
Evolving Advanced Persistent Threat Detection 
using Provenance Graph and Metric Learning 

Gbadebo Ayoade∗ , Khandakar Ashraf Akbar∗ , Pracheta Sahoo ∗ Anoop Singhal† 

, Yang Gao ∗ , Anmol Agarwal∗ , †National Institute of Standards and Technology 
Kangkook Jee ∗ , and Latifur Khan∗ Email: anoop.singhal@nist.gov 
∗Department of Computer Science 

University of Texas at Dallas, Richardson, Texas 75080 
Email: (gbadebo.ayoade,KhandakarAshraf.Akbar,pracheta.sahoo 

yxg122530,anmol.agarwal,Kangkook.Jee,lkhan)@utdallas.edu 

Abstract—Advanced persistent threats (APT) have increased 
in recent times as a result of the rise in interest by nation-
states and sophisticated corporations to obtain high profle 
information. Typically, APT attacks are more challenging to 
detect since they leverage zero-day attacks and common benign 
tools. Furthermore, these attack campaigns are often prolonged 
to evade detection. We leverage an approach that uses a 
provenance graph to obtain execution traces of host nodes in 
order to detect anomalous behavior. By using the provenance 
graph, we extract features that are then used to train an 
online adaptive metric learning. Online metric learning is a 
deep learning method that learns a function to minimize the 
separation between similar classes and maximizes the separation 
between dis- similar instances. We compare our approach with 
baseline models and we show our method outperforms the 
baseline models by increasing detection accuracy on average 
by 11.3 % and increases True positive rate (TPR) on average 
by 18.3 %. 

I. INTRODUCTION 

Advanced Persistent Threat (APT) [13] attacks are attacks 
that are usually conducted by nation state actors. These 
attacks target the victim’s network in order to gain access 
to confdential information for espionage or compromise the 
network to destroy the victim’s systems. 

One example of an APT attack is the Sykipot attacks. 
In the Sykipot attacks, attackers targeted U.S. and U.K. 
organizations such as defense contractors, computer hardware 
manufacturers, and government departments. The attackers 
used spear-phishing to send emails that contained malicious 
attachments or links. If a user were to click on a malicious 
link or open a malicious attachment, then this could harm 
the organization’s system. APT attacks are stealthy and are 
designed to avoid detection. Therefore, it is diffcult to detect 
the APT attacks [10]. This is a signifcant challenge. 

In a traditional machine learning based approach, we may 
train a machine learning model with class A and class B 
attacks, but a new attack which belongs to a novel class may 
suddenly appear. These novel attack classes can be termed 
as a zero-day attacks since the new class is not part of the 
training data but it may appear in the test class [16]. In this 
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case, a traditional machine learning approach may not be able 
to detect the newly appeared class as a malicious attack class 
effectively. Due to the limitation of a traditional machine 
learning approach, we use a deep learning method based on 
Online Metric Learning (OML) [7] which learns a function 
to minimize the separation between similar classes (attack 
classes) and maximizes the separation between dissimilar in-
stances (attack classes versus benign). Therefore, our method 
can recognize some of the zero-day attack more clearly 
from the benign instances in latent space and it performs 
effectively better than traditional machine learning approach. 
However, there is no guarantee our method will always detect 
all the zero-day attacks. 

There has been much work regarding APT detection that 
attempt to address this challenge. Different methods have 
been proposed. For example, Milajedri et al. [17] propose the 
HOLMES system that gathers computer audit data and ranks 
the severity of the APT attack in real time. In HOLMES, 
an APT attack is classifed based on the seven stages of the 
APT kill chain: 1) Initial Compromise, 2) Establish Foothold, 
3) Escalate Privileges, 4) Internal Reconnaissance, 5) Move 
Laterally, 6) Maintain Presence, and 7) Complete Mission. 

While much work has been done in the feld to identify 
certain existing APT attacks, currently, a method to detect 
new APT attacks as they are being carried out does not 
exist. New APT attacks can only be detected after the 
attack had already occurred. Therefore, adversaries can still 
infict signifcant damage when they conduct a zero-day APT 
attack. We propose a method to address this problem that 
generates an alert if a novel APT attack occurs. Our method 
could prevent damage from the novel APT attacks. More 
specifcally, we train our model on a subset of the attacks, 
for example, shell-shock attack and test on other types of 
attack such as database command injection attack. 

In addition, most APT attackers leverage traditional non-
malicious tools to complete their attacks. For example, an 
attacker may exploit a bash vulnerability to open a backdoor 
on the victim system without installing any malicious soft-
ware and can then perform lateral movement to access high 
target systems like the databases to steal data. By tricking the 
victim into running a bash script, the attacker gains access to 
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the victim system. Detecting such attacks is challenging if the 
behaviour of the attack fow is not taken into consideration. 
In this case, a reverse-shell connection from the victim’s 
machine to the attacker’s machine takes place. A benign 
network fow will just involve connection to the database 
server from a regular network host. Our aim is to be able 
to detect when a non-malicious tool is used in a malicious 
attack fow. 

Our contributions include: 
• We propose and implement a system that leverages 

provenance graphs derived from system events for de-
tection of APT attacks 

• We propose and implement a metric learning based 
approach to detect novel APT attacks by learning a 
latent space that effectively separates benign classes 
from attack classes. 

• We show our method OML outperforms traditional 
machine learning classifers in detection of novel APT 
attacks by an average of 12 % in detection accuracy. 

The rest of the paper is organized as follows. Section II dis-
cusses the challenges encountered in APT detection systems. 
Section III discusses our approach and gives an overview of 
the system. Section IV provides a detailed architecture of 
our system. Section V shows our classifcation method using 
online metric learning. Section VI presents a summary of our 
implementation and Section VIII shows the evaluation of our 
approach. Finally, Section IX provides the related work and 
Section XI provides a conclusion and possible future work. 

II. CHALLENGES 

When designing and implementing our method, we en-
countered some challenges that are listed below. 
• Limited training data for novel APT attacks: Since 

data for novel APT attacks is limited or non-existent, 
it will be diffcult for us to train our machine learning 
model for novel APT attacks. 

• There is no signature for the zero-day APT attack: 
When a novel APT attack occurs, it does not leave a 
specifc signature that can be used to identify the attack. 
For novel APT attack identifcation, we need to analyze 
the victim machine’s log fles. Because the log fles can 
be very large, it is challenging to flter out the attack 
activities from benign activities. 

• Detection in real time: It is also challenging to detect 
the APT attacks in real-time. Our system needs to detect 
attacks quickly and alert the system users to prevent the 
attack from causing damage. 

• Reduce false positives: Events that are benign could be 
incorrectly identifed as a novel APT attack. Our goal 
is to accurately detect APT attacks with a low false 
positive rate. 

III. APPROACH 

Figure 1 shows a simplifed example of a provenance 
graph for an example APT attack. The provenance graph 
is usually much larger, but for readability, we have only 
depicted a small portion of the graph. In this APT attack, a 

Fig. 1. Sample Camfow provenance graph data 

user goes to evilsite.com and then downloads a Trojan horse. 
The Trojan executes malicious commands in the background 
via the malicious executable fle evil.exe while also providing 
functionality that the user is aware of. For example, a Trojan 
could be a malicious calculator that appears to be a normal 
calculator but is secretly executing malicious commands 
in the background as the calculator application is running. 
In this example, the Trojan from evilsite.com is able to 
successfully read the /etc/shadow fle and a fle containing 
confdential information that is named ‘Top-secret’. There-
fore, the Trojan is able to successfully spy on the victim 
and gain unauthorized access to the victim’s confdential 
information. 

We generate provenance graphs that look like the graph 
depicted in Figure 1. However, the generated provenance 
graphs are much larger and show all system activities and 
processes instead of a small snippet. For APT attack detec-
tion, we detect vulnerabilities in the provenance graph. For 
this, we construct a provenance labeled graph (PLG). Here, 
PLG is an undirected graph that is defned as G = (V, E) 
where V is the set of vertices which include processes, 
tasks and, network socket events, E ⊂ V ∗ V is the 
set of undirected edges which include interaction between 
system events such as write and read events. Given a set 
of training examples T = (xi, yi) where xi ⊂ X is a graph, 
and yi ⊂ Y = +1, 1 is a target label, the graph classifcation 
problem is to induce the mapping f: X ⇒ Y . For this, after 
PLG extraction, we need to convert it to a feature matrix 
vector by using node2vec [11], GraphSAGE [12], etc. Then, 
we apply our novel supervised learning technique to detect 
APT attacks in the stream of data including novel APT 
attacks. 

IV. ARCHITECTURE 

Figure 2 illustrates our approach. Our approach leverages 
metric learning based detection to classify unknown APT 
attacks in real time. We use the provenance data to visualize 
the activity on the machine, and then we flter this provenance 
data to target attack traffc. Data provenance is a repre-
sentation of the relationships among entities (data items), 
activities (changes applied to the entities), and agents (people 
or organizations that are associated with the activities and/or 
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entities) [21]. We use this provenance to gather information 
about all of the activities occurring on the machine that could 
be representative of an attack tactic. 

Figure 2 illustrates the steps of our proposed solution. 
First, we perform simulated advanced persistent attacks on 
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the targeted victim machine. The data from these attacks is 
transformed into provenance data by CamFlow [21]. Second, 
we convert the provenance logs generated by CamFlow to a 
provenance graph using the CamQuery tool [22]. Third, once 
we have a provenance graph, we flter out sections of the 
graph to generate sub graphs that contain the events that are 
commands executed on the system. We flter out extraneous 
noise that are common activities that occur on the machine 
regardless if the events are attacks or benign. Fourth, we build 
a supervised model from these training graphs to detect novel 
APT attacks, existing APT attacks and benign events. 

For feature extraction, we convert the graph into vectors 
using graph embedding by leveraging node2vec. An embed-
ding vector is learned for each unique node in the graph. The 
vectors for the nodes in a graph are then aggregated together 
using the average function for each of the instances of the 
attack. Our feature extraction method is further discussed in 
Section IV-B. We train our OML method to detect attacks 
based on the extracted features. 

More specifcally, supervised learning is utilized to in-
crementally learn from the data. For supervised learning, 
we learn accurate models by leveraging attack and benign 
data, which are initially gleaned from benign data, synthetic 
attacks and existing APT attack traces, and later from live 
attack detection for detecting the novel type of APT attack. 

We capture the data on a machine. We capture provenance 
data using the tool, CamFlow [21]. The provenance data is a 
record of all of the activities occurring on the machine. We 
then generate a provenance graph using CamQuery [22]. We 
adopt a similar strategy to HOLMES [17], but we extend this 
strategy further to detect novel APT attacks. 

We generate existing APT attack data by simulating the 
attacks on an Ubuntu Linux Virtual Machine. We simulate 
these attacks by performing various malicious activities on 
the machine such as downloading vulnerable software and 
running malicious programs on the machine. While we attack 
the machine, CamFlow [21] and CamQuery [22] capture the 
provenance data from the machine in the W3-PROV-JSON 
format and the provenance graph respectively. 

A. Provenance Graph 

The provenance graph is collected as a set of JSON fles. 
Listing 1 shows an example of a node and write edge. The 
nodes contain the provenance type such as fifo, file, or 
socket [1]. It contains the machine id, boot id and unique 
node ids. The edges contain additional information such as 
provenance activity and entity nodes which are interacting 
together. In our case, we extract the interaction between the 
different provenance event types using CamQuery to form 
the nodes and edges in our graph. The Camquery extracts 
the node ids from the provenance graph and forms a pairwise 

Listing 1. Sample node data for a provenance graph with FIFO type 

list of the graph interaction nodes which we use as input to 
our feature extraction system. 

B. Feature Extraction 

Node2vec. We use Node2vec [11] to pre-process the prove-
nance graph before classifcation. Node2vec is a semi-
supervised algorithm for learning features from network 
graphs. Node2vec uses a similar approach to skip-gram by 
learning a vector that preserves the neighbourhood relation-
ship of graph nodes similar to word2vec. By representing 
the graphs by performing a breadth-frst search walk on the 
graph, a sequence of nodes can be generated similar to words 
in a document. We leverage this method to learn a vector for 
each node which is used for generating features for attack 
detection. 

For our approach, we extract the node id from the prove-
nance graph. Since the graph is a representation of how each 
process interacts with other processes and tasks, we model 
the process task as nodes and the interactions as edges. The 
list of edges is then passed to the node2vec algorithm to 
generate an embedding vector for each unique node in the 
graph. The embedding vector for the nodes in the graph is 
then combined by fnding the average vector representation 
which is used as a feature for the attack instance. 

V. ATTACK DETECTION 

A. Emerging Attack Class Detection 

Traditional machine learning approach is not effective at 
detecting novel attack classes. For example, a traditional 
machine learning model may be trained with instances that 
belong to class A and class B. However, a new attack 
class may emerge over time and the model may not be 
able to detect the new attack class effectively. In addition, 
in many real-world scenarios of APT attacks, instances of 
patterns associated with the attack type may change over 
time. Therefore, classifer performance is affected by the 
occurrences of instances from unknown or novel patterns. 

For our novel class detection, we leverage online metric 
learning or distance based learning where malicious instance 
points can be well separated from benign class instances 
so that when novel attack classes emerge, we can detect it 
effectively. We provide more discussion in the next section. 

B. Online Metric Learning 

Online Adaptive Metric Learning (OAML) [9] [5] [4] is 
based on a deep learning architecture that transforms an 
instance feature from an original feature space to a latent 
feature space. By transforming to a latent feature space, 
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the metric distance between dissimilar instances is increased 
and distance between similar classes is reduced. The work 
leverages methods which use pairwise and triplet constraints. 

Our OAML method learns a non-linear similarity metric 
unlike others which uses a pre-selected linear metric (e.g., 
Mahalanobis distance [26]). Our OAML method overcomes 
bias to a specifc dataset by using an adaptive learning 
method. Our OAML leverages neural networks where the 
hidden layer output is passed to an independent metric-
embedding layer (MEL). The MELs then generate an n-
dimensional embedding vector as output in different latent 
space. 

+ −1) Problem Setting: Let S = {(xt, x , x )}T be at t t=1 
sequence of triplet constraints sampled from the data, where 

+ − +{xt, x , x } ∈ Rd , and xt (anchor) is similar to xt t t 
−(positive) but dissimilar to x (negative). The goal of online t 

adaptive metric learning is to learn a model F : Rd 7→ Rd0 

+ −such that ||F (xt) − F (x )||2 � ||F (xt) − F (x )||2. Given t t 
these parameters, the objective is to learn a metric model 
with adaptive complexity while satisfying the constraints. The 
complexity of F must be adaptive so that its hypothesis space 
is automatically modifed. 

2) Overview: Consider a neural network with L hidden 
layers, where the input layer and the hidden layer are 
connected to an independent MEL. Each embedding layer 
learns a latent space where similar instances are clustered 
and dissimilar instances are separated. 

Figure 3 illustrates our Artifcial Neural Network (ANN) . 
Let E` ∈ {E0, E1, E2, . . . , EL} denote the `th metric model 
in OAML (i.e., the network branch from the input layer to 

`ththe MEL). The simplest OAML model E0 represents 
a linear transformation from the input feature space to the 
metric embedding space. A weight α(`) ∈ [0, 1] is assigned 
to E`, measuring its importance in OAML. 

+ −For a triplet constraint (xt, x , x ) that arrives at time t,t t 
∗its metric embedding f (`)(x ) generated by E` ist 

∗ f (`)(x ) = h(`)Θ(`) (1)t 

σ(W (`)h(`−1)),where h(`) = with ` ≥ 1, ` ∈ N, and 
h(0) ∗ ∗ + = x . Here x denotes any anchor (xt), positive (x ),t t t 

−or negative (x ) instance, and h(`) represents the activation t 
∗of the `th hidden layer. Learned metric embedding f (`)(x )t 

∗is limited to a unit sphere (i.e., ||f (`)(x )||2 = 1) to reducet 
the search space and accelerate training. 
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During the training phase, for every arriving triplet 
+ − ∗(xt, x , x ), we frst retrieve the metric embedding f (`)(x )t t t 

from the `th metric model using Eq. 1. A local loss L(`) for 
E` is evaluated by calculating the similarity and dissimilarity 

∗ errors based on f (`)(x ). Thus, the overall loss introducedt 



⎪⎪⎪
⎪⎪⎪

by this triplet is given by 

LX 
+ − α(`) + −Loverall(xt, x , x ) = · L(`)(xt, x , x ) (2)t t t t 

`=0 

Parameters Θ(`), α(`), and W (`) are learned during the 
online learning phase. The fnal optimization problem to 
solve in OAML at time t is therefore: 

minimize Loverall 
Θ(`) ,W (`) ,α(`) (3) 

∗subject to ||f (`)(x )||2 = 1, ∀` = 0, . . . , L.t 

We evaluate the similarity and dissimilarity errors using an 
adaptive-bound triplet loss (ABTL) constraint [9] to estimate 
L(`) and update parameters Θ(`), W (`) and α(`). 

3) Why OML works: A typical machine learning algo-
rithm like k-NN will misclassify the instances shown in 

+ −Figure 4, since x is closer to x and further from xt. Int t 
our case, most APT attacks use non-malicious software to 
complete their attack activities making the attack events and 
traffc look non-malicious. To overcome this challenge, we 
use ABTL. 

Figure 5 illustrates the main idea of ABTL. The objec-
(l) +tive is to have the distance D (xt, x ) of two sim-update t 

+ilar instances and x to be less than or equal to axt t 
(l) +similarity threshold d (xt, x ) so that the attractive losssim t 

(l) +L (xt, x ) drops to zero; on the other hand, for twoattr t 
−dissimilar instances and x , we desire their distancext t 

(l) −D (xt, x ) to be greater than or equal to a dissimilarityupdate t 
(l) −threshold d (xt, x ), thereby reducing the repulsive lossdis t 

(l) −Lrep(xt, x ) to zero.t 

4) Adaptive-Bound Triplet Loss: Here yt ∈ {+1, −1}
0denotes whether xt is similar (+1) or dissimilar (−1) to xt 

and b ∈ R is a user-specifed fxed margin. While triplet 
loss simultaneously learns both similarity and dissimilarity 
relations, the pairwise loss can only focus on one of the 
relations at a time, which leads to a poor metric quality. In 
addition, triplet loss requires a proper margin be specifed. In 
addition, the selected margin is highly dependent on the data 
and it requires extensive domain knowledge. Our aim is to 
automatically learn the margin for our triplet-loss constraint 
irrespective of the available data. 

2With τ ∈ (0, ), by optimizing the proposed adaptive-3
bound triplet loss, different classes are separated in the 
metric embedding space. Let D(c1, c2) denote the min-
imal distance between classes c1 and c2, i.e., the distance 
between two closest instances from c1 and c2 respectively. 
Consider an arbitrary quadruple (x1, x2, x3, x4) ∈ Q where 
{x1, x2} ∈ c1, {x3, x4} ∈ c2, and Q is the set of all 
possible quadruples generated from class c1 and c2. Suppose 
(x2, x3) is the closest dissimilar pair among all possible 
dissimilar pairs that can be extracted from (x1, x2, x3, x4). 
We frst prove that the lower bound of D(c1, c2) is given by 

min D(l)(x1, x4) − D(l)(x1, x2) − D(l)(x3, x4). 
(x1,x2,x3 ,x4)∈Q 

(l) (l) (l)D (x1, x4) ≤ D (x1, x2) + D (x2, x4) 
(4)

(l) (l) (l)≤ D (x1, x2) + D (x2, x3) + D (x3, x4) 

(l)D(c1, c2) = min D (x2, x3) 
(x1,x2,x3 ,x4 )∈Q 

(l) (l)≥ min D (x1, x4) − D (x1, x2) 
(x1,x2,x3 ,x4 )∈Q 

−D(l)(x3, x4) 
(5) 

By optimizing the adaptive-bound triplet loss, the following
constraints are satisfed. ⎧ 

(l) (l)
D(l)(x1, x2) ≤ d (x1, x2) ≤ Tsim sim⎪⎨ 

(l) (l)
D(l)(x3, x4) ≤ d (x3, x4) ≤ T (6)

sim sim ⎪⎩ (l) (l)
D(l)(x1, x4) ≥ d (x1, x4) ≥ Tdis dis 

(l) (l)D(c1, c2) ≥ min D (x1, x4) − D (x1, x2) 
(x1,x2,x3 ,x4 )∈Q 

−D(l)(x3, x4) 
(l) (l)≥ T − 2Tdis sim 

= 2 − τ − 2τ 

= 2 − 3τ 
(7) 

2if τ ∈ (0, ), we have 3τ < 2. Therefore,3 

D(c1, c2) ≥ 2 − 3τ > 0 (8) 

Equation 8 indicates that the minimal distance between class 
c1 and c2 is always positive so that these two classes are 
separated. 

Note that our whole proof is solely based on the triangle 
inequality, which is correct as long as the triangle inequality 
holds. As L2-norm is utilized to measure the distance, the 
metric space learned by our framework is indeed a normed 
vector space. The triangle inequality is a natural property in 
this space. 

Moreover, our framework does not require the learned 
metric space to be convex, i.e., for any two distinct instances 
x and y in the metric space, there exists a third instance z in 
this space lying between x and y (d(x, z)+d(z, y) = d(x, y)). 
Whether or not the equality strictly holds does not affect the 
correctness of our proof, since it only considers the upper-
bound of a distance. In our case, even the non-convex metric 
space is a valid solution, as the triangle inequality still holds 
in this space. 

VI. IMPLEMENTATION 

We developed an implementation of our system for the 
64-bit Ubuntu Linux operating system with 128 GB space 
of RAM. Our system consists of the data generation and the 
machine learning detection module. For the data generation, 
we used bash scripts which consist of 100 lines of code. We 
leveraged the CamFlow tool [21] installed on VirtualBox 
using Vagrant. We modifed the CamQuery module [22] to 
extract the ID of the provenance graph nodes and to generate 
edges of process interactions. 

For the machine learning detection module, we leveraged 
scikit-learn for our baseline evaluation and the OAML com-
ponents were implemented with approximately 500 lines of 
Python code using the PyTorch library. 

Model Parameters. For our experiments, Support Vector 
Machine (SVM) uses Radial Basis Function (RBF) kernel 



with Cost = 1.3×105 and gamma is set to 1.9×10−6 . OAML 
uses a Rectifed Linear activation Unit (ReLU) network with 
embedding n = 200, number of hidden layers L = 5, k = 1, 
learning rate = 0.3, learning rate decay = 1 × 10−4 , and uses 
ADAM (A method for stochastic optimizer) optimizer. 

VII. DATASETS 

A. Attack Generation & Data Collection 

Table I show the contents of our dataset. The dataset 
consists of different APT activities such as exfltration of 
data, illegal login and access, opening of a reverse shell 
for command and control access, and illegal network scan-
ning using nmap for the discovery of services on victim’s 
network. All the classes were used for both benign and 
malicious scenario generation. For example, command line 
injection attacks were considered malicious when some third 
party injected some commands and executed them. Benign 
scenarios were mimicked with normal command execution 
fow which consists of usual executed commands. Table 
II shows properties of the provenance graph based on the 
trace of a single execution of an attack instance. A sample 
provenance graph contains an average of 10 332 edges for 
data ex-fltration attack events labeled as class 1, while the 
average in-degree is 48 and the average out-degree is 153 for 
the same class. 

For our dataset, we collect the provenance graph which 
contains information such as provenance type and task type 
as discussed in section IV-A. Benign instances include web 
browsing activities on benign websites, normal login activity 
with Secure Shell (SSH) and benign connection from a client 
machine to a database server. We collected 100 traces for 
each attack type. Our dataset consists of activities derived 
from previously known APT attack campaign steps. We 
collect multiple traces of attack sequences to gather diver-
sifed training data and test on single instance of the attack 
sequence. We generated 7 benign cases and 7 attack cases 
since each attack type has a corresponding benign activity 
variation. 

B. Attack Generation 

Table I shows that the Data Leakage Attack & Remote 
Webservice Penetration (Shellshock) and Password Cracking 
attack are deployed through mimicking real-world scenarios. 
A server end user, a client end user, and an attacker are 
required to mimic the attack. In the data leakage attack 
scenario, a server consists of a database and owns it and has 
given access to its client to access data from the database 
through queries. In the server end, postgresql database is 
used for such service. If a database is dumped from the 
server end into any sql fle or any other fle format, a 
client can reconstruct the database or restore the database by 
having that fle from the server end. In the attack scenario, 
a third user who is essentially the attacker makes the client 
download some malicious program (e.g., spear phishing e-
mail (from outside) to open a backdoor or sending the 
software to the client end by any other means) and run it 
in the client’s computer. With the execution of that software, 
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Fig. 6. Data Leakage Attack 

the attacker gets access to the client’s system (control over 
client’s computer) and can now communicate with the server. 
The attacker can now make queries to the server and can 
even restore the database in its own end but it will make 
the behavior seem like a client as it will be doing these tasks 
from the client’s system. In a nutshell, the attacker makes the 
victim end download some executable and execute it to open 
the backdoor for itself to the server end so that it can leak the 
data to the client end while having full access to the server as 
a client (a client acts as a privileged domain to the attacker). 
The attacker can leak the data through external storage or 
network transfer after the attack has been deployed from the 
client’s computer. Benign scenarios for this case were created 
with normal operational and communication fow between 
the server and the client. These operations include normal 
database queries made by the client to the server, access to 
the database fle and retrieving of the database by the client 
itself. 

The Remote Webservice Penetration (Shellshock) and 
Password Cracking attack is deployed when the client’s 
system is somewhat hacked or deliberately used to attack 
the server end. In this scenario, an attacker exploits a remote 
shellshock vulnerability by sending crafted input to the CGI 
(Common Gateway Interface) service implemented using 
bash. Thus the attacker leverages the shellshock vulnerability 
as a backdoor to run malicious commands such as executing 
a password cracking tool. 

C. Data Collection 

1) Data Collection for Data Leakage Attack: Figure 6 
illustrates the steps required to complete this attack. For the 
data leakage attack, data was captured in both the server 
and client end. For the attack scenario, the attacker sends 
an email with some malicious executable attached with it 
to the client’s mail. The client downloads the attachment, 
executes it, and thus opens the backdoor for the attacker 
without any knowledge of it. The attacker now mimics the 
behavior of the client but from its own end and performs all 
the database queries and restoration. When the client executes 
the backdoor program, it goes straight to a vulnerable state 



TABLE I 
SUMMARY OF ATTACK WORKLOAD 

Class Description Software 

1 Data exfltration scp 
2 Illegal network scanning ping 
3 Illegal network mapping nmap 
4 Reverse shell for Command and Control nc 
5 Data Leakage Attack Deployed Through Mimicking Real-World Scenario 
6 Remote Webservice Penetration (Shellshock) and Password Cracking Deployed Through Mimicking Real-World Scenario 
7 Command Line injection Attack Deployed Through Mimicking Real-World Scenario 

Attacks emulated from MITRE APT collection. 

TABLE II 
PROVENANCE GRAPH PROPERTIES 

Class Avg # of out-deg Avg # of in-deg Avg # of edges 

1 153 48 10 337 
2 545 13 9796 
3 325 5 9781 
4 511 96 10 236 
5 561 922 9783 
6 2,084 1,437 10 638 
7 300 52 10 106 

and from that time Camfow provenance data is collected 
both at the server and client end. The benign set of data 
corresponds to when the server and client are communicating 
regularly. No other connection is established in the meantime. 
The server receives database requests from the client in a 
regular manner in benign scenario data collection. 

2) Data Collection for Password Cracking Attack: We 
carried out a password cracking attack using the John the 
ripper tool which implements a dictionary password attack. 
For the password cracking attack, the normal behavior or 
benign scenario simply involves a client connecting with the 
server using a curl command with no malicious payload. 
Benign data is collected while these normal operations take 
place using a Camfow provenance graph. For the attack 
scenario, the attacker exploits the shellshock vulnerability 
and then downloads a password cracker and executes a shell 
script for the backdoor creation. The attacker then executes 
commands for password collection and cracking from the 
victim’s end. While these steps take place, data was collected 
at the victim’s end using a Camfow provenance graph. 

3) Data Collection for Command Line Injection Attack: 
For the command line injection attack, we only collected data 
for the attack scenario. The victim host (e.g., say embedded 
/ IoT device that runs Linux) runs Mediaplayer (Kodi client), 
and it exports a remote control Application Program Interface 
(API) as a web service. One of its input sanitizations has 
an error that fails to flter invalid input from the outside, in 
turn allowing attackers to inject arbitrary commands blended 
in one of its requests. This attack is inspired by the Jeep-
Cherokee attack case where the attacker from remote gains 
control over the vehicle. In parallel to the above steps, the 
data collection was done at the victim host using a Camfow 
provenance graph. 

TABLE III 
RESULTS BASED ON NOVEL APT ATTACK DETECTION 

Metric Classes # OML KNN SVM RBF Decision Tree 

Accuracy 1 54.76 48.02 40.03 47.95 
2 64.99 56.67 40.03 66.64 
3 73.18 72.66 50.2 60.7 
4 75.96 72.85 61.36 66.91 
5 86.06 79.52 68.03 73.51 
6 92.07 86.2 71.0 80.52 
7 98.08 92.87 77.48 87.45 
8 98. 96.37 91.88 93.66 
9 99 99 91.88 99 

Metric Classes # OML KNN SVM RBF Decision Tree 
F2 1 28.92 16.12 0 15.99 

2 47.13 32.44 0 49.94 
3 60.72 59.86 22.02 39.67 
4 65.13 60.18 42.62 50.38 
5 80.5 70.69 53.91 61.25 
6 89.14 80.7 58.77 72.2 
7 97.43 90.25 68.98 82.53 
8 97.46 95.09 90.09 91.36 
9 99 1 90.09 99 

TABLE IV 
RESULTS BASED ON NOVEL APT ATTACK DETECTION 

Metric Classes # OML KNN SVM RBF Decision Tree 

FPR 1 0 0 0 0 
2 0 0 0 0 
3 0 0 0.0231 0 
4 0 0 0.0281 0 
5 0 0 2.81 0 
6 0 0 2.81 0 
7 0 0 2.81 0 
8 0 0 2.81 0 
9 0 0 2.81 0 

Metric Classes # OML KNN SVM RBF Decision Tree 
TPR 1 24.56 13.33 0 13.22 

2 41.63 27.75 0 44.38 
3 55.29 54.41 18.5 34.47 
4 59.91 54.74 37.44 44.82 
5 76.76 65.86 48.57 55.84 
6 86.78 76.98 53.52 67.51 
7 96.81 88.11 64.32 79.07 
8 97.96 93.94 88.33 89.43 
9 99 1 88.33 99 

VIII. EVALUATION 

A. Results 

Table III and IV show the results of our experiment. 
For our experiment, we trained incrementally on the attack 
classes and tested on all the remaining classes which includes 
the benign class instances. Please note that the training data 
and the test data consists of the benign data instances. With 
this approach, we can determine if our algorithm can detect 
unseen novel attack classes. First, we train on all the benign 
classes and a single APT attack class and test on all the 
benign and APT attack classes. Second, we train on all benign 



TABLE V 
EXECUTION TRAINING AND TESTING TIME FOR OML 

No of Training Instances Train time(s) Test time(s) 
700 55.8 1.94 
800 55.9 1.95 
900 55.4 1.96 

1000 55.5 1.96 
1100 54.7 1.91 
1200 55.9 1.97 
1300 58.9 1.98 
1400 59.5 2.00 
1500 59.6 2.08 

classes and two APT attack classes and tested on all attack 
classes. Third, we train on all benign classes and three APT 
attack classes and tested on all attack classes. Lastly, we train 
on all benign classes and all the APT attack classes and tested 
on all attack classes. We measured our performance by using 
the following metrics: Accuracy, TPR, FPR, and F2. 

In the experiments, we measured the true positive rate 
(tpr), where true positive represents the number of correctly 
classifed seen and novel APT attacks classes; false positive 
rate (fpr), where false positive represents the number of 
incorrectly classifed seen and novel APT attacks; and F2 

score of the classifer, where the F2 score is interpreted as 
the weighted average of the precision and recall. The F2 score 
ranges between the values 100 and 0 where 100 is the best 
value and 0 is the worst value. 

The results show our approach performs better than tradi-
tional machine learning based classifers such as k-NN, SVM 
and Decision tree. The accuracy of detection of novel attacks 
with our approach is 86 % compared to 79 % for k-NN, 68 % 
for SVM and 73 % for Decision Tree when we train on only 
fve attack classes. Similarly, the TPR is 76 % for OML 
compared to 65 % for k-NN and 55 % for Decision Tree 
when we train on only fve attack classes. The F 2 is 80.5 
% for OML compared to 70.69 % for k-NN and 61 % for 
Decision Tree when we train on only fve attack classes. The 
accuracy increases to 98 % for OML and 96 % for k-NN, 
91 % for SVM and 93 % for Decision Tree when we train 
on 7 attack classes. 

Our approach improves classifcation performance on av-
erage by 6.8 % for accuracy, 10.19 % for TPR and 11.4 
% for F 2 when compared with k-NN method, while the 
performance improves by 17 % for accuracy, 28 % for TPR 
and 26 % for F 2 when compared with SVM. Likewise, 
our performance improves by 10 % for accuracy, 17 % for 
TPR and 16 % for F 2 when we compared our method with 
Decision Tree. 

Our approach detected novel APT attacks with higher 
accuracy than k-NN, SVM or Decision Tree even with 
limited training on a subset of the APT attack classes. This is 
possible because OML can learn to minimize the distance in 
feature space for similar instances and maximize the distance 
for dissimilar instances as shown in Theorem V-B4. 

B. Execution time for OML 

Table V shows the summary of the execution time required 
to train our OML approach and then perform inference on the 
test data. The execution time for training the OML algorithm 
is approximately 60 seconds while the testing or inference 
execution time is approximately 2 seconds. As discussed in 
subsection V-B, OML learns a latent embedding space vector 
to satisfy a constraints. As a result of this algorithm, OML 
training time is higher than at inference. As we can see 
from the execution timing information, the testing time is 
fast as a result of just using the learned embedding vector to 
classify the test data. In addition, we only show the number 
of instances used for the training since the number of testing 
instances is always constant as discussed in section VIII. 

IX. RELATED WORK 

Our work specifcally focuses on APT attack detection. 
An earlier approach was proposed by [23]. In their work 
they coined an automated technique to generate attack graphs 
using symbolic model checking algorithms. Later on [24] 
proposed a robust , fexible graph based approach for network 
vulnerability analysis which allows attacks from both outside 
and inside the networks. This method suffers from the 
scalability issue when state increase occurs. [3] proposed 
scalable attack graphs which do not require the idea of 
backtracking from the attacker side relying on the idea of 
monotonicity. [18] proposed an idea based on Decision Tree 
to prevent APT attacks. Recent work on APT attack detection 
include Milajerdi et al. [17] called HOLMES. HOLMES 
uses a set of manually generated rules to describe different 
APT information fows from an attack provenance graph. 
Our approach uses a deep learning based approach to learn 
the attack patterns without the need for manual generation 
of rules. Ghafr et al. [10] uses machine learning based 
correlation analysis MLAPT, but the approach does not focus 
on detection of novel attacks. 

There are additional works that propose various methods 
for APT detection. For example, [6] proposes a novel 
deep learning stack for APT detection. In this method, they 
propose using deep learning for outlier detection to detect 
APT attacks and novel APT attacks. However, this method 
has not been implemented in practice. Cho et al. [8] propose 
a method for APT detection based on unusual or unknown 
domains that a malicious user could visit while conducting an 
APT attack. In [14] authors have proposed STREAMSPOT, a 
clustering based anomaly detection method in heterogeneous 
graph. Through this method, anomalous graphs, that are 
prominently different from others are identifed. Tian et 
al. [25] proposed a deep learning representation for graph 
clustering. 

Various methods for detecting attacks have been pro-
posed. [15] uses host and network data for anomaly detection. 
Methods such as [20], [2] detect malware in evolving data 
streams. [19] uses a deep auto-encoder to learn features for 
novel class detection. Our work differs from these works by 
using provenance graphs, which take into consideration the 
information fow for the attack events. 



X. LIMITATION AND FUTURE WORK 

In this work, we have not focused on multi-stage attack 
detection, however, our framework is able to detect a single 
stage in a APT attack as shown in the experiments. However, 
our method may not always detect all the zero-day attacks. In 
future work, we plan to address the challenge of multi-stage 
attack detection. Data collection is still challenging in cyber-
attack space as the amount of standardized training data is 
limited. In future work, we opt to collect more data to train 
our machine learning models. In addition, we will perform 
experiments with real life attack data. Our work currently 
focuses on attacks based on Linux operating system, we plan 
to address attacks in other operating systems e.g. Windows 
operating systems platform. 

XI. CONCLUSION 

Detecting APT attacks is a challenging task based on the 
approach deployed by malicious actors. In this work, we 
focus on a machine learning based approach to detect APT 
attacks. We leverage provenance graphs for the collection 
of event data from host systems. We apply OML: a novel 
machine learning technique for detecting APT attacks. Our 
results show our approach has a higher detection accuracy 
compared to traditional machine learning techniques. In our 
future work, we will explore more novel detection machine 
learning methods to detect novel APT attacks. 
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