
Evolving Advanced Persistent Threat Detection
using Provenance Graph and Metric Learning

Gbadebo Ayoade∗ , Khandakar Ashraf Akbar∗ , Pracheta Sahoo ∗ Anoop Singhal†

, Yang Gao ∗ , Anmol Agarwal∗ , †National Institute of Standards and Technology
Kangkook Jee ∗ , and Latifur Khan∗ Email: anoop.singhal@nist.gov
∗Department of Computer Science

University of Texas at Dallas, Richardson, Texas 75080
Email: (gbadebo.ayoade,KhandakarAshraf.Akbar,pracheta.sahoo

yxg122530,anmol.agarwal,Kangkook.Jee,lkhan)@utdallas.edu

Abstract—Advanced persistent threats (APT) have increased
in recent times as a result of the rise in interest by nation-
states and sophisticated corporations to obtain high profle
information. Typically, APT attacks are more challenging to
detect since they leverage zero-day attacks and common benign
tools. Furthermore, these attack campaigns are often prolonged
to evade detection. We leverage an approach that uses a
provenance graph to obtain execution traces of host nodes in
order to detect anomalous behavior. By using the provenance
graph, we extract features that are then used to train an
online adaptive metric learning. Online metric learning is a
deep learning method that learns a function to minimize the
separation between similar classes and maximizes the separation
between dis- similar instances. We compare our approach with
baseline models and we show our method outperforms the
baseline models by increasing detection accuracy on average
by 11.3 % and increases True positive rate (TPR) on average
by 18.3 %.

I. INTRODUCTION

Advanced Persistent Threat (APT) [13] attacks are attacks
that are usually conducted by nation state actors. These
attacks target the victim’s network in order to gain access
to confdential information for espionage or compromise the
network to destroy the victim’s systems.

One example of an APT attack is the Sykipot attacks.
In the Sykipot attacks, attackers targeted U.S. and U.K.
organizations such as defense contractors, computer hardware
manufacturers, and government departments. The attackers
used spear-phishing to send emails that contained malicious
attachments or links. If a user were to click on a malicious
link or open a malicious attachment, then this could harm
the organization’s system. APT attacks are stealthy and are
designed to avoid detection. Therefore, it is diffcult to detect
the APT attacks [10]. This is a signifcant challenge.

In a traditional machine learning based approach, we may
train a machine learning model with class A and class B
attacks, but a new attack which belongs to a novel class may
suddenly appear. These novel attack classes can be termed
as a zero-day attacks since the new class is not part of the
training data but it may appear in the test class [16]. In this

1To appear in IEEE Conference on Communications and Network Security
(CNS) 2020, Avignon, France, Date: 29 June - 1 July, 2020

case, a traditional machine learning approach may not be able
to detect the newly appeared class as a malicious attack class
effectively. Due to the limitation of a traditional machine
learning approach, we use a deep learning method based on
Online Metric Learning (OML) [7] which learns a function
to minimize the separation between similar classes (attack
classes) and maximizes the separation between dissimilar in-
stances (attack classes versus benign). Therefore, our method
can recognize some of the zero-day attack more clearly
from the benign instances in latent space and it performs
effectively better than traditional machine learning approach.
However, there is no guarantee our method will always detect
all the zero-day attacks.

There has been much work regarding APT detection that
attempt to address this challenge. Different methods have
been proposed. For example, Milajedri et al. [17] propose the
HOLMES system that gathers computer audit data and ranks
the severity of the APT attack in real time. In HOLMES,
an APT attack is classifed based on the seven stages of the
APT kill chain: 1) Initial Compromise, 2) Establish Foothold,
3) Escalate Privileges, 4) Internal Reconnaissance, 5) Move
Laterally, 6) Maintain Presence, and 7) Complete Mission.

While much work has been done in the feld to identify
certain existing APT attacks, currently, a method to detect
new APT attacks as they are being carried out does not
exist. New APT attacks can only be detected after the
attack had already occurred. Therefore, adversaries can still
infict signifcant damage when they conduct a zero-day APT
attack. We propose a method to address this problem that
generates an alert if a novel APT attack occurs. Our method
could prevent damage from the novel APT attacks. More
specifcally, we train our model on a subset of the attacks,
for example, shell-shock attack and test on other types of
attack such as database command injection attack.

In addition, most APT attackers leverage traditional non-
malicious tools to complete their attacks. For example, an
attacker may exploit a bash vulnerability to open a backdoor
on the victim system without installing any malicious soft-
ware and can then perform lateral movement to access high
target systems like the databases to steal data. By tricking the
victim into running a bash script, the attacker gains access to

mailto:yxg122530,anmol.agarwal,Kangkook.Jee,lkhan)@utdallas.edu
mailto:anoop.singhal@nist.gov

the victim system. Detecting such attacks is challenging if the
behaviour of the attack fow is not taken into consideration.
In this case, a reverse-shell connection from the victim’s
machine to the attacker’s machine takes place. A benign
network fow will just involve connection to the database
server from a regular network host. Our aim is to be able
to detect when a non-malicious tool is used in a malicious
attack fow.

Our contributions include:
• We propose and implement a system that leverages

provenance graphs derived from system events for de-
tection of APT attacks

• We propose and implement a metric learning based
approach to detect novel APT attacks by learning a
latent space that effectively separates benign classes
from attack classes.

• We show our method OML outperforms traditional
machine learning classifers in detection of novel APT
attacks by an average of 12 % in detection accuracy.

The rest of the paper is organized as follows. Section II dis-
cusses the challenges encountered in APT detection systems.
Section III discusses our approach and gives an overview of
the system. Section IV provides a detailed architecture of
our system. Section V shows our classifcation method using
online metric learning. Section VI presents a summary of our
implementation and Section VIII shows the evaluation of our
approach. Finally, Section IX provides the related work and
Section XI provides a conclusion and possible future work.

II. CHALLENGES

When designing and implementing our method, we en-
countered some challenges that are listed below.
• Limited training data for novel APT attacks: Since

data for novel APT attacks is limited or non-existent,
it will be diffcult for us to train our machine learning
model for novel APT attacks.

• There is no signature for the zero-day APT attack:
When a novel APT attack occurs, it does not leave a
specifc signature that can be used to identify the attack.
For novel APT attack identifcation, we need to analyze
the victim machine’s log fles. Because the log fles can
be very large, it is challenging to flter out the attack
activities from benign activities.

• Detection in real time: It is also challenging to detect
the APT attacks in real-time. Our system needs to detect
attacks quickly and alert the system users to prevent the
attack from causing damage.

• Reduce false positives: Events that are benign could be
incorrectly identifed as a novel APT attack. Our goal
is to accurately detect APT attacks with a low false
positive rate.

III. APPROACH

Figure 1 shows a simplifed example of a provenance
graph for an example APT attack. The provenance graph
is usually much larger, but for readability, we have only
depicted a small portion of the graph. In this APT attack, a

Fig. 1. Sample Camfow provenance graph data

user goes to evilsite.com and then downloads a Trojan horse.
The Trojan executes malicious commands in the background
via the malicious executable fle evil.exe while also providing
functionality that the user is aware of. For example, a Trojan
could be a malicious calculator that appears to be a normal
calculator but is secretly executing malicious commands
in the background as the calculator application is running.
In this example, the Trojan from evilsite.com is able to
successfully read the /etc/shadow fle and a fle containing
confdential information that is named ‘Top-secret’. There-
fore, the Trojan is able to successfully spy on the victim
and gain unauthorized access to the victim’s confdential
information.

We generate provenance graphs that look like the graph
depicted in Figure 1. However, the generated provenance
graphs are much larger and show all system activities and
processes instead of a small snippet. For APT attack detec-
tion, we detect vulnerabilities in the provenance graph. For
this, we construct a provenance labeled graph (PLG). Here,
PLG is an undirected graph that is defned as G = (V, E)
where V is the set of vertices which include processes,
tasks and, network socket events, E ⊂ V ∗ V is the
set of undirected edges which include interaction between
system events such as write and read events. Given a set
of training examples T = (xi, yi) where xi ⊂ X is a graph,
and yi ⊂ Y = +1, 1 is a target label, the graph classifcation
problem is to induce the mapping f: X ⇒ Y . For this, after
PLG extraction, we need to convert it to a feature matrix
vector by using node2vec [11], GraphSAGE [12], etc. Then,
we apply our novel supervised learning technique to detect
APT attacks in the stream of data including novel APT
attacks.

IV. ARCHITECTURE

Figure 2 illustrates our approach. Our approach leverages
metric learning based detection to classify unknown APT
attacks in real time. We use the provenance data to visualize
the activity on the machine, and then we flter this provenance
data to target attack traffc. Data provenance is a repre-
sentation of the relationships among entities (data items),
activities (changes applied to the entities), and agents (people
or organizations that are associated with the activities and/or

https://evilsite.com
https://evilsite.com

entities) [21]. We use this provenance to gather information
about all of the activities occurring on the machine that could
be representative of an attack tactic.

Figure 2 illustrates the steps of our proposed solution.
First, we perform simulated advanced persistent attacks on

”ABAAAAAAACAe9wIAAAAAAE7aeaI+200UAAAAAAAAAAA=”
: { ” c f : i d ” : ” 3 ” ,

” prov : t y p e ” : ” f i f o ” ,
” c f : b o o t i d ” : 1 ,
” c f : mach ine id ” : c f :515081690 ,
” c f : v e r s i o n ” : 0 ,
” c f : d a t e ” : ” 2 0 1 9 : 0 8 : 1 3 T15 : 5 0 : 5 3 ” ,
” c f : i n o ” : 51964 ,
” prov : l a b e l ” : ” [f i f o] 0” }

the targeted victim machine. The data from these attacks is
transformed into provenance data by CamFlow [21]. Second,
we convert the provenance logs generated by CamFlow to a
provenance graph using the CamQuery tool [22]. Third, once
we have a provenance graph, we flter out sections of the
graph to generate sub graphs that contain the events that are
commands executed on the system. We flter out extraneous
noise that are common activities that occur on the machine
regardless if the events are attacks or benign. Fourth, we build
a supervised model from these training graphs to detect novel
APT attacks, existing APT attacks and benign events.

For feature extraction, we convert the graph into vectors
using graph embedding by leveraging node2vec. An embed-
ding vector is learned for each unique node in the graph. The
vectors for the nodes in a graph are then aggregated together
using the average function for each of the instances of the
attack. Our feature extraction method is further discussed in
Section IV-B. We train our OML method to detect attacks
based on the extracted features.

More specifcally, supervised learning is utilized to in-
crementally learn from the data. For supervised learning,
we learn accurate models by leveraging attack and benign
data, which are initially gleaned from benign data, synthetic
attacks and existing APT attack traces, and later from live
attack detection for detecting the novel type of APT attack.

We capture the data on a machine. We capture provenance
data using the tool, CamFlow [21]. The provenance data is a
record of all of the activities occurring on the machine. We
then generate a provenance graph using CamQuery [22]. We
adopt a similar strategy to HOLMES [17], but we extend this
strategy further to detect novel APT attacks.

We generate existing APT attack data by simulating the
attacks on an Ubuntu Linux Virtual Machine. We simulate
these attacks by performing various malicious activities on
the machine such as downloading vulnerable software and
running malicious programs on the machine. While we attack
the machine, CamFlow [21] and CamQuery [22] capture the
provenance data from the machine in the W3-PROV-JSON
format and the provenance graph respectively.

A. Provenance Graph

The provenance graph is collected as a set of JSON fles.
Listing 1 shows an example of a node and write edge. The
nodes contain the provenance type such as fifo, file, or
socket [1]. It contains the machine id, boot id and unique
node ids. The edges contain additional information such as
provenance activity and entity nodes which are interacting
together. In our case, we extract the interaction between the
different provenance event types using CamQuery to form
the nodes and edges in our graph. The Camquery extracts
the node ids from the provenance graph and forms a pairwise

Listing 1. Sample node data for a provenance graph with FIFO type

list of the graph interaction nodes which we use as input to
our feature extraction system.

B. Feature Extraction

Node2vec. We use Node2vec [11] to pre-process the prove-
nance graph before classifcation. Node2vec is a semi-
supervised algorithm for learning features from network
graphs. Node2vec uses a similar approach to skip-gram by
learning a vector that preserves the neighbourhood relation-
ship of graph nodes similar to word2vec. By representing
the graphs by performing a breadth-frst search walk on the
graph, a sequence of nodes can be generated similar to words
in a document. We leverage this method to learn a vector for
each node which is used for generating features for attack
detection.

For our approach, we extract the node id from the prove-
nance graph. Since the graph is a representation of how each
process interacts with other processes and tasks, we model
the process task as nodes and the interactions as edges. The
list of edges is then passed to the node2vec algorithm to
generate an embedding vector for each unique node in the
graph. The embedding vector for the nodes in the graph is
then combined by fnding the average vector representation
which is used as a feature for the attack instance.

V. ATTACK DETECTION

A. Emerging Attack Class Detection

Traditional machine learning approach is not effective at
detecting novel attack classes. For example, a traditional
machine learning model may be trained with instances that
belong to class A and class B. However, a new attack
class may emerge over time and the model may not be
able to detect the new attack class effectively. In addition,
in many real-world scenarios of APT attacks, instances of
patterns associated with the attack type may change over
time. Therefore, classifer performance is affected by the
occurrences of instances from unknown or novel patterns.

For our novel class detection, we leverage online metric
learning or distance based learning where malicious instance
points can be well separated from benign class instances
so that when novel attack classes emerge, we can detect it
effectively. We provide more discussion in the next section.

B. Online Metric Learning

Online Adaptive Metric Learning (OAML) [9] [5] [4] is
based on a deep learning architecture that transforms an
instance feature from an original feature space to a latent
feature space. By transforming to a latent feature space,

Provenance
Capture

Output Event
Type

Node2Vec

OML Classifier

APT DetectionProvenance Graph
Victim’s

Host/Network

Node: {Node Vector}
Node1: {0.1,0.2...}
Node2: {0.3,0.1...}

Fig. 2. Architecture

the metric distance between dissimilar instances is increased
and distance between similar classes is reduced. The work
leverages methods which use pairwise and triplet constraints.

Our OAML method learns a non-linear similarity metric
unlike others which uses a pre-selected linear metric (e.g.,
Mahalanobis distance [26]). Our OAML method overcomes
bias to a specifc dataset by using an adaptive learning
method. Our OAML leverages neural networks where the
hidden layer output is passed to an independent metric-
embedding layer (MEL). The MELs then generate an n-
dimensional embedding vector as output in different latent
space.

+ −1) Problem Setting: Let S = {(xt, x , x)}T be at t t=1
sequence of triplet constraints sampled from the data, where

+ − +{xt, x , x } ∈ Rd , and xt (anchor) is similar to xt t t
−(positive) but dissimilar to x (negative). The goal of online t

adaptive metric learning is to learn a model F : Rd 7→ Rd0

+ −such that ||F (xt) − F (x)||2 � ||F (xt) − F (x)||2. Given t t
these parameters, the objective is to learn a metric model
with adaptive complexity while satisfying the constraints. The
complexity of F must be adaptive so that its hypothesis space
is automatically modifed.

2) Overview: Consider a neural network with L hidden
layers, where the input layer and the hidden layer are
connected to an independent MEL. Each embedding layer
learns a latent space where similar instances are clustered
and dissimilar instances are separated.

Figure 3 illustrates our Artifcial Neural Network (ANN) .
Let E` ∈ {E0, E1, E2, . . . , EL} denote the `th metric model
in OAML (i.e., the network branch from the input layer to

`ththe MEL). The simplest OAML model E0 represents
a linear transformation from the input feature space to the
metric embedding space. A weight α(`) ∈ [0, 1] is assigned
to E`, measuring its importance in OAML.

+ −For a triplet constraint (xt, x , x) that arrives at time t,t t
∗its metric embedding f (`)(x) generated by E` ist

∗ f (`)(x) = h(`)Θ(`) (1)t

σ(W (`)h(`−1)),where h(`) = with ` ≥ 1, ` ∈ N, and
h(0) ∗ ∗ + = x . Here x denotes any anchor (xt), positive (x),t t t

−or negative (x) instance, and h(`) represents the activation t
∗of the `th hidden layer. Learned metric embedding f (`)(x)t

∗is limited to a unit sphere (i.e., ||f (`)(x)||2 = 1) to reducet
the search space and accelerate training.

L(0
)

E1

E2

L0

L0 L1

Constraint Stream Adaptive Metric Network Loss

Total
Loss

Hedge

Hedge

Hedge

E0

L(1
)

L(2
)

α0

α1

α2

Fig. 3. OAML network structure consist of Li linear layer and Embedding
layers Ei layer.

b

b + d(xt,xt⁺) - d(xt,xt⁻) ≤ 0

xt

xt⁻

xt⁺
d(xt,xt⁺)

d(x t,x t⁻
)

Fig. 4. Data instance before applying Online metric learning

Attractive
Repulsive

xtxt⁺

xt⁺

xt⁻

xt xt⁻

d
sim ⁽ˡ⁾(x

t ,x
t ⁺)

d
sim ⁽ˡ⁾(x

t ,x
t ⁺)

ddis
⁽ˡ⁾(xt,xt⁻)

ddis
⁽ˡ⁾(xt,xt⁻)

Fig. 5. Data instance after projection using OML

During the training phase, for every arriving triplet
+ − ∗(xt, x , x), we frst retrieve the metric embedding f (`)(x)t t t

from the `th metric model using Eq. 1. A local loss L(`) for
E` is evaluated by calculating the similarity and dissimilarity

∗ errors based on f (`)(x). Thus, the overall loss introducedt

⎪⎪⎪
⎪⎪⎪

by this triplet is given by

LX
+ − α(`) + −Loverall(xt, x , x) = · L(`)(xt, x , x) (2)t t t t

`=0

Parameters Θ(`), α(`), and W (`) are learned during the
online learning phase. The fnal optimization problem to
solve in OAML at time t is therefore:

minimize Loverall
Θ(`) ,W (`) ,α(`) (3)

∗subject to ||f (`)(x)||2 = 1, ∀` = 0, . . . , L.t

We evaluate the similarity and dissimilarity errors using an
adaptive-bound triplet loss (ABTL) constraint [9] to estimate
L(`) and update parameters Θ(`), W (`) and α(`).

3) Why OML works: A typical machine learning algo-
rithm like k-NN will misclassify the instances shown in

+ −Figure 4, since x is closer to x and further from xt. Int t
our case, most APT attacks use non-malicious software to
complete their attack activities making the attack events and
traffc look non-malicious. To overcome this challenge, we
use ABTL.

Figure 5 illustrates the main idea of ABTL. The objec-
(l) +tive is to have the distance D (xt, x) of two sim-update t

+ilar instances and x to be less than or equal to axt t
(l) +similarity threshold d (xt, x) so that the attractive losssim t

(l) +L (xt, x) drops to zero; on the other hand, for twoattr t
−dissimilar instances and x , we desire their distancext t

(l) −D (xt, x) to be greater than or equal to a dissimilarityupdate t
(l) −threshold d (xt, x), thereby reducing the repulsive lossdis t

(l) −Lrep(xt, x) to zero.t

4) Adaptive-Bound Triplet Loss: Here yt ∈ {+1, −1}
0denotes whether xt is similar (+1) or dissimilar (−1) to xt

and b ∈ R is a user-specifed fxed margin. While triplet
loss simultaneously learns both similarity and dissimilarity
relations, the pairwise loss can only focus on one of the
relations at a time, which leads to a poor metric quality. In
addition, triplet loss requires a proper margin be specifed. In
addition, the selected margin is highly dependent on the data
and it requires extensive domain knowledge. Our aim is to
automatically learn the margin for our triplet-loss constraint
irrespective of the available data.

2With τ ∈ (0,), by optimizing the proposed adaptive-3
bound triplet loss, different classes are separated in the
metric embedding space. Let D(c1, c2) denote the min-
imal distance between classes c1 and c2, i.e., the distance
between two closest instances from c1 and c2 respectively.
Consider an arbitrary quadruple (x1, x2, x3, x4) ∈ Q where
{x1, x2} ∈ c1, {x3, x4} ∈ c2, and Q is the set of all
possible quadruples generated from class c1 and c2. Suppose
(x2, x3) is the closest dissimilar pair among all possible
dissimilar pairs that can be extracted from (x1, x2, x3, x4).
We frst prove that the lower bound of D(c1, c2) is given by

min D(l)(x1, x4) − D(l)(x1, x2) − D(l)(x3, x4).
(x1,x2,x3 ,x4)∈Q

(l) (l) (l)D (x1, x4) ≤ D (x1, x2) + D (x2, x4)
(4)

(l) (l) (l)≤ D (x1, x2) + D (x2, x3) + D (x3, x4)

(l)D(c1, c2) = min D (x2, x3)
(x1,x2,x3 ,x4)∈Q

(l) (l)≥ min D (x1, x4) − D (x1, x2)
(x1,x2,x3 ,x4)∈Q

−D(l)(x3, x4)
(5)

By optimizing the adaptive-bound triplet loss, the following
constraints are satisfed. ⎧

(l) (l)
D(l)(x1, x2) ≤ d (x1, x2) ≤ Tsim sim⎪⎨

(l) (l)
D(l)(x3, x4) ≤ d (x3, x4) ≤ T (6)

sim sim ⎪⎩ (l) (l)
D(l)(x1, x4) ≥ d (x1, x4) ≥ Tdis dis

(l) (l)D(c1, c2) ≥ min D (x1, x4) − D (x1, x2)
(x1,x2,x3 ,x4)∈Q

−D(l)(x3, x4)
(l) (l)≥ T − 2Tdis sim

= 2 − τ − 2τ

= 2 − 3τ
(7)

2if τ ∈ (0,), we have 3τ < 2. Therefore,3

D(c1, c2) ≥ 2 − 3τ > 0 (8)

Equation 8 indicates that the minimal distance between class
c1 and c2 is always positive so that these two classes are
separated.

Note that our whole proof is solely based on the triangle
inequality, which is correct as long as the triangle inequality
holds. As L2-norm is utilized to measure the distance, the
metric space learned by our framework is indeed a normed
vector space. The triangle inequality is a natural property in
this space.

Moreover, our framework does not require the learned
metric space to be convex, i.e., for any two distinct instances
x and y in the metric space, there exists a third instance z in
this space lying between x and y (d(x, z)+d(z, y) = d(x, y)).
Whether or not the equality strictly holds does not affect the
correctness of our proof, since it only considers the upper-
bound of a distance. In our case, even the non-convex metric
space is a valid solution, as the triangle inequality still holds
in this space.

VI. IMPLEMENTATION

We developed an implementation of our system for the
64-bit Ubuntu Linux operating system with 128 GB space
of RAM. Our system consists of the data generation and the
machine learning detection module. For the data generation,
we used bash scripts which consist of 100 lines of code. We
leveraged the CamFlow tool [21] installed on VirtualBox
using Vagrant. We modifed the CamQuery module [22] to
extract the ID of the provenance graph nodes and to generate
edges of process interactions.

For the machine learning detection module, we leveraged
scikit-learn for our baseline evaluation and the OAML com-
ponents were implemented with approximately 500 lines of
Python code using the PyTorch library.

Model Parameters. For our experiments, Support Vector
Machine (SVM) uses Radial Basis Function (RBF) kernel

with Cost = 1.3×105 and gamma is set to 1.9×10−6 . OAML
uses a Rectifed Linear activation Unit (ReLU) network with
embedding n = 200, number of hidden layers L = 5, k = 1,
learning rate = 0.3, learning rate decay = 1 × 10−4 , and uses
ADAM (A method for stochastic optimizer) optimizer.

VII. DATASETS

A. Attack Generation & Data Collection

Table I show the contents of our dataset. The dataset
consists of different APT activities such as exfltration of
data, illegal login and access, opening of a reverse shell
for command and control access, and illegal network scan-
ning using nmap for the discovery of services on victim’s
network. All the classes were used for both benign and
malicious scenario generation. For example, command line
injection attacks were considered malicious when some third
party injected some commands and executed them. Benign
scenarios were mimicked with normal command execution
fow which consists of usual executed commands. Table
II shows properties of the provenance graph based on the
trace of a single execution of an attack instance. A sample
provenance graph contains an average of 10 332 edges for
data ex-fltration attack events labeled as class 1, while the
average in-degree is 48 and the average out-degree is 153 for
the same class.

For our dataset, we collect the provenance graph which
contains information such as provenance type and task type
as discussed in section IV-A. Benign instances include web
browsing activities on benign websites, normal login activity
with Secure Shell (SSH) and benign connection from a client
machine to a database server. We collected 100 traces for
each attack type. Our dataset consists of activities derived
from previously known APT attack campaign steps. We
collect multiple traces of attack sequences to gather diver-
sifed training data and test on single instance of the attack
sequence. We generated 7 benign cases and 7 attack cases
since each attack type has a corresponding benign activity
variation.

B. Attack Generation

Table I shows that the Data Leakage Attack & Remote
Webservice Penetration (Shellshock) and Password Cracking
attack are deployed through mimicking real-world scenarios.
A server end user, a client end user, and an attacker are
required to mimic the attack. In the data leakage attack
scenario, a server consists of a database and owns it and has
given access to its client to access data from the database
through queries. In the server end, postgresql database is
used for such service. If a database is dumped from the
server end into any sql fle or any other fle format, a
client can reconstruct the database or restore the database by
having that fle from the server end. In the attack scenario,
a third user who is essentially the attacker makes the client
download some malicious program (e.g., spear phishing e-
mail (from outside) to open a backdoor or sending the
software to the client end by any other means) and run it
in the client’s computer. With the execution of that software,

Privileged Domain

ServerClient

Opens
backdoor

for the
attacker

Accessing
the server
as client

from
regular
domain

Sends
phishing

email with
malicious

executable

Data
Leakage
from the
server

Regular Domain

Fig. 6. Data Leakage Attack

the attacker gets access to the client’s system (control over
client’s computer) and can now communicate with the server.
The attacker can now make queries to the server and can
even restore the database in its own end but it will make
the behavior seem like a client as it will be doing these tasks
from the client’s system. In a nutshell, the attacker makes the
victim end download some executable and execute it to open
the backdoor for itself to the server end so that it can leak the
data to the client end while having full access to the server as
a client (a client acts as a privileged domain to the attacker).
The attacker can leak the data through external storage or
network transfer after the attack has been deployed from the
client’s computer. Benign scenarios for this case were created
with normal operational and communication fow between
the server and the client. These operations include normal
database queries made by the client to the server, access to
the database fle and retrieving of the database by the client
itself.

The Remote Webservice Penetration (Shellshock) and
Password Cracking attack is deployed when the client’s
system is somewhat hacked or deliberately used to attack
the server end. In this scenario, an attacker exploits a remote
shellshock vulnerability by sending crafted input to the CGI
(Common Gateway Interface) service implemented using
bash. Thus the attacker leverages the shellshock vulnerability
as a backdoor to run malicious commands such as executing
a password cracking tool.

C. Data Collection

1) Data Collection for Data Leakage Attack: Figure 6
illustrates the steps required to complete this attack. For the
data leakage attack, data was captured in both the server
and client end. For the attack scenario, the attacker sends
an email with some malicious executable attached with it
to the client’s mail. The client downloads the attachment,
executes it, and thus opens the backdoor for the attacker
without any knowledge of it. The attacker now mimics the
behavior of the client but from its own end and performs all
the database queries and restoration. When the client executes
the backdoor program, it goes straight to a vulnerable state

TABLE I
SUMMARY OF ATTACK WORKLOAD

Class Description Software

1 Data exfltration scp
2 Illegal network scanning ping
3 Illegal network mapping nmap
4 Reverse shell for Command and Control nc
5 Data Leakage Attack Deployed Through Mimicking Real-World Scenario
6 Remote Webservice Penetration (Shellshock) and Password Cracking Deployed Through Mimicking Real-World Scenario
7 Command Line injection Attack Deployed Through Mimicking Real-World Scenario

Attacks emulated from MITRE APT collection.

TABLE II
PROVENANCE GRAPH PROPERTIES

Class Avg # of out-deg Avg # of in-deg Avg # of edges

1 153 48 10 337
2 545 13 9796
3 325 5 9781
4 511 96 10 236
5 561 922 9783
6 2,084 1,437 10 638
7 300 52 10 106

and from that time Camfow provenance data is collected
both at the server and client end. The benign set of data
corresponds to when the server and client are communicating
regularly. No other connection is established in the meantime.
The server receives database requests from the client in a
regular manner in benign scenario data collection.

2) Data Collection for Password Cracking Attack: We
carried out a password cracking attack using the John the
ripper tool which implements a dictionary password attack.
For the password cracking attack, the normal behavior or
benign scenario simply involves a client connecting with the
server using a curl command with no malicious payload.
Benign data is collected while these normal operations take
place using a Camfow provenance graph. For the attack
scenario, the attacker exploits the shellshock vulnerability
and then downloads a password cracker and executes a shell
script for the backdoor creation. The attacker then executes
commands for password collection and cracking from the
victim’s end. While these steps take place, data was collected
at the victim’s end using a Camfow provenance graph.

3) Data Collection for Command Line Injection Attack:
For the command line injection attack, we only collected data
for the attack scenario. The victim host (e.g., say embedded
/ IoT device that runs Linux) runs Mediaplayer (Kodi client),
and it exports a remote control Application Program Interface
(API) as a web service. One of its input sanitizations has
an error that fails to flter invalid input from the outside, in
turn allowing attackers to inject arbitrary commands blended
in one of its requests. This attack is inspired by the Jeep-
Cherokee attack case where the attacker from remote gains
control over the vehicle. In parallel to the above steps, the
data collection was done at the victim host using a Camfow
provenance graph.

TABLE III
RESULTS BASED ON NOVEL APT ATTACK DETECTION

Metric Classes # OML KNN SVM RBF Decision Tree

Accuracy 1 54.76 48.02 40.03 47.95
2 64.99 56.67 40.03 66.64
3 73.18 72.66 50.2 60.7
4 75.96 72.85 61.36 66.91
5 86.06 79.52 68.03 73.51
6 92.07 86.2 71.0 80.52
7 98.08 92.87 77.48 87.45
8 98. 96.37 91.88 93.66
9 99 99 91.88 99

Metric Classes # OML KNN SVM RBF Decision Tree
F2 1 28.92 16.12 0 15.99

2 47.13 32.44 0 49.94
3 60.72 59.86 22.02 39.67
4 65.13 60.18 42.62 50.38
5 80.5 70.69 53.91 61.25
6 89.14 80.7 58.77 72.2
7 97.43 90.25 68.98 82.53
8 97.46 95.09 90.09 91.36
9 99 1 90.09 99

TABLE IV
RESULTS BASED ON NOVEL APT ATTACK DETECTION

Metric Classes # OML KNN SVM RBF Decision Tree

FPR 1 0 0 0 0
2 0 0 0 0
3 0 0 0.0231 0
4 0 0 0.0281 0
5 0 0 2.81 0
6 0 0 2.81 0
7 0 0 2.81 0
8 0 0 2.81 0
9 0 0 2.81 0

Metric Classes # OML KNN SVM RBF Decision Tree
TPR 1 24.56 13.33 0 13.22

2 41.63 27.75 0 44.38
3 55.29 54.41 18.5 34.47
4 59.91 54.74 37.44 44.82
5 76.76 65.86 48.57 55.84
6 86.78 76.98 53.52 67.51
7 96.81 88.11 64.32 79.07
8 97.96 93.94 88.33 89.43
9 99 1 88.33 99

VIII. EVALUATION

A. Results

Table III and IV show the results of our experiment.
For our experiment, we trained incrementally on the attack
classes and tested on all the remaining classes which includes
the benign class instances. Please note that the training data
and the test data consists of the benign data instances. With
this approach, we can determine if our algorithm can detect
unseen novel attack classes. First, we train on all the benign
classes and a single APT attack class and test on all the
benign and APT attack classes. Second, we train on all benign

TABLE V
EXECUTION TRAINING AND TESTING TIME FOR OML

No of Training Instances Train time(s) Test time(s)
700 55.8 1.94
800 55.9 1.95
900 55.4 1.96

1000 55.5 1.96
1100 54.7 1.91
1200 55.9 1.97
1300 58.9 1.98
1400 59.5 2.00
1500 59.6 2.08

classes and two APT attack classes and tested on all attack
classes. Third, we train on all benign classes and three APT
attack classes and tested on all attack classes. Lastly, we train
on all benign classes and all the APT attack classes and tested
on all attack classes. We measured our performance by using
the following metrics: Accuracy, TPR, FPR, and F2.

In the experiments, we measured the true positive rate
(tpr), where true positive represents the number of correctly
classifed seen and novel APT attacks classes; false positive
rate (fpr), where false positive represents the number of
incorrectly classifed seen and novel APT attacks; and F2

score of the classifer, where the F2 score is interpreted as
the weighted average of the precision and recall. The F2 score
ranges between the values 100 and 0 where 100 is the best
value and 0 is the worst value.

The results show our approach performs better than tradi-
tional machine learning based classifers such as k-NN, SVM
and Decision tree. The accuracy of detection of novel attacks
with our approach is 86 % compared to 79 % for k-NN, 68 %
for SVM and 73 % for Decision Tree when we train on only
fve attack classes. Similarly, the TPR is 76 % for OML
compared to 65 % for k-NN and 55 % for Decision Tree
when we train on only fve attack classes. The F 2 is 80.5
% for OML compared to 70.69 % for k-NN and 61 % for
Decision Tree when we train on only fve attack classes. The
accuracy increases to 98 % for OML and 96 % for k-NN,
91 % for SVM and 93 % for Decision Tree when we train
on 7 attack classes.

Our approach improves classifcation performance on av-
erage by 6.8 % for accuracy, 10.19 % for TPR and 11.4
% for F 2 when compared with k-NN method, while the
performance improves by 17 % for accuracy, 28 % for TPR
and 26 % for F 2 when compared with SVM. Likewise,
our performance improves by 10 % for accuracy, 17 % for
TPR and 16 % for F 2 when we compared our method with
Decision Tree.

Our approach detected novel APT attacks with higher
accuracy than k-NN, SVM or Decision Tree even with
limited training on a subset of the APT attack classes. This is
possible because OML can learn to minimize the distance in
feature space for similar instances and maximize the distance
for dissimilar instances as shown in Theorem V-B4.

B. Execution time for OML

Table V shows the summary of the execution time required
to train our OML approach and then perform inference on the
test data. The execution time for training the OML algorithm
is approximately 60 seconds while the testing or inference
execution time is approximately 2 seconds. As discussed in
subsection V-B, OML learns a latent embedding space vector
to satisfy a constraints. As a result of this algorithm, OML
training time is higher than at inference. As we can see
from the execution timing information, the testing time is
fast as a result of just using the learned embedding vector to
classify the test data. In addition, we only show the number
of instances used for the training since the number of testing
instances is always constant as discussed in section VIII.

IX. RELATED WORK

Our work specifcally focuses on APT attack detection.
An earlier approach was proposed by [23]. In their work
they coined an automated technique to generate attack graphs
using symbolic model checking algorithms. Later on [24]
proposed a robust , fexible graph based approach for network
vulnerability analysis which allows attacks from both outside
and inside the networks. This method suffers from the
scalability issue when state increase occurs. [3] proposed
scalable attack graphs which do not require the idea of
backtracking from the attacker side relying on the idea of
monotonicity. [18] proposed an idea based on Decision Tree
to prevent APT attacks. Recent work on APT attack detection
include Milajerdi et al. [17] called HOLMES. HOLMES
uses a set of manually generated rules to describe different
APT information fows from an attack provenance graph.
Our approach uses a deep learning based approach to learn
the attack patterns without the need for manual generation
of rules. Ghafr et al. [10] uses machine learning based
correlation analysis MLAPT, but the approach does not focus
on detection of novel attacks.

There are additional works that propose various methods
for APT detection. For example, [6] proposes a novel
deep learning stack for APT detection. In this method, they
propose using deep learning for outlier detection to detect
APT attacks and novel APT attacks. However, this method
has not been implemented in practice. Cho et al. [8] propose
a method for APT detection based on unusual or unknown
domains that a malicious user could visit while conducting an
APT attack. In [14] authors have proposed STREAMSPOT, a
clustering based anomaly detection method in heterogeneous
graph. Through this method, anomalous graphs, that are
prominently different from others are identifed. Tian et
al. [25] proposed a deep learning representation for graph
clustering.

Various methods for detecting attacks have been pro-
posed. [15] uses host and network data for anomaly detection.
Methods such as [20], [2] detect malware in evolving data
streams. [19] uses a deep auto-encoder to learn features for
novel class detection. Our work differs from these works by
using provenance graphs, which take into consideration the
information fow for the attack events.

X. LIMITATION AND FUTURE WORK

In this work, we have not focused on multi-stage attack
detection, however, our framework is able to detect a single
stage in a APT attack as shown in the experiments. However,
our method may not always detect all the zero-day attacks. In
future work, we plan to address the challenge of multi-stage
attack detection. Data collection is still challenging in cyber-
attack space as the amount of standardized training data is
limited. In future work, we opt to collect more data to train
our machine learning models. In addition, we will perform
experiments with real life attack data. Our work currently
focuses on attacks based on Linux operating system, we plan
to address attacks in other operating systems e.g. Windows
operating systems platform.

XI. CONCLUSION

Detecting APT attacks is a challenging task based on the
approach deployed by malicious actors. In this work, we
focus on a machine learning based approach to detect APT
attacks. We leverage provenance graphs for the collection
of event data from host systems. We apply OML: a novel
machine learning technique for detecting APT attacks. Our
results show our approach has a higher detection accuracy
compared to traditional machine learning techniques. In our
future work, we will explore more novel detection machine
learning methods to detect novel APT attacks.

ACKNOWLEDGMENTS
The research reported herein was supported in part

by ONR award N00014-17-1-2995; NSA award H98230-
15- 1-0271; AFOSR award FA9550-14-1-0173; NSF FAIN
awards DGE-1931800, OAC-1828467, and DGE-1723602;
NSF awards DMS-1737978 and MRI-1828467; an IBM
faculty award (Research); and an HP grant. Any opinions,
recommendations, or conclusions expressed are those of the
authors and not necessarily of the aforementioned supporters.

Disclaimer. This paper is not subject to copyright in the
United States. Commercial products are identifed in order to
adequately specify certain procedures. In no case does such
identifcation imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it
imply that the identifed products are necessarily the best
available for the purpose.

REFERENCES

[1] “Camfow - vertices supported by cam-
fow,” https://github.com/CamFlow/camfow-
dev/blob/master/docs/VERTICES.md.

[2] T. Al-Khateeb, M. M. Masud, L. Khan, C. Aggarwal, J. Han, and
B. Thuraisingham, “Stream classifcation with recurring and novel
class detection using class-based ensemble,” in Proceedings of the 2012
IEEE 12th International Conference on Data Mining, ser. ICDM ’12,
USA, 2012, p. 31–40.

[3] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based
network vulnerability analysis,” in Proceedings of the 9th ACM Con-
ference on Computer and Communications Security. ACM, 2002, pp.
217–224.

[4] F. Araujo, G. Ayoade, K. Al-Naami, Y. Gao, K. W. Hamlen, and
L. Khan, “Improving intrusion detectors by crook-sourcing,” in Proc-
ceedings of the 35th Annual Computer Security Applications Confer-
ence, San Juan, Puerto Rico, December 2019, pp. 245–256.

[5] G. Ayoade, F. Araujo, K. Al-Naami, A. M. Mustafa, Y. Gao, K. W.
Hamlen, and L. Khan, “Automating cyberdeception evaluation with
deep learning,” in Proceedings of the 53rd Hawaii International
Conference on System Sciences (HICSS), Grand Wailea, Maui, January
2020.

[6] T. Bodstr¨ am¨ ainen, “A novel deep learning stack for apt om, T.; H¨ al¨
detection.” Appl. Sci., vol. 9, no. 1055, 2019.

[7] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” Journal of Machine
Learning Research, vol. 11, pp. 1109–1135, 2010.

[8] D. X. Cho and H. H. Namb, “A method of monitoring and detecting
apt attacks based on unknown domains,” Procedia Computer Science,
vol. 150, pp. 316–323, 2019.

[9] Y. Gao, Y.-F. Li, S. Chandra, L. Khan, and B. Thuraisingham, “Towards
self-adaptive metric learning on the fy,” in The World Wide Web
Conference. ACM, 2019, pp. 503–513.

[10] I. Ghafr, M. Hammoudeh, V. Prenosil, L. Han, R. Hegarty, K. Rabie,
and F. J. Aparicio-Navarro, “Detection of advanced persistent threat
using machine-learning correlation analysis,” Future Generation Com-
puter Systems, vol. 89, pp. 349–359, 2018.

[11] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’16.
New York, NY, USA: ACM, 2016, pp. 855–864. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939754

[12] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 1024–1034. [Online].
Available: http://papers.nips.cc/paper/6703-inductive-representation-
learning-on-large-graphs.pdf

[13] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-
driven computer network defense informed by analysis of adversary
campaigns and intrusion kill chains,” Leading Issues in Information
Warfare & Security Research, vol. 1, p. 80, 2011.

[14] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-effcient
anomaly detection in streaming heterogeneous graphs,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2016, pp. 1035–1044.

[15] M. Masud, L. Khan, and B. Thuraisingham, Data Mining Tools for
Malware Detection. CRC Press, 2011.

[16] M. M. Masud, T. M. Al-Khateeb, K. W. Hamlen, J. Gao, L. Khan,
J. Han, and B. Thuraisingham, “Cloud-based malware detection for
evolving data streams,” ACM Trans. Manage. Inf. Syst., vol. 2, no. 3,
Oct. 2008.

[17] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakr-
ishnan, “Holmes: Real-time apt detection through correlation of sus-
picious information fows,” in 2019 IEEE Symposium on Security and
Privacy, vol. 1. IEEE, 2019, pp. 447–462.

[18] D. Moon, H. Im, I. Kim, and J. H. Park, “Dtb-ids: an intrusion detection
system based on decision tree using behavior analysis for preventing
apt attacks,” The Journal of supercomputing, vol. 73, no. 7, pp. 2881–
2895, 2017.

[19] A. M. Mustafa, G. Ayoade, K. Al-Naami, L. Khan, K. W. Hamlen,
B. Thuraisingham, and F. Araujo, “Unsupervised deep embedding for
novel class detection over data stream,” in 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 2017, pp. 1830–1839.

[20] P. Parveen, J. Evans, B. Thuraisingham, K. W. Hamlen, and L. Khan,
“Insider threat detection using stream mining and graph mining,” in
2011 IEEE Third International Conference on Privacy, Security, Risk
and Trust and 2011 IEEE Third International Conference on Social
Computing, 2011, pp. 1102–1110.

[21] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer,
and J. Bacon, “Practical whole-system provenance capture,” in
Proceedings of the 2017 Symposium on Cloud Computing, ser. SoCC
’17. New York, NY, USA: ACM, 2017, pp. 405–418. [Online].
Available: http://doi.acm.org/10.1145/3127479.3129249

[22] T. Pasquier, X. Han, T. Moyer, A. Bates, O. Hermant, D. Eyers,
J. Bacon, and M. Seltzer, “Runtime analysis of whole-system
provenance,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’18. New
York, NY, USA: ACM, 2018, pp. 1601–1616. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243776

http://doi.acm.org/10.1145/3243734.3243776
http://doi.acm.org/10.1145/3127479.3129249
http://papers.nips.cc/paper/6703-inductive-representation
http://doi.acm.org/10.1145/2939672.2939754
https://dev/blob/master/docs/VERTICES.md
https://github.com/CamFlow/camflow

[23] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Auto-
mated generation and analysis of attack graphs,” in Proceedings 2002
IEEE Symposium on Security and Privacy. IEEE, 2002, pp. 273–284.

[24] L. P. Swiler and C. Phillips, “A graph-based system for network-
vulnerability analysis,” Sandia National Labs., Albuquerque, NM
(United States), Tech. Rep., 1998.

[25] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep rep-
resentations for graph clustering,” in Twenty-Eighth AAAI Conference
on Artifcial Intelligence, 2014.

[26] S. Xiang, F. Nie, and C. Zhang, “Learning a mahalanobis distance
metric for data clustering and classifcation,” Pattern recognition,
vol. 41, no. 12, pp. 3600–3612, 2008.

