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Abstract: We performed Mueller matrix Monte Carlo simulations of the propagation of optical
radiation in diffusely scattering media for collimated incidence and report the results as a function
of thickness and the angle subtended by the detector. For sufficiently small thickness, a fraction
of the radiation does not undergo any scattering events and is emitted at zero angle. Thus, for
a very small detector angle, the measured signal will mostly indicate the attenuation of the
coherent contribution, while for larger angles, the diffuse scattering radiation will contribute
significantly more. The degree to which the radiation is depolarized thus depends on the angle
subtended by the detector. A three-stream model, where the coherent radiation, the forward
diffusely scattered radiation, and the backward scattered radiation are propagated according
to the differential Mueller matrix formalism is introduced and describes the results from the
Monte Carlo simulations and the results of measurements well. This scatter-based model for
depolarization in diffusely scattering media is an alternative to that based upon elementary
fluctuation theory applied to a single propagation stream. Results for average photon path length,
determined from the Monte Carlo simulations, suggest that applying fluctuation theory to photon
path length may unify the two approaches.

1. Introduction

The evolution of depolarization of optical radiation as it transmits through diffusely scattering
media is of interest in a number of applications, including biomedical imaging [1], remote
sensing [2–4], material characterization [5], and optical devices [6]. In general, depolarization
results from a random variable that is encountered in the numerous paths that radiation takes in
propagating from a source to a detector. In many cases, the onset of depolarization has been
found to be quadratic with material thickness [7–9], while in others, the observed behavior has
been more complicated [10, 11].

The evolution of the intensity and polarization state of radiation transmitting through a medium
is often treated in terms of a 4 × 4 Mueller matrix M(I) that evolves according to the differential
equation [12–14]

dM(I)
dI

= m(I)M(I), (1)

with the initial condition M(0) = I (the identity matrix), where m is a 4 × 4 differential Mueller
matrix, and I is the propagation coordinate. When m is independent of I, the solution for a layer
of thickness ΔI is well known:

M(ΔI) = exp(mΔI), (2)
where the matrix exponential is used [15]. The behavior described by Eq. (2) motivates the
logarithmic decomposition of a Mueller matrix [16, 17],

L = log(M/"00). (3)

One model for depolarization of the radiation is to consider fluctuations in the matrix m.
In this case, if the material is longitudinally homogeneous (long correlation length limit), the



logarithmic decomposition is approximately given by [18, 19]

L = 〈m〉ΔI + 1
2
〈Δm2〉ΔI2, (4)

while for short Gaussian correlation lengths Ig � ΔI,

L = 〈m〉ΔI + 1
2
〈Δm2〉(c1/2IgΔI − I2g). (5)

A brief derivation of Eqs. (4) and (5) is given in theAppendix. Thematrix 〈m〉 is non-depolarizing,
while the variance 〈Δm2〉 is depolarizing.

Several studies have observed quadratic evolution of depolarization, at least for small thicknesses
[7–10], and have attributed that behavior to the application of Eq. (4). However, in a number
of these studies [7, 8, 10], the assumption of longitudinal homogeneity should not have applied.
In Refs. [7] and [8], layers of independent materials were stacked to vary the thickness. Since
these layers were solid, the fluctuations of their optical properties would have been stationary,
and no correlations between layers should have existed. Within the fluctuation theory, if each
layer of thickness I0 is homogeneous along the propagation direction, the Mueller matrix of =
independent layers (i.e., long correlation within a layer, but no correlation between layers) would
be

M = exp
(
=〈m〉I0 +

=

2
〈Δm2〉I20

)
. (6)

That is, if the fluctuation theory described the origin of depolarization in the layered samples, the
growth of depolarization would have been linear with the number of layers.

The problem with applying Eq. (1) to the propagation of radiation through a diffusely scattering
medium is that the radiation is not propagating in a single direction. The path lengths take
on a distribution with a mean length significantly greater than the material thickness [20–23].
Furthermore, if one were to add independent layers, the presence of an additional layer affects
the field distribution in previous layers.

We previously proposed an alternative approach to understanding the evolution of depolarization
[24], introducing a two-stream model, where radiation can propagate not only forward, but
also backward through the media. This is a crude approximation to the radiative transfer
equation, where there is a continuum of propagation directions, but it serves the purpose of
demonstrating that, by simply allowing radiation to propagate in multiple directions and having
the only depolarizing mechanism be in the scattering matrix elements, quadratic evolution of
depolarization naturally occurred. The evolution becomes linear for sufficiently large thicknesses,
much as the fluctuation theory does.
Charbois and Devlaminck published results for depolarization for emulsions as a function of

thickness, showing markedly non-quadratic behavior [10]. In some cases, the initial evolution
was cubic, in some there appeared to be an incubation length before any depolarization was
observed at all, and still others the behavior exhibited weak oscillations. The measurements
showing non-quadratic evolution used a very small collection angle (V = 0.6◦). When radiation
was collection over a larger angle using a lens, the evolution appeared more quadratic. These
measurements were published along with a generalized fluctuation theory that handled the case
of partial correlation length. While they achieved reasonable fits of their theory to their data, they
acknowledged that they had no physical understanding for what some of those results represented.
Non-quadratic results were also obtained by Gompf et al., whose instrument also has a very small
collection angle [11].

In this article, we extend the scattering approach by performing Monte Carlo (MC) simulations
and considering the Mueller matrix for different angles subtended by the detector. The
measurement geometry is described schematically in Fig. 1. If we assume that there is no
depolarization except that which occurs through scattering, we can replicate the complicated



Fig. 1. The virtual measurement setup. Collimated radiation strikes material S of
thickness ΔI and radiation emitted from the material with angles within 2V is collected
by detector D.

behavior observed in Charbois and Devlaminck’s measurements. The unscattered radiation,
which dominates the signal for a small collection angle and small thicknesses, exhibits no
depolarization. Thus, appreciable depolarization does not occur until the unscattered beam is
attenuated to a level comparable to the diffusely scattered radiation.
We start by describing the MC simulations in Sec. 2. In Sec. 3, we review the two-stream

model originally presented in [24], deriving analytic expressions for isotropic media. We then
introduce a three-stream model in Sec. 4, where the third stream represents the unscattered
radiation. In Sec. 5, we present the results. The three-stream results fit the MC simulated data
well. While data that evolves quadratically can be interpreted in light of the two-stream model, we
believe the more complicated behavior observed by Charbois and Devlaminck can be understood
with this three-stream scattering approach. We present path length results and suggest that the
resolution to the discrepancy between the single-stream fluctuation theory and the scattering
approach lies in the interpretation of the propagation coordinate in the former. We summarize
our results in Sec. 6.

2. Monte Carlo Modeling

Single scattering phase functions (the normalized scattering probability as functions of angle \)
required for MC simulations were determined by obtaining the average Mueller matrix differential
scattering cross section for a log-normal distribution (characterized by mean diameter �0 and
logarithmic width Δ�/�0) of spherical particles (index of refraction =sph = 1.56) in water (index
of refraction =water = 1.33) using Mie theory with a wavelength of 532 nm and with 104 particles.
The phase functions were tabulated in 1◦ steps, constituting an interpolation table. Three different
phase functions were used, that associated with Rayleigh scattering (limit of small �0) and those
associated with mean diameters �0 of 250 nm and 700 nm. The distribution width was fixed to
Δ�/�0 = 0.5. Figure 2 shows the unique, non-zero elements of these phase functions in the
local single scattering basis.
A ray propagating in the medium is assumed to have a mean scattering rate `s, which is

fixed in this paper to `s = 1 (which defines the length scale for thickness ΔI). The distance
between scattering events is randomly selected from an exponentially-distributed random number
generator. At each scattering event, a new random direction is selected from the previous direction
with a probability determined by the unpolarized part of the normalized phase function and with
a uniform azimuth. Each ray carries with it its direction, position, and net Mueller matrix, which
after the =-th scattering interaction is

M= = R1MpfR0M=−1, (7)
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Fig. 2. The unique, non-zero elements of the Mueller matrix phase function Mpf for
the three different particle size distributions used in the simulations.

where M=−1 is the accumulated Mueller matrix for the previous = − 1 scattering events, R0 is
a matrix that rotates the global polarization basis into the local polarization basis, Mpf is the
normalized Mueller matrix phase function, and R1 is a matrix that rotates the local polarization
basis to the global polarization basis. The startingMueller matrixM0 = I. The global polarization
basis is one that does not have any singularities at the surface normal, so that it will be smoothly
varying across the virtual detector. The local polarization basis is that parallel and perpendicular
to the plane containing the incident and scattering rays for each scattering event.
Any ray that reaches the material boundary before its next scattering event is assumed to

escape and, if its direction is within the right circular cone subtended by half angle V along the
transmitted surface normal, accumulated to obtain the net Mueller matrix. For these simulations,
we considered V = 1◦, 5◦, or 20◦. For most of the simulations, 24 × 107 rays were propagated for
each data point. This large number of rays was necessary, because most rays that have undergone
scattering are lost, especially in the smallest of the detectors.
For simplicity, we have ignored interface reflections as well as refraction at the entrance

and exit of the medium. Transmission and reflection can be polarization dependent, especially
at large angles, but it is believed that the two interfaces of the liquid medium (as well as any
container interfaces) have negligible effect on the polarization, compared to the diffuse scattering
that occurs in the medium. Furthermore, no absorption, either in the medium surrounding the
particles, nor in the particles themselves, was included. The lack of the inclusion of refraction
would suggest that the actual collection angles in air would correspond to 1.33◦, 6.66◦, and 27.1◦,
respectively, by Snell’s law.

3. Two-Stream Approach

In this section, we outline the theory originally described in [24]. When ignoring sample
birefringence and including only diagonal depolarization, we can derive analytic expressions for
the depolarization. The approach we take is a polarimetric extension of the theory of Kubelka
and Munk (KM) (originally developed for reflectance, but applied here in transmittance) and



Fig. 3. Schematics of the (a) two-stream approach and (b) the three stream approach.
Horizontal arrows indicateMuellermatrix streams, and dashed curves indicate scattering
elements coupling the streams.

represents the simplest approximation to the radiative transfer equation [25, 26].
We begin by assuming that there are two streams, one propagating forward and one propagating

backward, and that there is coupling between the two due to scattering. Figure 3(a) shows
a schematic of this two stream model. Following KM, but generalizing the absorption and
scattering coefficients with matrices, we have

d
dI

©­«
M+ (I)

M− (I)
ª®¬ = m′ ©­«

M+ (I)

M− (I)
ª®¬ , (8)

where

m′ = ©­«
m − a(s) r(s)

−s r[a(s) −m]
ª®¬ , (9)

m is the forward differential Mueller matrix [as for Eq. (1)], and s is a scattering Mueller
matrix. The matrices M+ (I) and M− (I) represent the Mueller matrices for forward and backward
propagating radiation, respectively. The matrix function a(s) is needed to account for polarization-
dependent losses in one direction as radiation is scattered into the other, and is a non-depolarizing,
diattenuative, and lossy differential Mueller matrix:

a(s) =

©­­­­­­­«

B00 B01 B02 B03

B01 B00 0 0

B02 0 B00 0

B03 0 0 B00

ª®®®®®®®¬
. (10)

The matrix function r(m) relates the forward propagating optical properties to the backward
propagating ones that result from the use of different coordinate systems for propagation in each



direction [27]:

r(m) =

©­­­­­­­«

<00 <01 −<02 <03

<10 <11 <12 −<13

−<20 <21 <22 <23

<30 −<31 <32 <33

ª®®®®®®®¬
. (11)

The solution to Eq. (8) is

©­«
M+ (I)

M− (I)
ª®¬ = exp(m′I) ©­«

M+ (0)

M− (0)
ª®¬ , (12)

and we apply the boundary conditions

©­«
M+ (0)

M− (0)
ª®¬ = ©­«

I

Rd

ª®¬ , (13)

©­«
M+ (ΔI)

M− (ΔI)
ª®¬ = ©­«

Td

0
ª®¬ , (14)

where Rd is the Mueller matrix diffuse reflectance, and Td is the Mueller matrix diffuse
transmittance. Reflectance and transmittance at the I = 0 and I = ΔI interfaces can be included
with other boundary conditions but are not included here for simplicity.

If the material is isotropic and non-absorbing, the forward matrix is m = 0, and

s = diag(B0, B1,−B1, B3). (15)

It helps to let m have a small isotropic absorbing contribution, and then, after the matrix
exponential is performed, to take the limit as that absorption vanishes. Because its submatrices
are diagonal, the 8 × 8 matrix in Eq. (9) reduces to four 2 × 2 matrices of the form

©­«
−B0 B 9

−B 9 B0

ª®¬ . (16)

The solution to Eqs. (8) through (14) is found to be

)d,00 = 1/(1 + B0ΔI), (17)

'd,00 = B0ΔI/(1 + B0ΔI), (18)

)d, 9 9 =
% 9

% 9 cosh(% 9ΔI) + B0 sinh(% 9ΔI)
, (19)

'd, 9 9 =
B 9

B0 + % 9 coth(% 9ΔI)
, (20)

where % 9 = (B20 − B
2
9
)1/2. The off-diagonal ( 9 ≠ :) elements )d, 9: and 'd, 9: are zero. The

logarithmic decomposition of the Mueller matrix transmittance is ! 9 9 = log()d, 9 9/)d,00) and
can be power series expanded to yield

! 9 9 = −
1
2
%2

9 (ΔI)2 +
1
3
B0%

2
9 (ΔI)3. (21)



Note that for ΔI much less than the scattering length 1/B0, the behavior is quadratic. When ΔI
approaches that length, significant higher order terms lead to a nearly linear behavior, approaching
a slope of −% 9 :

! 9 9 = −% 9ΔI + log

[
ΔI

(
2B0 − 2

B30

B2
9

+ 2
B20% 9

B2
9

)]
. (22)

Multiple scattering is the root of why depolarization behaves quadratically in this model. In
order for scattering to affect radiation in transmission, there must be at least two scattering events:
one to transfer radiation from the forward direction to the backward direction, and a second to
transfer radiation back to the forward direction.

4. Three-Stream Approach

While the two stream approach given above in Sec. 3 may be sufficient for many applications, our
MC results suggest that, at least in some cases, the coherent contribution must be treated separately
in order to understand the results. In this section, we will describe a simple three-stream approach
for modeling diffuse scatter in turbid media. We expand the two-stream model by distinguishing
between radiation that has undergone scattering from that which has not. Thus, we consider
three streams: a coherent stream in the forward direction and forward and backward diffuse
streams. Radiation in the coherent stream can be lost to absorption, can undergo retardance
and diattenuation, and be lost to the other streams due to scattering. However, we assume that
radiation which has been scattered from the diffuse streams does not flow back to the coherent
stream. Figure 3(b) is a schematic of the model. The differential equation governing this system
is

d
dI

©­­­­«
Mc (I)

M+ (I)

M− (I)

ª®®®®¬
=

©­­­­«
m − a(s′f + s′b) 0 0

s′f m − a(sb + sf) + sf r(sb)

−s′b −sb −r[m − a(sb + sf) + sf]

ª®®®®¬
©­­­­«

Mc (I)

M+ (I)

M− (I)

ª®®®®¬
,

(23)

where sf and sb are forward and backward scatteringMueller matrices between the diffuse streams,
respectively, while s′f and s′b are forward and backward scattering Mueller matrices from the
coherent stream to the diffuse streams, respectively. The matrix Mc represents the Mueller matrix
for the coherent stream, while the matrices M+ (I) and M− (I) represent the Mueller matrices for
forward and backward propagating diffuse radiation, respectively. Eq. (23) needs to be solved
under the boundary conditions ©­­­­«

Mc (0)

M+ (0)

M− (0)

ª®®®®¬
=

©­­­­«
I

0

Rd

ª®®®®¬
, (24)

©­­­­«
Mc (ΔI)

M+ (ΔI)

M− (ΔI)

ª®®®®¬
=

©­­­­«
Tc

Td

0

ª®®®®¬
, (25)

where Tc is the coherent Mueller matrix transmittance. Reflectance and transmittance at the
I = 0 and I = ΔI interfaces can be included with other boundary conditions but are not included
here for simplicity.



We proceed by considering an isotropic, non-absorbing medium, so that m = 0, and

sf = diag(Bf,00, Bf,11, Bf,11, Bf,33), (26)

sb = diag(Bb,00, Bb,11,−Bb,11, Bb,33). (27)

As a last simplification, to reduce the number of degrees of freedom of the model, we let s′f = sf
and s′b = sb. The above 12 × 12 matrix reduces to four 3 × 3 matrices:

©­­­­«
−Bf,00 − Bb,00 0 0

Bf, 9 9 −� 9 Bb, 9 9

−Bb, 9 9 −Bb, 9 9 � 9

ª®®®®¬
, (28)

with
� 9 = Bb,00 + Bf,00 − Bf, 9 9 . (29)

The solution to Eqs. (23) through (27) is

)d,00 =
1

1 + Bb,00ΔI
− )c,00, (30)

)c, 9 9 = )c,00 = exp[−(Bf,00 + Bb,00)ΔI], (31)

)d, 9 9 = cosh(( 9ΔI) −
� 9 sinh(( 9ΔI)

( 9

+
B2b, 9 9 sinh(( 9ΔI)

(2
9
coth(( 9ΔI) + ( 9� 9

− )c,00, (32)

'd, 9 9 =
Bb, 9 9

� 9 + ( 9 coth(( 9ΔI)
, (33)

where
( 9 =

√
�2

9
− B2b, 9 9 . (34)

As expected, the coherent stream decays exponentially with thickness (Eq. 31), with a rate given
by the total scattering rate Bf,00 + Bb,00. For small ΔI, we have

)d, 9 9 ≈ Bf, 9 9ΔI +
(ΔI)2

2
{Bb, 9 9 + Bf, 9 9 [Bf, 9 9 − 2(Bb,00 + Bf,00)]}. (35)

When one measures the radiation transmitting through a material, with the detector collecting
radiation within angle V, the signal contains all of the coherent beam but only a fraction 5 of the
diffuse scatter. If the diffuse radiation were Lambertian, for example, then 5 = sin2 V. Thus, we
expect that we would be measuring a Mueller matrix transmittance approximately given by

T = Tc + 5Td. (36)

The logarithmic decomposition is diagonal with

! 9 9 = log[()c, 9 9 + 5 )d, 9 9 )/()c,00 + 5 )d,00)] . (37)

For the V = 1◦, 5◦, and 20◦ detectors and Lambertian scatter, 5 = 0.00030, 0.0076, and 0.117,
respectively.
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Fig. 4. The bidirectional transmittance distribution function 5t calculated using the MC
method with the �0 = 250 nm distribution for five different sample thicknesses. The
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5. Results and Discussion

Figure 4 shows the angular distribution expressed as the azimuthally-averaged, normal-incidence
bidirectional transmittance distribution function 5t averaged in 1◦ polar angle intervals for the
�0 = 250 nm phase function and different thicknesses. For thin layers, most of the radiation
transmits through the material unscattered, thus yielding a delta-function-like peak at zero angle.
For a thin layer, the small amount of diffuse scatter at |\ | > 0 is primarily due to single scattering,
mimicking the phase function of the scatterers. As the thickness grows, the peak at zero angle
decreases exponentially, and the diffuse scatter rises and flattens out as multiple scattering begins
to dominate. At even larger thicknesses, the peak at zero angle disappears entirely and the diffuse
scatter lowers as the material becomes opaque. The markings shown above the peak in Fig. 4
represent detectors spanning those used in the MC simulations. Thus, a detector which only
spans ±1◦ is going to weigh the coherent beam much more than the diffuse scatter, compared to
that which spans ±5◦ and ±20◦.

The symbols in Fig. 5 show the MC results for the polarization-average measured transmittance
()00) and the two unique and depolarizing elements of the logarithmic decomposition (!11 and
!33) for each of the three phase functions and for V = 1◦, 5◦, and 20◦. (The curves drawn through
the data are fits from the three-stream model and will be described later in this section.) The
transmittance first decays exponentially at one rate and then transitions to another slower rate.
The signal for a smaller detector decays with the first rate for much longer before flattening
out at a lower level. For the largest detector, the behavior of the elements of the logarithmic
decomposition starts out approximately quadratic and becomes linear at larger ΔI. For the smaller
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in Table 1.

detectors, the depolarization remains low (!11 and !33 near zero) until the thickness when the
transmittance transitions from the first decay rate to the next. The initial decay rate observed
in )00 is due to energy being lost from the coherent beam. Since there is no depolarization in
this component, !11 and !22 show little depolarization. Thus, depolarization does not occur
until the diffuse scatter becomes appreciable to the the coherent beam. This transition from the
coherent-dominated to the diffuse-scatter-dominated depolarization causes a bump to appear
in the depolarization. That bump is most apparent when the subtended angle is small. The
more quadratic behavior for large collection angles (see Figs. 9 and 10 of [10]), the lack of
depolarization for small thicknesses (see Fig. 3 of [10]), and the bump (see Fig. 5 of [10]) can
all be observed in the data of Charbois and Devlaminck. Non-quadratic behavior can also be
observed by Gompf et al. [11].

It is clear from Fig. 5 that the transmittance and its polarization are dependent upon the angle
subtended by the detector and that a significantly non-quadratic behavior can be observed at small
thicknesses as a result of residual coherent radiation. This finding motivated our development of
the three-stream model described in Sec. 4. Figure 5 shows the results of simultaneously fitting
Eqs. (36) ()00) and (37) (!11 and !33) to each of the sets of MC results (that is, for each phase
function and each subtended detector angle). The fitting parameters are Bb,00, Bb,11, Bb,33, and 5 .
The forward scattering parameters Bf, 9 9 were set to zero and adding them did not substantially
improve the results. The results for these fits are given in Table 1 and shown as curves in Fig. 5.
While the results of these fits are marginal, especially for the 700 nm phase function, they show
the characteristic features of the MC results.
The fits were improved substantially if we allowed s′f ≠ sf and s′b ≠ sb ≠ 0, that is, allowing

scattering from the coherent stream to be different than that between the diffuse streams. The
directional average for these scattering rates are different, so allowing these to differ is plausible.



Table 1. Best fit three-stream parameters shown as curves in Fig. 5.

V Bb,00 Bb,11/Bb,00 Bb,33/Bb,00 5

Rayleigh

1◦ 1.000 0.837 0.756 0.00066

5◦ 1.002 0.849 0.797 0.018

20◦ 0.992 0.744 0.588 0.109

�0 = 250 nm

1◦ 1.012 0.984 0.991 0.0022

5◦ 0.906 0.980 0.990 0.024

20◦ 0.474 0.928 0.963 0.398

�0 = 700 nm

1◦ 0.983 0.996 0.998 0.0012

5◦ 0.768 0.992 0.997 0.0065

20◦ 0.273 0.938 0.977 0.369

While the fits improved substantially, especially for the �0 = 700 nm phase function, the resulting
parameters were sometimes non-physical (negative or overpolarizing scattering rates), and were
not necessarily unique. Note that the fits for the Rayleigh phase function are overdetermined in
this 13-parameter model.
We also fit each frame ()00, !11, or !33) in Fig. 5 to parameters needed for those data

individually (Bf,00, Bb,00, and 5 for )00; Bf,00, Bb,00, Bf,11, Bb,11, and 5 for !11; and Bf,00, Bb,00,
Bf,33, Bb,33, and 5 for !33). In this case, s′f = sf and s′b = sb. These results nearly identically
passed through the MC results but are not shown. Charbois and Devlaminck fit their data to
their fluctuation theory in this manner. That is, they did not require self-consistency between
the transmittance ()00) information and the polarization or between the linear (!11) and circular
(!33) depolarization. We also are able to achieve excellent fits to all of the data of Charbois and
Devlaminck in this fashion.
There is little doubt that depolarization arises from fluctuations in the Mueller matrix

encountered by the various paths that radiation takes as it propagates through a material.
The single-stream fluctuation theory, however, does not recognize that the optical path length
experienced by transmitted radiation in a diffuse medium can be significantly greater than
the thickness. Several studies have investigated the photon path length statistics for multiple
scattering [20–23]. Figure 6 shows the mean path length 〈Λ〉 calculated from the MC method for
the three phase functions and for V = 20◦. The path lengths are found to deviate significantly
from that of the thickness (shown as a dashed line), which represents the minimum path length
needed to traverse the medium. At large ΔI, the path lengths approach quadratic behavior. A
fluctuation theory result may be appropriate, if one interprets the correlation length to be the
scattering length and the propagation coordinate to be the actual path length. A small acceptance
angle biases the collected rays toward those with shorter path lengths compared to that with a
large acceptance angle.
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6. Conclusion

In this paper, we have provided an alternative perspective for the evolution of depolarization
in diffuse media, compared to that offered by a single-stream fluctuation theory. We presented
MC simulations that show that the presence of the coherent beam can strongly influence the
measurement of depolarization and lead to non-quadratic behavior in the measurement. A
three-stream approach captures most of the details of those simulated measurements. Future
interpretations of the evolution of depolarization with sample thickness should keep in mind that
scattering influences the optical path length experienced by the radiation and that it is not enough
to consider the physical thickness of the material.

A. Appendix

The solution to Eq. (1) can be expressed as [19]

M(ΔI) = I +
∫ ΔI

0
m(I′) dI′

+
∫ ΔI

0

∫ I′

0
m(I′)m(I′′) dI′′ dI′ + · · · .

(A.1)

If we let m(I) = m0 + Δm(I), where m0 = 〈m(I)〉 and 〈Δm(I)〉 = 0, and assume that Δm(I)
follows a Gaussian correlation function,

〈Δm(I′)Δm(I′′)〉 = 〈Δm2〉 exp[−(I′ − I′′)2/I2g], (A.2)



where Ig is the correlation length, we find that the average Mueller matrix is given by

〈M(ΔI)〉 = I +m0ΔI +
1
2

m2
0 (ΔI)

2

+〈Δm2〉
Ig

2

{
Ig

[
exp

(
− (ΔI)

2

I2g

)
− 1

]
+c1/2ΔI erf

(
ΔI

Ig

)}
+ · · · . (A.3)

When the fluctuations are small, the logarithmic decomposition is approximately given by

L = m0ΔI

+〈Δm2〉
Ig

2

{
Ig

[
exp

(
− (ΔI)

2

I2g

)
− 1

]
+c1/2ΔI erf

(
ΔI

Ig

)}
+ · · · . (A.4)

When ΔI is small (ΔI � Ig),

L = 〈m〉ΔI + 1
2
〈Δm2〉(ΔI)2 (A.5)

[same as Eq. (4)], and when ΔI is large (ΔI � Ig),

L = 〈m〉ΔI + 1
2
〈Δm2〉(c1/2IgΔI − I2g) (A.6)

[same as Eq. (5)]. For an exponential correlation function, with correlation length Ie,

〈m(I′)m(I′′)〉 = 〈Δm2〉 exp(−|I′ − I′′ |/I2e), (A.7)

and the logarithmic decomposition is approximately given by

L = m0ΔI

+〈Δm2〉Ie
{
Ie

[
exp

(
−ΔI
Ie

)
− 1

]
+ΔI} + · · · . (A.8)

For small ΔI, we get the same expression as Eq. (A.5), and for large ΔI, we get

L = 〈m〉ΔI + 〈Δm2〉(IeΔI − I2e). (A.9)
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