

holds when only J1, d1, and d ′
1 are nonzero, this is one of the

few cases where we can determine the ground state analyti-
cally. We use the classical picture, assuming the ground state
wave vector is k = (0, 0, k), the ground state configuration is

ê3(m, n) = [cos(k · rn,m), sin(k · rn,m), 0],

rn,m = [n + (0, 0, νm )]a,

ν1 = 7
8 , ν2 = 3

8 , ν3 = 5
8 , ν4 = 1

8 , (A9)

here ê3(m, n) represents the direction of magnetization of
sublattice m (m = 1, 2, 3, 4) in the unit cell labeled by n =
(nx, ny, nz ). Substitute (A9) (and similar expressions for ê1

and ê2) into (A1) and then into the Hamiltonian we obtain
the zeroth order expression for the ground state energy

f0 = 8J1 cos

(
ka

4

)
+ 4J1 cos

(
ka

2

)
− 4(d1 + d ′

1) sin

(
ka

2

)
.

(A10)

The first order in αi, βi correction vanishes which signals the
correct ground state. The wave vector k can be determined by
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FIG. 6. The vanadium normalized experimental Q-integrated
Bragg intensities versus calculated nuclear+magnetic Bragg inten-
sities. For each peak a background (green symbols) was subtracted.
It was obtained from data acquired at the same |Q| but with the
sample rotated so as to not satisfy the Bragg diffraction. The large
background at (123) is due to powder Bragg diffraction from the
aluminum sample mount. The solid line is an empirical fit describing
the crossover from a linear to a saturated regime as described in the
text. Error bars in the figure represent one standard deviation.

minimizing f0 with respect to k, which gives k ≈ − 4(d1+d ′
1 )

3J1a .
The quadratic in αi, βi energy correction H2 is too cumber-
some to show in full form. For the R point, we consider the
mixture between ( 1

2 , 1
2 , 1

2 ) and ( 1
2 , 1

2 , 1
2 ) ± k, which amounts

to expanding

αi(nx, ny, nz ) = (−1)nx+ny+nz [αi0 + αi1 cos(knza)

+ αi2 sin(knza)],

βi(nx, ny, nz ) = (−1)nx+ny+nz [βi0 + βi1 cos(knza)

+ βi2 sin(knza)]. (A11)

We then substitute the above equations into H2, integrate out
the terms slowly varying in space (terms depending on nz)
and only keep leading order terms in k. For the Berry phase
terms α̇iβi [see Eq. (A11)], terms like cos2(knza) or sin2(knza)
will give 1

2 after averaging over spatial regions in z direction,
while crossing terms with sin(knza) cos(knza) will vanish. By
solving the equations of motion for the Lagrangian

L =
4∑

i=1

[
α̇i0βi0 + 1

2
(α̇i1βi1 + α̇i2βi2)

]
− H2, (A12)

we find the magnon dispersion energy at the R point to be
h̄ωR = −6J1 ± 2(d1 − d ′

1). That is, the splitting at the R point
�R is approximately 4|d1 − d ′

1|. We can see that the splitting
at the R point and the wave vector k, although both related to
the microscopic DM interactions, are algebraically indepen-
dent, d1 and d ′

1 can be similar in strength to the Heisenberg
exchange, while maintaining a small ground state wave vector
k as measured in the experiment.

Unfortunately, after including J2, an exact analytical ex-
pression for the ground state spin configuration like (A9) is no
longer possible. However, in the special case where d1 = −d ′

1,
the effect of nn and nnn DM interactions exactly cancel in the
expression for k ∝ |d1 + d ′

1| = 0, resulting in a ferromagnetic
ground state where the uniform magnetization can point along
any direction. The spin wave dispersion for this case is shown
in Fig. 4. The corresponding splitting at the R point equals
4|d1 − d ′

1| = 8|d1|.

APPENDIX B: NORMALIZATION OF NEUTRON DATA

To check the vanadium normalization, we analyze the Q-
integrated intensity of a set of Bragg peaks. Figure 6 shows
the experimental Q-integrated Bragg intensities versus the
calculated nuclear+magnetic Bragg intensities. We use an
empirical functional form y = p1 tanh(p2x) to describe the
crossover from a linear regime for weak Bragg peaks to
a saturation regime for strong peaks due to extinction and
detector saturation effects [43]. The revised normalization fac-
tor NB = Nv/(p1 p2) = 1.2Nv , where Nv is the normalization
factor inferred from vanadium normalization, indicates 20%
less scattering from the sample than anticipated from the count
rates obtained for the vanadium standard sample. While this
discrepancy is within systematic errors, we adopt the Bragg
normalization factor NB as it gauges the same sample volume
and beam area as the inelastic magnetic neutron scattering
experiment.

APPENDIX C: DERIVATION OF EFFECTIVE
FORM FACTOR

Here we derive the effective form factor of the effective
ferrimagnetic spin cluster. The inelastic neutron scattering
cross section measures the transverse spin-spin correlation
function, which reads

d2σ

ddE f
(Q, ω) = k f

ki
(γ r0)2

∑
α,β

(δαβ − Q̂αQ̂β )
∑

l,d,l ′,d ′

∑
n,n′

[Fd ′n′ (Q)eiQ·rl′d ′n′ ]∗[Fdn(Q)eiQ·rldn ]

×
∑
λ,λ′

pλ 〈λ| sα
l ′d ′n′ |λ′〉 〈λ′| sβ

ldn |λ〉 δ(Eλ − Eλ′ + h̄ω), (C1)

h̄ω and Q are energy and momentum transfers, respectively.
k f , ki are the momentum of final and incoming neutrons,
respectively. γ = 1.913, r0 = 2.818 × 10−15 m is the classi-
cal electron radius. We label the spin- 1

2 of Cu2+ with three
indices: l for unit cell, d = 1, 2, 3, 4 labels the tetrahedral
clusters, n = 1, 2, 3, 4 each Cu2+ within a cluster with n = 1
corresponding to Cu-1. Fdn(Q) is the magnetic form factor of

the Cu2+ ion. pλ is the probability that the initial state is |λ〉
with energy Eλ. The final state |λ′〉 has energy Eλ′ .

To proceed we make two key approximations: (1) We take
the tabulated form factor [42] of Cu2+ for both Cu-1 and Cu-2
(the same for all Fdn), that is, we neglect possible influence
of the neighbor ligands on spin density distribution of Cu2+

ions. (2) For the magnetic excitation with h̄ω < 13 meV, we
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FIG. 7. (a) h̄ω-dependent instrument resolution function of SEQUOIA determined by Monte Carlo simulation. (b)–(d) The two-Gaussian
fit to energy cuts at different R points. A weak third modes near 6.9 meV (discussed in Sec. II) is not considered. Vertical dashed lines indicate
the center of the Gaussian peak, the dotted lines delineate 95% peak position confidence intervals. The splitting at the R point �R is fitted to be
1.6(2) meV. Red symbols show neutron intensity data averaged over (0.1 Å−1)3 × (0.2 meV) in the 4D Q − h̄ω space. (e)–(g) Constant energy
slices averaging over h̄ω ∈ [2.75, 3.25] meV and a range of ±0.1 Å−1 along the (11̄0) direction. (h)–(j) Corresponding constant energy slices
calculated using SpinW_R3176, integrating over [2.7, 3.3] meV for equivalent momenta. The agreement between neutron data and model
validates the effective form factor Eq. (C3). Error bars in (b)–(d) represent one standard deviation.

take the approximation that JFM
s , JAF

s → ∞. In this case, |λ′〉
only includes states wherein each cluster forms an effective
spin-1 state, that is, all states |λ′〉 and |λ〉 can be written as
direct product states |S = 1,�〉 for each cluster. Here � is
the angle representing the spin orientation. Any |S = 1,�〉
can be written as a linear combination of |S = 1, Sz = 0,±1〉,
which in turn can be written as a linear combination of Cu2+

states (i.e., |↑↓↓↑〉, we take the result from Ref. [14]). For
each spin-1, the cluster spin operator reads Sα

ld ≡ ∑4
m=1 sα

ldm.
It is then straightforward to work out the relationship between
matrix elements 〈1, a| sα

ldm |1, b〉 and 〈1, a| Sα
ld |1, b〉, which

can be expressed as follows:

〈λ′|sβ

ldn|λ〉 =
{− 1

4 〈λ′|Sβ

ld |λ〉, n = 1,

5
12 〈λ′|Sβ

ld |λ〉, n = 2, 3, 4.
(C2)

We could use the cluster spin operator Sα
ld and an effective

form factor absorbing the above coefficient and the extra
phase factors due to the displacement between coordinates
of Cu-spin rldn and the “center of mass” coordinate rld

representing the position of cluster. With the two approxima-
tions introduced above, the effective form factors of the spin

clusters read

F̃d (Q) =
(

−1

4
eiQ·(rld1−rld ) + 5

12

4∑
i=2

eiQ·(rldi−rld )

)
F (Q). (C3)

The calculated cross section in this cluster picture now reads

d2σ

ddE f
(Q, ω) = k f

ki
(γ r0)2

∑
α,β

(δαβ − Q̂αQ̂β )

×
∑

l,d,l ′,d ′
[F̃d ′ (Q)eiQ·rl′d ′ ]∗[F̃d (Q)eiQ·rld ]

×
∑
λ,λ′

pλ〈λ|Sα
l ′d ′ |λ′〉〈λ′|Sβ

ld |λ〉

× δ(Eλ − Eλ′ + h̄ω). (C4)

In Figs. 7(e)–7(g) and Figs. 7(h)–7(j) we compare constant
energy slices through the measured and calculated inelastic
scattering cross section, respectively, for h̄ω = 3.0(3) meV.
The excellent agreement validates the form factor we have
derived.
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FIG. 8. The projections of the goodness of fit χ 2 on the parame-
ter axis for (a) J1, (b) J2, (c) d1, and (d) d ′

1. Each blue circle represents
one set of parameters with low χ 2. The red circle shows the optimal
set of parameters listed in Table I, the dashed lines show the bounds
in these parameters inferred from the χ 2 plots. (e) The projection of
χ 2 on the parameter axis d2 + d3 + d ′

2 + d ′
3.

We then carry out a pixel to pixel fit based on the form fac-
tor Eq. (C3). That is, we vary the parameters while respecting
the kh constraints (0.0145(11) r.l.u. along 〈100〉 directions [6])
to minimize

χ2 = 1

Npixels

∑
i

(
Cycalc

i − yexpt
i

)2

σ 2
i

. (C5)

In the actual fit we loosened the constraint range for kh to
± 0.0033 r.l.u considering the simplified nature of our model.
Here i labels the pixels in the experimental data (shorthand for
Q, h̄ω), ycalc

i , yexpt
i , σi are calculated, measured cross sections,

and experimental errors, respectively. The constant of propor-
tionality C is determined by fitting S(Q) as explained in the
main text.

APPENDIX D: DETAILS OF THE
QUANTITATIVE COMPARISON

1. Resolution function and broadening factor

A polynomial fit to the Monte Carlo simulated h̄ω-
dependent energy resolution of the SEQUOIA instrument is
shown in Fig. 7(a). Energy cuts at three R points with the
two-Gaussian peak fit are shown in Figs. 7(b)–7(d). Since the
magnon group velocity vanishes at this high symmetry point,
momentum resolution contributions to the measured spectral
linewidth vanish. The FWHM of the lower peak at h̄ω =
8.4(1) meV is 0.51(9) meV, which exceeds the calculated
instrumental resolution (of 0.34 meV).

Possible physical origins of the additional broadening are
down-folding resulting from the incommensurate magnetic
order, two-magnon decay, magnon decay due to magnetoe-
lastic interactions, magnon scattering associated with static
or dynamic phase slips in the incommensurate order, and
chemical inhomogeneity or disorder in the sample. While
these mechanisms should generally be expected to be energy
and momentum dependent, we treat them on average by
adding a phenomenological relaxation rate in quadrature to
the calculated energy resolution of the instrument:

�̃(h̄ω) =
√

�(h̄ω)2 + (2�̄)2. (D1)

Here �(h̄ω) is nominal FWHM energy resolution of the
instrument and 2�̄ = 0.37 meV is the average phenomeno-
logical relaxation rate. 2�̄ is chosen so that �̃(h̄ω) fits the
FWHM of the lower peak at the R point. �̃(h̄ω) is then used
throughout the fitting analysis as the Gaussian FWHM width
of all modes.

2. Reliability of fitting results

Due to the limitations discussed in the main text, the
effective model cannot describe all features in the measured
neutron scattering cross section. The set of parameters re-
ported in the main text yields the global minimum of Eq. (C5)
χ2

min ≈ 13.26. Here we evaluate the constraints that our data
place on these parameters based on other sets of fit parameters
yielding χ2 � χ2

min + 5. The upper limit corresponds to the
analytical estimate in the main text (J1 = −0.605 meV, J2 =
−0.905 meV, d1 = −d ′

1 = 0.2 meV). The range for each
DM component was chosen to be [−0.6, 0.6] meV, as these
components must be significantly smaller than the corre-
sponding Heisenberg exchange interactions.

a. J1 and J2

As mentioned in the main text, the pixel to pixel fit must
compromise between fitting the � point and R point, which
leads to a range of J1 and J2 with comparable χ2. Also, the
relative strength of |J1| and |J2| cannot be determined, the fit
provides the following bounds: 1.35 � |J1 + J2| � 1.55 meV
and 0.3 � |J1 − J2| � 0.5 meV, which are related to the band-
width of the magnon band at the � point and the splitting at
the M point, respectively, as described in Sec. III. The best fit
is achieved when |J1| < |J2| with experimental bounds on J1

and J2 as listed in Table I and shown in Figs. 8(a) and 8(b).
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FIG. 9. (a) The linear dependence of the optical mode splitting at the � point �o
� on |d2 + d ′

2 − d3 − d ′
3|. The linear fit is y = ax + b

with a = 0.45(2), b = −0.03(3) meV, with R2 = 0.85. (b) Excitation spectrum at the � point which provides experimental evidence for �o
�

with 95% confidence range shown. (c) and (d) Two-Gaussian and one-Gaussian fits of the upper modes at the X point around 12 meV. The
splitting �′

X is defined in (c). (e) The linear correlation of �′
X and the quantity DX defined in Appendix D 2 c (2). The linear fit is y = ax + b

with a = 0.70(6), b = 0.00(3) meV, with R2 = 0.71. (f) and (g) Four-Gaussian fit of two different M point spectra, from which we obtain
�

l/u
M = 0.97(39) meV and �

l/u
M = 0.7(2) meV, respectively. (h) The linear correlation of �

u/l
M and the quantity DM defined in Appendix D 2 c

(3). The linear fit is y = ax + b with a = 0.45(2), b = −0.03(3) meV, with R2 = 0.85. In (a), (e), and (h) we have marked the optimal set of
parameters in Table I by the red solid symbol. Error bars in all figures represent one standard deviation. In (b)–(d), (f), and (g), red symbols
show neutron intensity data averaged over (0.1 Å−1)3 × (0.2 meV) in the 4D Q − h̄ω space.

b. d1 and d ′
1

Figures 8(c) and 8(d) shows that the DM components
d1 and d ′

1 lie in the range −0.19 � d1 � −0.14 meV
and 0.21 � d ′

1 � 0.26 meV, or interchangeably 0.21 � d1 �
0.26 meV and −0.19 � d ′

1 � −0.14 meV, with the rough
constraint 0.04 � d1 + d ′

1 � 0.12 meV. The ranges for d1

and d ′
1 result from (1) the analytical relationship |d1 − d ′

1| ≈
0.4 meV from Appendix A. (2) the constraint from kh ∝
(d1 + d ′

1). d2, d ′
2, d3, d ′

3 play secondary roles in determining
kh. The positive sign of (d1 + d ′

1) ensures a right-handed

magnetic helicoid for a right-handed enantiomer and vice
versa.

c. d2, d ′
2, d3, d ′

3

Our experiment establishes correlated constraints on
d2, d ′

2, d3, d ′
3 that relate to specific features in the data.

(1) 2|d2 + d ′
2 − d3 − d ′

3| ≈ �o
� . This quantity corresponds

to the splitting of optical modes at the � point, as shown
in Fig. 9(b). The optical modes are degenerate without DM
interactions, and roughly speaking split into three modes with
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FIG. 10. (a) “Tilting” helical state discussed in Appendix D 2 c (4). Mtot represents the total magnetization of a unit cell (local
magnetization density). The light green plane represents the precession plane of Mtot, while ntot is its normal direction. �tot is the tilting angle
of the precession plane with respect to the plane perpendicular to kh. (b) and (c) The linear correlation between (b) sin �θ and (c) sin �tot

with respect to the dimensionless quantity |d2 + d ′
2 + d3 + d ′

3|/|J1 + J2|. Larger |d2 + d ′
2 + d3 + d ′

3| result in larger canting among spins on
neighboring sublattices and and a larger tilt angle with respect to the transverse plane. (d) Graphic representation of constraints on d2, d ′

2, d3, d ′
3

by dispersion analysis at the M point [blue, Fig. 9(h)] and the X point [red, Fig. 9(e)]. (e) Graphic representation of constraints on d2, d ′
2, d3, d ′

3

by analysis of the spectrum at the � point [black, Fig. 9(a)]. The red dashed line shows the constraint from (b) and (c). We assume the spin
canting along kh is small (�tot � 30◦, �θ � 46◦). In (d) and (e), the parameters satisfying the constraints of J1, J2, d1, d ′

1 [Figs. 8(a)–8(d)] are
plotted. The four sets of parameters listed in Table IV are plotted in red (the lowest χ 2 value in Table I) and purple circles. The subspace of
parameters allowed by constraints are filled in light blue color.

symmetric spacing �o
� when DM interactions are turned on.

The Gaussian fits yield a mode splitting of 0.7(3) meV, which
implies that |d2 + d ′

2 − d3 − d ′
3| ≈ 0.35(15) meV [Fig. 9(a)].

As expected, d1, d ′
1 play no significant roles in this splitting.

(2) �′
X ∝ [(d1 − d ′

1)2 + (d3 − d ′
3)2]/

√
J2

1 + J2
2 ≡ DX . �′

X
is defined as the splitting/broadening of the upper modes
at the X point, which are twofold degenerate without DM
interactions. These lift the degeneracy due to the associated
symmetry breaking and the superposition of contributions
from the X and Z points from multiple domains of the
incommensurate magnetic order. Strictly speaking, we should
observe more than two modes at the X point around 12 meV.
If we nonetheless fit the broad maximum peak with two
Gaussian peaks [Fig. 9(c)], we obtain a rough estimate of
�′

X ≈ 0.39 meV. Alternatively, if we fit with one broad Gaus-
sian peak as in Fig. 9(d), we obtain FWHM ≈0.67(19) meV.
These fits give similar χ2 = 1.2, and the FWHM of the peaks
are near �(h̄ω) and �̃(h̄ω) introduced in Appendix D 1.
We use the FWHM of the single Gaussian fit as the upper
bound on �′

X . We observe a linear correlation between the

quantity DX and �′
X , as shown in Fig. 9(e), which gives us the

constraint [(d1 − d ′
1)2 + (d3 − d ′

3)2]/
√

J2
1 + J2

2 � 0.96 meV.

The denominator
√

J2
1 + J2

2 is proportional to the energy
difference between the calculated upper and lower modes at
the X point when DM interactions are absent.

(3) �
u/l
M ∝ [2(d1 − d ′

1)2 + (d2 − d ′
2) + (d3 − d ′

3)2]/|J1 −
J2| ≡ DM . The two doublets at the M point in Fig. 4(a) (ma-
genta) are split into more than four modes due to the presence
of multiple incommensurate magnetic domains. Furthermore,
as previously discussed there is non-negligible broadening of
the lower mode at the M point that we ascribe to two-magnon
decay processes. The experimental limit on the splitting of
the lower and upper doublets are denoted by �l

M and �u
M ,

respectively. In the numerical calculation we find �l
M ≈ �u

M .
In Figs. 9(f) and 9(g) we fit two different M points using two-
Gaussian models for each doublet. Due to the indefinite num-
ber of split modes for the incommensurate state, we loosen
the constraint on the peak width to 1.4�̃(h̄ω) so that the two-
Gaussian fit might accommodate multiple weaker split modes.
The fit gives �l

M ≈ �u
M ∈ [0.52, 1.36] meV. We observe a
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TABLE IV. Rows 1–4: The optimal sets of parameters for four sectors and the range of confidence with all the constraints in Appendix D 2 c
applied. In this work we are unable to pin down the error bars for each of d2, d ′

2, d3, d ′
3. The constraints on these four parameters are discussed

in Appendix D 2 c, the graphic representations are shown in Figs. 10(d) and 10(e). Rows 5–9: Comparison of parameters from previous studies.
The parameters are translated from references using Appendix D 2 d. For Ref. [18], “spin mixing”/“no spin mixing” corresponds to two sets
of parameters where spin-1/spin-2 admixture of cluster is considered (or not). The kh and χ 2 for rows 5–9 are calculated by our numerical
method.

Parameter (meV) Calculated result

Parameter sectors J1 J2 d1 d2 d3 d ′
1 d ′

2 d ′
3 kh (r.l.u) χ 2

|J1| < |J2|, d1 > 0 −0.58+0.08
−0.03 −0.93+0.03

−0.05 0.24+0.01
−0.03 −0.05 −0.15 −0.16+0.01

−0.03 −0.10 0.36 0.0143 13.26

|J1| < |J2|, d1 < 0 −0.56+0.06
−0.04 −0.95+0.09

−0.05 −0.16+0.02
−0.03 −0.06 0.40 0.24+0.02

−0.03 −0.09 −0.22 0.0129 13.54

|J1| > |J2|, d1 > 0 −0.96+0.07
−0.03 −0.54+0.03

−0.05 0.22+0.04
−0.01 −0.08 −0.36 −0.18+0.04

−0.01 −0.14 0.42 0.0162 16.47

|J1| < |J2|, d1 < 0 −0.94+0.07
−0.02 −0.55+0.03

−0.05 −0.15+0.01
−0.03 0.22 −0.38 0.25+0.01

−0.03 0.09 0.44 0.0151 15.04

[18] no spin mixing −0.65 −0.75 0.09 −0.08 0.06 −0.04 −0.05 0.00 ≈0 35.44

[18] spin mixing −1.09 −0.91 0.14 −0.14 0.11 −0.05 −0.06 0.00 0.0011 143.09

[17] no spin mixing −0.86 −0.63 0.09 −0.08 0.06 −0.04 −0.05 0.00 0.0014 31.33

[17] spin mixing −0.86 −0.63 0.14 −0.14 0.11 −0.05 −0.06 0.00 0.0018 27.56

[44] −0.65 −0.73 0 0 0 0.10 −0.08 0.35 0.0196 29.71

linear correlation between the quantity DM and �
u/l
M , as shown

in Fig. 9(h), which yields the constraint 1.31 � [2(d1 −
d ′

1)2 + (d2 − d ′
2) + (d3 − d ′

3)2]/|J1 − J2| � 3.09 meV. The
denominator |J1 − J2| is proportional to the energy difference
between the upper and lower doublets at the M point when
DM interactions are absent.

(4) |d2 + d3 + d ′
2 + d ′

3| � 1.24 meV, as shown in Fig. 8(e).
This quantity is related to the tilting of spins towards the
direction of kh, which is different on each of the four
sublattices. This quantity also appears in the field theory
description of Ref. [18] (κ term in Eqs. (5) and (6)). A
large |d2 + d3 + d ′

2 + d ′
3| will give us a “tilting” zero field

helical state, with the magnetization precessing in a plane
that is not perpendicular to kh. The nonuniform tilting will
also result in a magnetic structure far from collinear even at
the atomic scale, and yields a larger bandwidth of magnon
dispersion than 8|J2 + J2| predicted in Sec. III. The linear
correlation of spin canting between sublattices and tilting
angle with the quantity |d2 + d3 + d ′

2 + d ′
3|/|J1 + J2| is shown

in Figs. 10(b) and 10(c). For this work we assume that the
spin canting along kh is small in the zero field magnetic
structure, the tilting angle �tot � 30◦ [see Fig. 10(a)], and that
the local canting angles between neighboring spins �θ � 46◦.
In this regime the bandwidth ≈8|J2 + J2| and the correc-
tion of |d2 + d3 + d ′

2 + d ′
3| to the bandwidth is negligible. A

polarized neutron diffraction experiment in a single domain
state should be able to establish the degree of noncoplanarity
without the need to actually resolve the incommensurate wave
vector.

d. Comparison to previous study

In Table IV we compare our fit parameters to previous stud-
ies [16–18,44]. The microscopic parameters JAF

w , JFM
w , JAF

o.o
and the DM interaction on these bonds can be transformed
into FM exchange and DM interaction in the effective spin-1
cluster picture under the assumption |JAF

s , JFM
s → ∞|. The

FIG. 11. (a)–(c) Constant energy slices of MACS data at energy
transfers h̄ω = (a) 0.40(5), (b) 0.50(5), (c) 0.60(5) meV before the
“spurion” subtraction, respectively. (d)–(f) Constant energy slices at
energy transfers h̄ω = (d) 0.40(5), (e) 0.50(5), (f) 0.60(5) meV after
removing the Bragg spurions, respectively.
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FIG. 12. (a) and (b) Constant energy cut of MACS data and the best fitted Ĩ (Q‖, Q⊥ = 0, ω) [D = 67(8) meV Å2 and �� = 0.0(1) meV] at
h̄ω = 0.4, 1.1 meV, respectively. Ĩ (Q, ω) has taken into account the average out-of-plane Q-resolution σQ⊥ = 0.07 Å−1, the energy resolution
σω = 0.05 meV, and the in-plane Q-resolution σQ‖ = 0.004 Å−1. Both I (Q, ω) [Eq. (E1)] and Ĩ (Q, ω) [Eq. (E2)] with the extra broadening
by σ± (representing the presence of incommensurate modes) are plotted. The relatively better agreement of the Ĩ (Q, ω) (solid line) with the
MACS data shows that we have observed the incommensurate nature of spin wave modes. (c) Q‖ − ω intensity map of MACS data following
azimuthal averaging around Q0 [the same as Fig. 3(c)]. (d) and (e) Simulated I (Q‖, ω) and Ĩ (Q‖, ω) with the parameters and resolutions
specified as in (a) and (b). Dashed lines in (c)–(e) marks the lowest accessible energy transfer (0.2 meV) in the MACS experiment. Error bars
in (a) and (b) represent one standard deviation.

transformations (worked out in Ref. [18]) are

J1 = −l1l2
(
JAF
w + JAF

o.o

)
,

J2 = l2
2 JFM

w ,

(d1, d2, d3) = −l1l2
[(

Dy
ρ1,ρ8

, Dz
ρ1,ρ8

, Dx
ρ1,ρ8

)
+ (

Dy
ρ4,ρ12

,−Dz
ρ4,ρ12

, Dx
ρ4,ρ12

)]
, (D2)

(d ′
1, d ′

2, d ′
3) = l2

2

(
Dz

ρ5,ρ12
, Dx

ρ5,ρ12
, Dy

ρ5,ρ12

)
,

l1 = 1
4 , l2 = 5

12 .

Notice in our spin-cluster picture we only consider finite
JAF
w , JFM

w , JAF
o.o . Reference [18] (without spin mixing) and

Refs. [15,16] essentially give the same set of parameters.
Reference [17] gives a different set of exchange parameters
JAF
w , JFM

w , JAF
o.o but it does not present new information about

DM interactions. In our comparison to these parameters, we
use the same DM parameters as in Ref. [18]. In Table IV we
include the optimal parameters for the four sectors of low χ2

fits distinguished by: (1) the relative strength of |J1| and |J2|
and (2) the sign of d1 and d ′

1 (which should be opposite to each
other), along with the error bars for each sector.

APPENDIX E: DETAILS OF MACS DATA ANALYSIS

1. Subtraction of Bragg spurions

During the processing of MACS data, we identified and
subtracted Bragg spurions that arise when neutrons at the
energy E f = 2.4 meV reach the sample due to a diffuse
process at the monochromator and Bragg diffract from the
sample. Such processes are more prominent on MACS than
on conventional triple axis spectrometers because of the
large monochromator and the lack of collimation between
the monochromator and the sample. Bragg spurions occur in
groups of four in symmetrized data because the spurions do
not respect the mirror planes. In Fig. 11 we show several
constant energy slices through MACS data before and after
subtraction of the spurions.

2. Resolution and incommensurability on MACS

For low energy inelastic scattering we used the MACS
instrument at the NCNR with the monochromator in the
sagittal focusing mode (vertical focusing only) and a fixed
final energy of E f = 2.4 meV. The vertical divergence of
the incident (scattered) beam was controlled by a 160 mm
vertical slit before the monochromator (the analyzer dimen-
sions) to be 4 deg (8 deg) FWHM, which corresponds to a
Gaussian standard deviation σ⊥ = 0.07 Å−1 for momentum
transfer perpendicular to the scattering plane. The horizontal
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beam divergence was controlled by a 60 mm horizontal slit
before the monochromator and by a 90′ collimator after the
sample. Combined with the 2 deg effective sample mosaic
this lead to an approximately isotropic in-plane momentum
resolution with σ‖ = 0.004 Å−1. The finite energy resolution
σω = 0.051 meV is approximated as uncorrelated with mo-
mentum resolution. The four-dimensional Gaussian resolution
function is thus described by a diagonal resolution matrix with
identical in-plane matrix elements [45].

We shall discuss the resolution effects associated with
a resonant dispersive dynamic structure factor of the form
S (Q, ω) = S (Q)δ[h̄ω − ε(Q)], which depends only on the
in-plane Q‖ = |(Q − Q0)‖| and out-of-plane Q⊥ = |(Q −
Q0)⊥| distance from Q0 = (11̄1̄). Such data can be subjected
to azimuthal averaging about Q0 and plotted versus Q‖ as
in Fig. 3. The corresponding resolution smeared intensity
distribution in the Q⊥ = 0 plane can be written as follows:

I (Q‖, ω) =
∫ Q′

‖dQ′
‖

σ 2
‖

I0

(
Q‖Q′

‖
σ 2

‖

)
exp

(
−Q2

‖ + Q′2
‖

2σ 2
‖

)

×
∫

dQ′
⊥

2πσ⊥σω

exp

(
− Q′2

⊥
2σ 2

⊥

)
S (Q′

⊥, Q′
‖)

× exp

(
− (ε(Q′

⊥, Q′
‖) − h̄ω)2

2σ 2
ω

)
. (E1)

Here I0 is the zeroth modified Bessel function of the first
kind. For ferrimagnetic Cu2OSeO3 we use ε(Q′

⊥, Q′
‖) =

�� + D(Q2
‖ + Q2

⊥) and S (Q′
⊥, Q′

‖) = S . The fit yields D =
67(8) meV Å2 and �� = 0.0(1) meV, which is consistent
with the values of D = 58(2) meV Å2, �� = 0.00(5) meV
associated with the parameters in Table I. Figures 12(a) and
12(b) show constant energy cuts of MACS data with the
best fit I (Q‖, ω) as a dashed line. There is clear evidence for
physical broadening beyond the resolution of the instrument.

To represent the incommensurate modes q ± Nkh (see
Sec. V), we include a Gaussian convolution along the ra-
dial direction, and take the spacing between q ± kh mode
(≈0.0145 × 2 r.l.u.) as FWHM, that is, σ± = 0.009 Å−1.
The simulated in-plane intensity with this broadening factor
included is

Ĩ (Q‖, ω) =
∫ dQ′′

‖√
2πσ 2±

exp

(
− (Q‖ − Q′′

‖ )2

2σ 2±

)
I (Q′′

‖, ω). (E2)

An excellent fit is now achieved as shown by the solid lines in
Fig. 12 and as a color image in Fig. 3(d). While a higher reso-
lution experiment is needed to resolve the details, the present
data already shows signs of additional low Q structure in the
inelastic scattering as anticipated for an incommensurate state.
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