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The topological properties of a material’s electronic structure are encoded in its Berry curvature,
a quantity which is intimately related to the transverse electrical conductivity. In transition metal
dichalcogenides with broken inversion symmetry, the nonzero Berry curvature results in a valley
Hall effect. In this paper we identify a previously unrecognized consequence of Berry curvature in
these materials: an electric field-induced change in the electrons’ charge density orientation. We
use first principles calculations to show that measurements of the electric field-induced change in
the charge density or local density of states in MoS2 can be used to measure its energy-dependent
valley and orbital Hall conductivity.

Introduction – Transition metal dichalcogenides
(TMDs) exhibit a wide array of novel phenomena related
to their valley degree of freedom [1]. The valley index la-
bels one of multiple degenerate energy extrema in the
conduction or valence band. Phases of TMDs which lack
inversion symmetry possess nontrivial Berry curvature -
a quantity that determines the transverse electrical con-
ductivity and which describes the topological properties
of the electronic structure [2]. States in different valleys
have opposite sign of Berry curvature and therefore flow
in opposite directions transverse to an applied electric
field. This results in vanishing net transverse charge cur-
rent (or Hall current), but a nonzero valley Hall current
[1]. The valley Hall effect is accompanied by accumula-
tion of orbital angular momentum at sample boundaries,
which has been measured with the magneto-optical Kerr
effect [3]. Other experimental probes of the valley Hall
effect use an applied magnetic field [4] or circularly po-
larized light to generate a valley-polarized state [5–7],
enabling a nonzero transverse Hall current. The valley
Hall effect has also been detected with nonlocal voltage
measurements [8, 9].

In this work we introduce a new observable associated
with the valley Hall effect in TMD’s: an electric field-
induced change in the bulk charge density distribution.
More generally, we demonstrate that in a specified class
of lattices, the electric field-induced change in a state’s
charge density distribution is directly related to its Berry
curvature. Using first principles calculations of MoS2 as
a representative example, we show that measurements
of the electric field-induced change in density provide
a quantitative estimate of the valley Hall conductivity.
We also propose that spectroscopic measurements of
the electric field-induced change in the local density of
states enables a measurement of the energy-resolved
valley Hall conductivity.

Formalism – We first present the general relation be-
tween a state’s Berry curvature and the electric field-
induced change in its real space density. This analysis ap-

plies to lattices composed of a monoatomic unit cell with
orbitals of the same character (e.g., p-like or d-like). Al-
though these are restrictive assumptions, they pertain to
cases of practical interest, such as near-band edge states
of TMDs in the 2H phase [1]. We begin with the relation
between a state’s real space density ρ(r) and its velocity.
The periodic lattice Hamiltonian is represented in a ba-
sis of real localized orbitals, such as Wannier functions
or atomic orbitals, which are a product of a radial func-
tion and angular function: φM (r) = Rn,` (r)YM` (θ, φ),
where Rn,`(r) is a radial function for states in the nth

shell with angular momentum `. YM` is the real-valued
spherical harmonic, with 2` + 1 distinct M labels (e.g.,
for ` = 1, M = {x, y, z}). Note that M is sufficient to la-
bel the basis states since we assume all orbitals have the
same value for n and `. In this basis, the tight-binding
crystal field Hamiltonian is:

H0(k) =
∑

R,M,M ′

cos(k ·R) tσM,M ′(R)
(
c†McM ′ + h.c.

)
,

(1)
where k is the crystal momentum, and the sum R in-
cludes the primary unit cell (R = 0) and all other Bravais
lattice vectors. Typically the sum is truncated up to the
nth nearest-neighbor. c†M (cM ′) is the electron creation
(annihilation) operator for orbital M(M ′) located in the
primary unit cell. tσM,M ′ (R) is the σ-hopping parameter
between orbital M of the primary unit cell and orbital
M ′ centered at lattice site R. Eq. 1 includes only σ-
hopping, however generally π and δ hopping amplitudes
are smaller, so that the above model is typically ade-
quate (see Supp. Info for a comprehensive assessment of
the model’s validity).

The velocity operator v = dH/dk derived from this
Hamiltonian is:

v(k) = −
∑

R,M,M ′

R sin(k ·R)tσM,M ′(R)
(
c†McM ′ + h.c.

)
.

(2)
Each term in the sum over R represents the current flow-
ing between the atom at R = 0 and the atom at R.
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Note that a current between sites separated by R re-
quires nonzero overlap between k and R, and overlap
between orbitals. The orbital overlap is closely related
to the shape of the wave function density ρ0(r):

ρ0(r) =
∑
M,M ′

(
c†McM ′ + h.c.

)
φM (r)φM ′ (r) . (3)

ρ0 corresponds to the density contribution from “on-site”
orbitals centered at R = 0, and omits contributions from
overlap between neighboring sites in the lattice. In the
Supp. Info we show that the differences between the total
and “on-site” densities are small in the regions of inter-
est for this work. The form of the orbital basis implies
that ρ0 is the product of a radial function and an an-
gular function: ρ0(r) = ρrad0 (r) ρang0 (r̂), where the atom
center is at r = 0, and ρrad0 (r) is normalized such that∫∞
0
r2ρrad(r)dr = 1 (so that ρang0 (r̂) is dimensionless).

In the Supp. Info, we show that the angular part of the
density ρang0 (r̂) is related to the hopping parameters and
wave function coefficients of Eq. 2 (the last two factors
in that equation). This leads to the following relation
between a state’s velocity and density:

v(k) =−
∑

R R sin(k ·R) t̃σ(R)ρang0 (k, R̂). (4)

where t̃σ(R) = tσ(R)/Y m=0
` (0, 0)2 is the σ-hopping pa-

rameter normalized by a (known) constant factor. Note
that we added a k label for ρ; we explicitly include this
argument for all k-dependent quantities in the paper.
tσ(R) is the R-dependent σ-hopping function whose form
is semi-universal and taken as known a priori [10]. In the
sum over neighboring atom positions R, a positive cur-
rent corresponds to a state propagating outward from
r = 0 to r = R, while a negative current corresponds to
a state propagating inward from r = R to r = 0.

Eq. 4 is one of our primary results, and provides an
intuitive relationship between a state’s charge density
and current: the velocity along R̂ is the product of the
wave function phase change along R̂ (given by the factor
sin(k ·R)) and the density along R̂ (given by the factor

ρang0 (k, R̂)). This representation of velocity is a substan-
tial simplification of the general form given in Eq. 2,
which requires knowledge of the full hopping elements
(encoded in Slater-Koster tight-binding tables[11]) and
the complex wave function coefficients.

Armed with this density-velocity connection, we next
turn to the relation between a state’s Berry curvature and
its velocity. The z-component of the Berry curvature Ωnz
of an eigenstate ψn is [12]:

Ωzn(k) = −2 Im
∑
m 6=n

〈ψnk|vx|ψmk〉 〈ψmk|vy|ψnk〉
(εm − εn)2

, (5)

where εn is the energy of the nth eigenstate |ψnk〉, and
vx,y = dH/dkx,y. The intrinsic contribution to the
anomalous Hall conductivity σAHE in the clean limit is

given by the sum of the occupied states’ Berry curvature.
In this work, we also consider the valley Hall and orbital
Hall effects. The expression for the valley Hall conductiv-
ity σOHE is the same as Eq. 5 with an additional factor
of ±1 depending on the state’s valley index (e.g., the lo-
cation of the k-point in the Brillouin zone, see Sec. II).
We also compute the orbital Hall conductivity, which de-
scribes the electric field-induced flow of orbital angular
momentum, oriented in the z-direction and with velocity
transverse to the applied field [13–16]. The orbital Hall
conductivity is also given by a Kubo formula expression
like Eq. 5, with the replacement vy →

(
vyLz + Lzvy

)
/2,

where Lz is the atomic orbital angular momentum op-
erator. Finally, we note that the Berry curvature may
be nonzero only in the presence of time reversal and/or
inversion symmetry breaking [17].

A state’s Berry curvature can also be understood in
terms of perturbation theory. An applied electric field
perturbs the eigenstates and may change their veloc-
ity. The linear-in-E change in velocity δv determines
the Berry curvature: Ωn(k) = Ê× 〈δvn(k)〉. We invoke
Eq. 4 to relate the change in velocity to a change in the
charge density. Using this expression for the Berry cur-
vature, we conclude that the real space density response
of the nth state is related to its Berry curvature:

Ωn(k) = −Ê×
∑
R

R sin(k ·R) t̃σ(R) 〈δρang0,n (k, R̂)〉. (6)

Eq. 6 is another primary result, which provides the con-
nection between a state’s Berry curvature and the E-field-
induced change in its density distribution. We emphasize
that this relation is valid for lattices with monoatomic
unit cells and orbitals with the same character.

It’s straightforward to show that the net changes in
velocity and density are derived from mutually exclusive
sets of states. The net change of any observable is ob-
tained by summing over k. The sin(k ·R) factor on the
right hand side of Eq. 4 indicates that v(k) and δρ0(k,R)
have opposite parity under k → −k. The anomalous
Hall conductivity is derived from states with even-in-
k Ω(k). However these states’ δρ0(k) is odd-in-k, and
therefore make no contribution to δρtot0 . The converse
also holds: states which contribute to δρtot0 do not con-
tribute to σAHE.

We finally note recent work which formulates the
anomalous Hall conductivity as a local property without
reference to Bloch wave vector k [18–20]. The formal
structure of this theory includes the response of the
second order cumulant of the charge density, resembling
the picture we describe of a change in the charge density
distribution. The present work straddles between the
limiting cases of the more standard formulation of Berry
curvature strictly in k-space and the work [18, 19] which
resides entirely in real space.
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FIG. 1. (a) depicts the 2H-MoS2 monoloayer. (b) shows
the band structure and Berry curvature along high symmetry
lines. (c) and (d) show the Berry curvature and the orbital
Hall conductivity in the Brillouin zone (units of nm2).

Imaging the valley Hall effect in insulating TMD – As
an application of our formalism, we consider a monolayer
of MoS2 in the 2H phase. We’ll show the relation between
the electric field-induced change in density and the valley
Hall effect for three cases of increasing complexity: the
response at a single k point, the net response in the insu-
lating phase, and the energy-resolved response. MoS2 is a
nonmagnetic direct band-gap semiconductor [21], and its
crystal and electronic structure are shown Fig. 1(a) and
(b), respectively. It has a direct band gap of ∆ = 1.7 eV
(computed value) located at k = ±K = ±4π/3a (1, 0),
where a is the in-plane lattice constant. (Note that −K
is often labeled K′.) Figs. 1 (c) and (d) show the k-
dependent Berry curvature and orbital Hall conductivity,
respectively. For energies away from the band edge, the
valley index of a state can be associated with the nearest
valley, but the label becomes less well-defined.

The unit cell contains 2 S atoms and 1 Mo atom, and
there is significant p-d orbital hybridization in some re-
gions of the band structure. The states near the band
gap at K and −K exhibit the largest contribution to
the Berry curvature. These states are composed primar-
ily of d-orbitals localized on the Mo atoms, which form
a hexagonal lattice, and which do approximately satisfy
the assumptions of our analysis. The conduction band is
composed of Lz = 0 states, corresponding to |dz2〉, while
the valence band is Lz = ±2 states at k = ±K, corre-
sponding to

(
|dx2−y2〉 ± i|dxy〉

)
/
√

2 [1]. These essential
features are shared by other 2H TMD’s [1], so that our
formalism is applicable to this family of materials.

In the vicinity of ±K, the conduction and valence
bands are described by a massive Dirac Hamiltonian [1].

FIG. 2. Depiction of how intrinsic charge current is formed
at K point. The green arrows along the 3 unique nearest-
neighbor bonds show the sign of sin(K·R). In (a), the valence
band unperturbed charge density is isotropic. The bond cur-
rents add equally and sum to zero. (b) With an E-field in the
y-direction, the change in density (with red (blue) is positive
(negative)) leads to a net current in the x-direction. (c) With
an E-field in the x-direction, the change in density is along
the 45◦ direction, leading to a net current in the y-direction.

Letting q = k∓K, we have:

Hν = ta
(
νqxτx + qyτy

)
+

∆

2
τz (7)

where τ is the Pauli matrix in the space of conduction
and valence band states, and ν = ±1 is the valley index.
We ignore the spin degree of freedom, as it doesn’t play
an essential role and makes quantitative contributions
on the order of λ/∆, where λ is the atomic spin-orbit
parameter [15]. In MoS2 this ratio is approximately 10−2.
For TMD’s composed of heavier elements, the larger spin-
orbit splitting will change some details of the analysis
that we present here.

We first consider the currents and charge densities of
the equilibrium states at q = 0 (or k = K). The eigen-

states are ψc =

(
1
0

)
and ψv =

(
0
1

)
. The R sin(K ·R)

factor of Eq. 4 contributes to the bond currents as indi-
cated by the bond-aligned arrows Fig. 2(a). The charge
density of both conduction and valence band equilibrium
states is isotropic in the x-y plane, so that the bond cur-
rents are weighted equally and the net current vanishes.

Applying an electric field in the y-direction perturbs
the valence band wave function: ψ′v = ψv+(eEta/∆2)ψc,
where e is the magnitude of the electric charge. The mix-
ing of valence and conduction band states leads to an
anisotropic ρ(r) which overlaps unevenly with the near-
est neighbor bonds. This in turn breaks the balance of
bond currents between nearest neighbors and enables a
nonzero net current, corresponding to the transverse con-
ductivity or Berry curvature Ω(K). The modification of
the density for electric fields along x and y-directions is
depicted schematically in Fig. 2(b) and (c), and provides
an intuitive rationale for the formation of Hall current at
the K point [3, 7].

To test the quantitative validity of Eq. 4 for MoS2, we
compute the electric field-induced change in charge den-
sity of the conduction band state at K using the first
principles tight-binding Hamiltonian and real space or-
bitals obtained with Quantum Espresso [22] and Wan-
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FIG. 3. (a) Isovalue contours of change in density per elec-
tric field of ψv(K) (units of (nm2 · eV)−1), for an applied field
in the y-direction. Change of density integrated along x di-
rection is projected along the yz plane (similarly for cyclic
permutation of direction indices). (b) Change of density in
plane of Mo atoms. (c) Change of density along line connect-
ing nearest neighbors along the x-direction. The normalized
radial function obtained from the total change of density is
also shown. (d) Change of total density of the insulating state,
along the line y = z = 0.

nier90 [23]. We can independently compute both left and
right-hand sides of Eq. 6 in a model with no approxima-
tions beyond those found in density functional theory.
This provides a stringent test on the applicability of our
formalism to real materials, and yields a prediction for
the observable quantity δρ(r). Fig. 3(a) shows isosurface
contours of the electric field-induced change in density for
the conduction band state at k = K, for an applied elec-
tric field along the y-direction. Fig. 3(b) shows δρ(K, r)
in the plane of the Mo atoms, and Fig. 3(c) shows the
density δρ(K, x) along a line connecting nearest neigh-
bors. From the δρ(K, x) profile, we extract the (nor-
malized) radial part δρrad(K, r) to obtain δρang(K, R̂).
Applying Eq. 4 leads to

Ω(K) = −at̃σ δρ
ang(K, x̂)

eE
(8)

We use a value of tσ = 1.09 eV obtained by fitting the
conduction/valence bands to the effective model near K.
Plugging in numbers we obtain a predicted value Ω(K) =
0.074 nm2 from the real space density analysis, compared
to the directly computed value Ω(K) = 0.094 nm2. We
find semi-quantitative agreement between the two values,
validating the applicability of our approach to real mate-
rials. The difference between the two quantities is traced
back to the nonzero contribution of the p orbitals of the
wave function at K.

We next extend our analysis to the full, k-integrated

response for the insulating system. The Berry curvature
at finite q is given by:

Ων(q) = ν
2∆t2a2

(4q2t2 + ∆2)
3/2

. (9)

The valley Hall conductivity σVHE of the effective model
is obtained by integrating over q and summing over ν,
which results in σVHE = σOHE = 1/(2π). (We omit fac-
tors of e2/~ in reporting conductivity values.) The values
for σVHE and σOHE obtained with first principles calcu-
lations, which are given by 0.71/(2π) and 1.05/(2π), re-
spectively. The deviations between conductivities obtain
with the effective model and first principles reflect the
difference between the two models’ band structure. In
the Supp. Info, we show that the q-dependent perturbed
density is proportional to the Berry curvature:

δρν(q, r)

eE
= ν

Ων(q)√
2ta

φz2(r)φx2−y2(r). (10)

where φz2(x2−y2) is the d-like atomic wave function for
the conduction (valence) band state. Importantly, the
change in charge density and the Berry curvature have
the same q-dependence. Integrating Eq. 10 over q relates
the total change in charge density δρtot to the valley Hall
conductivity. Fig. 3(d) shows the line cut of the total
change in charge density along x. We can derive the
following relation between the extrema of the change in
charge density along x and valley Hall conductivity:

−ftax3min

δρtot(xmin)

eE
= σVHE (11)

where f = 3π/32
√

3/2 exp(4). Using the change in
density obtained from first principles and Eq. 11, we
obtain an estimated value for σVHE of 0.95/(2π). This
compares well with the directly computed value of valley
Hall conductivity. The comparison with the orbital Hall
conductivity is more favorable, which is a consequence
of the close relationship between the valley and orbital
Hall conductivity in this material, and because the
orbital Hall conductivity is more strongly concentrated
near the ±K points (see Fig. 1(d)). The good agreement
between the directly computed σVHE and the value
predicted with our real space analysis again demon-
strates the applicability of our approach to real materials.

Valley/orbital Hall spectroscopy – We next consider
the energy-resolved valley/orbital Hall conductivities and
change in density. We again focus on a linecut along the
x-direction, and assume that the measured local density
of states is proportional the integral of the density along
the z direction (e.g., the integral of Eq. 10 along z). In
the Supp. info we show that:

−
∫
dz

δρν(q, xmin, 0, z)

eE
× tax2min

0.065
= ν Ων(q) (12)
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FIG. 4. (a) The change in local density of states
δLDOS(ε, r)/eE integrated along the z-direction for three en-
ergy values. The important features are the position of xmin

and δLDOS(ε, x)/eE at this position. (b) Energy-resolved
valley Hall (black dashed line) and orbital Hall (blue line) con-
ductivity near the valence and conduction band edges. The
red line shows the value inferred from the local density of
states measurement using Eq. 13 (note break in the x-axis).

where xmin is the position of the minimum in the change
of density (see Fig. 4(a)). The proportionality between
the q-dependent change in charge density and the Berry
curvature implies that the two quantities are also pro-
portional when integrating over q. In particular, the
energy-resolved quantities are proportional. Denoting
the energy-resolved density, or local density of states, as
LDOS, we find:

− tax
2
min

0.065

(
δLDOS(ε, xmin)

eE

)
= σVHE(ε) (13)

Fig. 4(a) shows the energy-resolved change in density
for three energies below the valence band edge. Fig. 4(b)
shows a comparison between the directly computed val-
ley Hall/orbital conductivity and the predicted value
based on Eq. 13. We see semi-quantitative agreement
up to 500 meV away from conduction and valence band
edges. We observe that the change in density adheres
more closely to the orbital Hall effect at energies away
from the band edges. This is due to the fact that the
change in density and orbital Hall effect are dominated
by states near ±K for most energies, whereas the valley
Hall conductivity acquires contributions from states near
Γ (k = 0) at energies away from the band edges.

To summarize, we show that the real space density re-
sponse of TMD’s such as MoS2 provides a direct estimate
of the intrinsic valley Hall conductivity. This is a conse-
quence of a relation we derive between the Berry curva-
ture and the charge density response of a specific class
of lattices. Experimentally, various probes attain the re-
quired sub-Angstrom spatial resolution, such as X-ray
diffraction [24], electron beam diffraction [25], and scan-
ning tunneling microscopy [26]. We estimate a fractional
change of the local density of states on the order of 10−4

at the breakdown electric field of MoS2 [27]. The mea-
surement can be calibrated with the ground state density
or LDOS, as described in the Supp. Info, enabling the
quantitative estimate of the valley Hall conductivity.

F.X. acknowledges support under the Cooperative
Research Agreement between the University of Mary-
land and the National Institute of Standards and
Technology Physical Measurement Laboratory, Award
70NANB14H209, through the University of Maryland.
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RELATION BETWEEN DENSITY AND CURRENT

In this section we derive the derivation of the relation between a state’s charge density distribution and its velocity
in a tight-binding model. This relation holds only for a lattice composed of a monoatomic unit cell, with orbitals
of the same character (e.g., p or d orbitals), and a crystal field Hamiltonian with only σ-hopping. This analysis is
therefore qualitatively valid for cases in which tπ, tδ are sufficiently less than tσ bonding. This is often the case, and
in the next section we provide an explicit description of the validity of this assumption.

The tight-binding model is represented in real-valued spherical harmonics. We denote these by YM` , which are
linear combinations of Y m` and Y −m` . Letting m = |M |:

YM` =


1√
2

(
Y −m` + (−1)mY m`

)
M < 0,

Y 0
` M = 0,
i√
2

(
Y −m` − (−1)mY m`

)
M > 0 .

(1)

The specific forms of the real spherical harmonics for a given ` can be found in various references. Generally the
M label is expressed in terms of the cartesian factors corresponding to the form of the spherical harmonic (e.g. for
` = 1, M = {−1, 0, 1} is labeled as {x, z, y}).

In the tight-binding formulation, the σ-bonding hopping parameter tσ is defined as the hopping between m = 0
orbitals displaced along the z-direction.

tσ(R) =

∫
dr V (r) Y 0

` (r) Y 0
` (r−Rẑ)Rn,`(r) Rn,`(r−Rz) (2)

The tσ hopping between orbital α and β displaced along the n̂ direction is then determined by projecting each
orbital along the |`,m = 0〉n̂ (see Fig. 1(a) and (b)). This projection is obtained by rotating the |`,m = 0〉ẑ into the
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FIG. 1: Depiction of the how hopping between a pair of px orbitals is decomposed into σ and π contributions.

n̂-direction (see Fig. 1) We review this procedure next.

We denote the axis of quantization n̂ for the spherical harmonic in the subscript of the ket: |`,m〉n̂. The operator
which rotates |`,m〉ẑ into |`,m〉n̂ is denoted by R(n̂):

|`,m〉n̂ = R(n̂)|`,m〉ẑ (3)

The rotated spherical harmonic |`,m〉n̂ can be written as a linear combination of unrotated spherical harmonics with
the same value of `, written in terms of the Wigner D-matrix:

R(n̂)|`,m〉ẑ = |`,m〉n̂ =
∑
m′

D`
m,m′(n̂)|`,m′〉ẑ (4)

Crucially, for m = 0 the elements of D`
m=0,m′ are equal to the value of the spherical harmonic |`,m′〉 evaluated at

n̂ = (θ, φ).

|`,m = 0〉n̂ =
∑
m

(
Y m` (θ, φ)

)∗ |`,m〉ẑ (5)

The projection of |`,m = 0〉n̂ onto orbital |`,m〉ẑ is then given by Eq. 5. As described in the previous paragraph, this
quantity provides the angular dependence of the hopping between orbitals displaced by R.

ẑ〈`,m|`,m = 0〉n̂ =
(
Y m` (θ, φ)

)∗
(6)

The σ-hopping contribution between orbital α and β displaced by R is therefore equal to yα(R̂) and yα(R̂):

tσM,M ′(R̂) = tσ

(
YM` (R̂) YM ′

` (R̂)

Y0
` (ẑ)2

)
. (7)

The denominator of Eq. 7 is a normalization factor that ensures that Eq. 2 is recovered for hopping between m = 0
orbitals displaced along the z-direction (i.e., for θ = φ = 0).

This form of t leads to the relation between current and density. We write the general form of the current:

v(k) = −
∑

R,M,M ′

R sin(k ·R) tσM,M ′(R)
(
c†McM ′ + h.c.

)
(8)

Next we write the equation for the density from primary unit cell orbitals:

ρ0(r) =
∑
M,M ′

(
c†McM ′ + h.c.

)
YM` (r̂)YM

′

` (r̂)Rn,`(r)Rn,`(r) (9)

= Rn,`(r)
2
∑
M,M ′

(
c†McM ′ + h.c.

)
YM` (r̂)YM

′

` (r̂) (10)

As described in the main text, the charge density is the product of a radial function and an angular function

ρ0 (r) = ρrad
0 (r)ρang

0 (r̂) (11)
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FIG. 2: Comparison of the total hopping (left side of each subplot) to σ-hopping (right side of each subplot) as a function of
the relative orientation (parameterized by polar angles (θ, φ) for all unique pairs of p-orbitals.

where ρrad
0 (r) = Rn,`(r)

2 and

ρang
0 (r̂) =

∑
M,M ′

(
c†McM ′ + h.c.

)
YM` (r̂)YM

′

` (r̂) . (12)

Combining Eqs. 7, 8, and 12, we obtain:

v(k) ∝ −
∑
R

tσ(R)

Y 0
` (0, 0)2

R sin(k ·R) ρang
0 (R̂) (13)

tσ(R) is the R-dependent value of the sigma-bonding hopping integral, whose generally parameterized form can be
found in the following section.

LIMIT OF VALIDITY FOR σ-HOPPING TIGHT-BINDING

The previous derivation applies for σ-hopping. Generally π and δ-hopping can be quantitatively, and even qual-
itatively as important as σ-hopping. The relative importance of different hopping terms depends on the type of
inter-orbital hopping and the relative orientation of the two orbitals. Fig. 3 shows both the σ-hopping and total
hopping amplitudes for all of the unique interorbital hopping for ` = 1, as a function of relative orientation (parame-
terized by polar angles (θ, φ)). The form of the tight-binding matrix elements are taken from [1]. For p-orbitals, the
parameterization is: Vppσ = 3.24, Vppπ = −0.81, and the hopping is [1]:

tppα(R) = Vppα
~2

2mR2
(14)

Fig. 2 shows that for p-orbitals, the σ-hopping is always a good semi-quantitative estimate of the total hopping for
all configurations.

For ` = 2 (d-orbitals), the parameters are taken to be Vddσ = −16.2, Vddπ = 8.75, Vddδ = −2.3, and the hopping is
[1]:

tddα(R) = Vddα
~2R3

d

2mR5
(15)

where Rd is another parameter, and is typically element-specific. A similar conclusion of the predominance of σ-
hopping is reached for d orbitals(Fig. 3), with one notable exception: the dzx − dx2y2 total hopping and σ-hopping
are off by a minus sign for most orbital configurations. However for all other orbital pairs, the σ-hopping at least
qualitatively, and often semi-quantitatively provides a representation of the total hopping.

REAL SPACE DENSITY CALCULATIONS

We describe the procedure used to obtain the real space density associated with the perturbed eigenstates. We first
obtain the real space orbitals from Wannier90, extending out 2 unit cells away from the atom center φα(r) (so that
the density is represented in a 5× 5 supercell). The wave function is expressed as a linear combination of these basis
orbitals:

|ψi〉 =
∑
α

cα(k)|φα(r)〉 (16)
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FIG. 3: Comparison of the total hopping (left side of each subplot) to σ-hopping (right side of each subplot) as a function of
the relative orientation (parameterized by polar angles (θ, φ)) for all unique pairs of d-orbitals.

The k-dependence of the wave function coefficients is given by Bloch phase factors. We form the perturbed state as:

|ψi〉′ = |ψi〉+ ieE
∑
j 6=i

〈ψj | dHdkx |ψi〉(
Ei − Ej

)2 |ψj〉 (17)

where E is a small parameter.
Given a set of occupied states, the associated density matrix is given by the outer product of the states:

ρ =
∑
i

fi|ψi〉〈ψi| (18)

The real space density associated with the density matrix is:

ρ(k, r) =
∑

α,β,R,R′

ρα,β φα (r−R)φβ
(
r−R′

)
exp

(
ik ·

(
R−R′

))
(19)

RELATION BETWEEN TOTAL DENSITY VERSUS PRIMARY UNIT CELL DENSITY

The density which enters into the relation between velocity and charge density is not the total density, but the
density contribution from “on-site” orbitals ρ0(r). The operator form is as given in the main text:

ρ0(r) =
∑
M,M ′

(
c†McM ′ + h.c.

)
φM (r)φM ′ (r) (20)
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FIG. 4: Comparison between electric field-induced change of charge density for all charge (δρ of Eq. 19), versus charge only
from “on-site” contributions (δρ0 of Eq. 12) for electric fields aligned to the x and y directions in monolayer MoS2. The
difference between the two is minimal near atomic centers. Units for all figures are (eV · nm2)−1.

In terms of the density matrix, this quantity is:

ρ0(r) =
∑
α,β

ρα,β φα (r)φβ (r) (21)

ρ0 corresponds to only including terms R = R′ = 0 in Eq. 19. The charge density in the interstitial regions is
quite different for ρ(r) and ρ0(r). However in the vicinity of the nuclei, these densities are quite similar. We show
this explicitly in Fig. 4, where we plot δρ(r)/eE and δρ0(r)/eE for applied field in x and y directions in MoS2. As
expected, the quantitative difference is quite small near the nuclei. This can be generally anticipated for states with
high Berry curvature: Berry curvature is related to the formation of orbital moments, which requires higher values of
`. These states are more localized than, for example, s-like states.

REAL SPACE CALCULATION FOR MOS2

We begin our analysis of MoS2 by considering the effective model near the ±K points. We let q = (k∓K) be the
Bloch momentum vector measured from the ±K point. The effective model Hamiltonian is:

Hν=± =

(
∆/2 ±tqae∓iφ

±tqae±iφ −∆/2

)
(22)

where ν = ±1 is the valley index and a is the lattice constant. The eigenvalues for both valleys are given by:

ε(q) = ±1/2
(

∆2 + 4q2a2t2
)1/2

. (23)

It’s straightforward to show that the Berry curvature is given by:

Ων(q) = ν
2t2a2∆

(4t2q2a2 + ∆2)
3/2

. (24)
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We next record the full form of the wave functions of conduction and valence bands (denoted by ψc and ψv,
respectively) at k = +K, which form the Hilbert space for nonzero q:

φc(x, y, z) = φz2 (25)

= Ar exp

(
−r
3a0

)
A1

(
−x2 − y2 + 2z2

)
(26)

φv(x, y, z) =
1√
2

(
φx2−y2 + iφxy

)
(27)

= Ar exp

(
−r
3a0

)
1√
2

(
iA2 (xy) +A3

(
x2 − y2

))
(28)

where r =
√
x2 + y2 + z2. a0 is the effective Bohr radius of the orbital. The various normalization factors A are:

Ar =

(
2

27

√
2

5

(
1

3a0

)3/2
1

a2
0

)
(29)

A1 =
1

4

√
5

π
, A2 =

1

2

√
15

π
, A3 =

1

4

√
15

π
(30)

Notice that the radial wave function has a prefactor of r2 in the numerator, while the spherical harmonic has a factor
of r2 in the denominator, the two of which cancel each other.

To determine the form of the perturbed wave functions, and resulting real space density away from the +K point
(ν = +1), we return to the effective model:

H =

(
∆/2 tqae−iφ

tqaeiφ −∆/2

)
(31)

The unperturbed eigenstates are spinors oriented along the direction of the pseudo effective field
Beff =

(
2tqa cos(φ), 2tqa sin(φ),∆

)
.

ψc(q) =

(
cos(θ/2)e−iφ

sin(θ/2)

)
(32)

ψv(q) =

(
sin(θ/2)e−iφ

− cos(θ/2)

)
(33)

where θ = tan−1
(

2qat
∆

)
. Recall that the psuedospin basis functions are combinations of the d-orbitals:(

1
0

)
= dz2 (34)

= A1

(
2z2 − x2 − y2

)
(35)(

0
1

)
=

1√
2

(
dx2−y2 + idxy

)
(36)

=
(
A3(x2 − y2) + iA2xy

)
(37)

The perturbed wave function is:

|ψ′v〉 = |ψv〉+ ieE
〈ψc|vy|ψv〉
(Ec − Ev)2

|ψc〉 (38)
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Let’s consider φ = 0.

|ψ′v〉 =

(
sin(θ/2)
− cos(θ/2)

)
+

eaEt

4q2a2t2 + ∆2

(
cos(θ/2)
sin(θ/2)

)
(39)

If we evaluate the 1st order change in the wave function, we find that following expression, where we include the
functional form of the angular part of the orbitals:

δρν=+1(q, r)

eE
=

ta
(

2qat(|φv(r)|2 − |φc(r)|2) + 2∆ φc(r) Re
[
φv(r)

])
(4q2a2t2 + ∆2)

3/2
(40)

Since qta� ∆, we can approximate the above as:

δρν=+1(q, r)

eE
≈

2ta∆ φc(r) Re
[
φv(r)

]
(4q2a2t2 + ∆2)

3/2
(41)

=
2ta∆

(4q2a2t2 + ∆2)
3/2

φz2(r)φx2−y2(r)√
2

(42)

Note that the unit for δρ(q, r) is the standard unit for density, 1/m3. We find an identical expression for ν = −1, so
that the net density is nonzero when summing over valleys.

INSULATING CASE: RELATING σVHE AND δρtot(r)/eE

We integrate over k (or q) to find the total valley Hall conductivity in the insulating case:

σVHE =
∑
ν=±1

2π

(2πa)2

∫ ∞
0

dq q ν Ων(q) (43)

=
4π

(2πa)2

∫ ∞
0

dq q
2t2a2∆

(4t2q2a2 + ∆2)
3/2

(44)

=
1

2π
(45)

The total (integrated) change in density is given by:

δρtot(r)

eE
=
φz2(r)φx2−y2(r)√

2

2× 2π

(2πa)2

∫
q dq

2at∆

(4q2a2t2 + ∆2)
3/2

. (46)

A factor of 2 in the above is the result of summing over ν. Note the units of ρ(r)tot, the “total” density, are 1/m5,
which include a factor of 1/m3 from the standard density unit, and an additional factor 1/m2 from the Brillouin zone
integration.

Next we connect the two quantities by picking out a specific point r. The natural point is the maximum of the
density along the x-direction, for y = z = 0. Letting y = z = 0:

δρtot(x)

eE
= −

exp
(
− 2x

3a0

)
x4

13122
√

6a7
0π

4π

(2πa)2

∫
q dq

2at∆

(4q2a2t2 + ∆2)
3/2

. (47)

In the above a0 is the effective Bohr radius The minimum value of ρ(x) is located at x = 6a0. At this point:

δρtot(xmin)

eE
= − 32

3π

√
2

3

exp(−4)

x3
min

[
4π

(2πa)2

∫
q dq

2at∆

(4q2a2t2 + ∆2)
3/2

]
. (48)

We use Eq. 44 to rewrite the term in brackets on the right-hand-side of the above as:

δρtot(xmin)

eE
= − 32

3π

√
2

3

exp(−4)

x3
min

(
σVHE

at

)
, (49)



8

equivalently:

σVHE = −3π

32

√
3

2
exp(4) x3

minat
δρ(xmin)

eE
. (50)

We can test this picture by separately computing the two sides of Eq. 50, which is presented in the main text.

CHANGE IN LOCAL DENSITY OF STATES

For the local density of states calculation, we focus on y = 0 and will integrate the density over z. Re-writing Eq.
42:

δρ(q, x, 0, z)

eE
=

2∆at

(4q2a2t2 + ∆2)
3/2

A2
rA1A3√

2
exp

(
−2
√
x2 + z2

3a0

)
x2
(
−x2 + 2z2

)
(51)

Here we omit the ν label for δρ(q, r), as the density is equal for both ν values as described earlier. Generally, a
two-dimensional map of charge density obtained with scanning tunneling microscopy (STM) involves a convolution
over the depth z. The precise form of this convolution function f(z) depends on the experimental details. For
the sake of simplicity, we choose f(z) = 1 in the analysis presented here. Generalizing to other forms of f(z) is
straightforward, and will result in different numerical prefactors whose precise value is important for quantitative
data analysis. Proceeding with f(z) = 1, we obtain:∫

dz
δρ(q, x, 0, z)

eE
=

2∆at

(4q2a2t2 + ∆2)
3/2

∫
dz

1√
2
A2
rA1A3 exp

(
−2
√
x2 + z2

3a0

)
x2
(
−x2 + 2z2

)
(52)

(53)

To determine the position of the absolute value of the maximum of this function, we first make integral dimensionless
with z′ = z/x. We also include the numerical prefactors explicitly:∫

dz
δρ(q, x, 0)

eE
=

2∆at

(4q2a2t2 + ∆2)
3/2

(
1

273

)√
3

2

1

2π

1

a7
0

∫
x dz′ exp

(
−2x
√

1 + z′2

3a0

)
x4
(
−1 + 2z′2

)
(54)

Next write x in dimensionless form, x′ = x/a0.

∫
dz

δρ(q, x′, 0, z)

eE
=

2∆at

(4q2a2t2 + ∆2)
3/2

( 1

273

)√
3

2

1

2πa2
0

∫
x′5 exp

(
−2x′

√
1 + z′2

3

)(
−1 + 2z′2

)
dz′

 (55)

The integral in Eq. 55 must be evaluated numerically for each value of x′. The resulting dimensionless form of the
function in brackets is shown in Fig. 6. The position of the minimum is at x ≈ 8.3a0, and the value of the function

there (in dimension-ful form) is −9.39× 10−4 ×
(

1
a0

)2

. We combine these two facts to obtain:

∫
dz

δρ(q, xmin, 0, z)

eE
= − 2∆at

(4q2a2t2 + ∆2)
3/2

0.065×

(
1

x2
min

)
(56)

Using the expression for Ω(q) in Eq. 24, we arrive at Eq. 14 of the main text:

−
∫
dz

δρ(q, xmin, 0, z)

eE
× atx2

min

0.065
= ν Ων(q) (57)

Energy-resolved Hall conductivity

We next discuss the energy-resolved Berry curvature, and the energy-resolved change in charge density distribution.
We will find a simple relationship between these two quantities. The general expression for the energy-resolved valley
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FIG. 5: Plot of term in brackets of Eq. 55. The position of the maximum of the absolute value of this curve can be used
to estimate the effective Bohr radius a0, and the max value of the curve determines the magnitude of the coupling coefficient
between dz2 and dx2−y2 orbitals. This in turn is related to the magnitude of the Berry curvature.

FIG. 6: Comparison of band structure and Berry curvature of valence band computed with density functional theory, and
with the effective model. The parameters of the effective model are chosen to reproduce the band dispersion near K, and are
t = 1.09 eV, ∆ = 1.7 eV.

Hall and orbital Hall conductivity are:

σVHE(ε) = 2 Im

∫
dk
∑
n,m

(fn,k − fm,k) τk
vxnmv

y
mn

(En − Em)
2 δ
(
ε− En,k

)
(58)

σLz(ε) = 2 Im

∫
dk
∑
n,m

(fn,k − fm,k)
vxnmv

Lz
mn

(En − Em)
2 δ
(
ε− En,k

)
(59)

where vxnm = 〈ψn|v̂x|ψm〉, vLznm = 〈ψn|
(
Lz v̂y + v̂yLz

)
/2|ψm〉, and v̂x = dH/dkx. In Eq. 58, τk is ±1 according to the

state’s valley index.

Using Eq. 56, we obtain:

δρ(q, xmin)

eE
× atx2

min

0.065
= − 2∆(at)2

(4q2a2t2 + ∆2)
3/2

(60)

Next we make the connection between the real space density and the Berry curvature. To do so, we note that the
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FIG. 7: (a) Equilibrium local density of states at the valence band edge energy. (b) 1-dimensional cut through the local density
of states through the maxmimum, which is located on the Mo atom. (c) is a replot of the data from Fig. 4(d) of the main text,
normalized by the maximum value of the equilibrium density of states.

expression on the right-hand-side of Eq. 60 is equal to the q-dependent valley Hall conductivity, Eq. 24:

σVHE(ε) = −atx
2
min

0.065
× 2

(2π)

∫
dz

∫
q dq

δρ(q, xmin, 0, z)

eE
δ

(
ε− 1

2

√
4q2a2t2 + ∆2

)
(61)

So that:

σVHE(ε) = −atx
2
min

0.065

(
δLDOS(ε, xmin)

eE

)
(62)

CALIBRATION OF THE LOCAL DENSITY OF STATES MEASUREMENT

The differential conductance measured in an STM experiment is proportional to the local density of states, and the
constant of proportionality may depend on experimental details and may be unknown. However, Eq. (13) of the main
text relies on the absolute value of the local density of states. In order to calibrate the measurement, we provide the
equilibrium local density of states at the valence band edge energy in Fig. 7. As before, we assume that the measured
signal is proportional to the integral over the z coordinate. The local density of states exhibits a maximum value at
the center of the Mo atom, with a value of 53 (eV · nm2)−1. Fig. 7(c) shows the electric field induced change in the
density of states, normalized by this maximum value. By normalizing the data this way, the unknown constant of
proportionality between the signal and the local density of states factors out of the data.

The unit of the normalized change in LDOS is inverse electric field, and provides the fractional change of the local
density of states for a given applied electric field. To achieve a fractional change of 10−4 requires an applied field of
102 V/nm. As mentioned in the main text, this is on the order of the breakdown field measured for MoS2 [2], so that
the effect we describe is quantifiable for measurements with signal to noise ratio of less than 10−4.

[1] W. A. Harrison, Electronic structure and the properties of solids: the physics of the chemical bond (Courier Corporation,
2012).

[2] D. Lembke and A. Kis, ACS nano 6, 10070 (2012).
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