
Metrologia
     

ACCEPTED MANUSCRIPT

Consistency in Monte Carlo uncertainty analyses
To cite this article before publication: Benjamin F Jamroz et al 2020 Metrologia in press https://doi.org/10.1088/1681-7575/aba5aa

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2020 The Author(s). Published by IOP Publishing Ltd..

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 132.163.253.151 on 09/10/2020 at 18:34

https://doi.org/10.1088/1681-7575/aba5aa
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1681-7575/aba5aa


Consistency in Monte Carlo Uncertainty Analyses‡

Benjamin F. Jamroz and Dylan F. Williams

National Institute of Standards and Technology, 325 Broadway, Boulder CO, 80303

USA

E-mail: benjamin.jamroz@nist.gov

Abstract. The Monte Carlo method is an established tool that is often used to

evaluate the uncertainty of measurements. For computationally challenging problems,

Monte Carlo uncertainty analyses are typically distributed across multiple processes on

a multi-node cluster or supercomputer. Additionally, results from previous uncertainty

analyses are often used in further analyses in a sequential manner. To accurately

capture the uncertainty of the output quantity of interest, Monte Carlo sample

distributions must be treated consistently, using reproducible replicates, throughout

the entire analysis. We highlight the need for and importance of consistent Monte

Carlo methods in distributed and sequential uncertainty analyses, recommend an

implementation to achieve the needed consistency in these complicated analyses, and

discuss methods to evaluate the accuracy of implementations.

1. Introduction

According to the Guide to the Expression of Uncertainty in Measurement - Supplement

1 [1] the Monte Carlo method is an important method for evaluating the uncertainty

in measurements. This method uses a priori known probability distributions for

input quantities and propagates these uncertainties through transformations to derived

quantities. The Monte Carlo method samples the input distributions, transforms this

sample to obtain the derived results, and summarizes the resulting distribution. In

contrast to sensitivity analysis [2], this method is accurate for both linear and nonlinear

transformations; however, it can be computationally intensive as the convergence of

sample estimators of the mean and variance to population values is obtained as N−1/2,

where N is the Monte Carlo sample size [3].

Because of the computational cost, Monte Carlo uncertainty analysis is often

performed on multiple processes of a distributed memory computer e.g. a multi-

node cluster or supercomputer [4]. Additionally, uncertainty analyses are often

performed on a particular component that may need to be further propagated through

a system. Such analyses occur commonly at National Metrology Institutes, where

individual components of a measurement system may be sequentially analyzed in

‡ Official contribution of the National Institute of Standards and Technology; not subject to copyright

in the United States.

Page 1 of 17 AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 2

different experiments, in separate laboratories, over long time frames [5]. In order

to obtain accurate Monte Carlo uncertainty analyses, which may be distributed over

computational processes or processed successively in multiple steps, these analyses must

be made consistent. For the purpose of this paper, we define a consistent Monte Carlo

analysis as one that uses the same sequence as a Monte Carlo sample of a particular

quantity regardless of how many times or where this quantity enters such an analysis.

In this paper, we outline the need for consistency in Monte Carlo uncertainty

analyses by showing how inconsistency can lead to incorrect results, recommend

an implementation which maintains consistency for these analyses, and discuss

the importance of software tools to validate the accuracy and fit for purpose of

implementations.

2. Monte Carlo Analysis

The Monte Carlo method is often used in uncertainty analyses to capture the effect

of uncertainty of known parameters on derived quantities of interest. The method

typically propagates uncertainty in input quantities, for which an a priori probability

distribution is known, through a transformation yielding a distribution for an output

quantity. Statistics of the resulting distributions can be used to estimate the uncertainty

in these quantities.

Although there are many variations of Monte Carlo sampling, some of which can

more efficiently estimate statistics of the output distribution (e.g. Latin hypercube [6],

importance sampling [3]), these approaches suffer from the curse of dimensionality [7].

Standard Monte Carlo random sampling remains the state of the art for reporting

uncertainties in metrology [1].

2.1. Sampled Distributions

A Monte Carlo uncertainty analysis can be applied to the following transformation

Y = g(X),

where g is a transformation of input quantity X, often considered a random variable, into

quantity of interest Y , also a random variable. Here the uncertainty in X is specified as

X ∼ fX(X) where fX(X) is a probability distribution of X. The Monte Carlo method

proceeds by sampling fX(X) to obtain an input Monte Carlo sample {xn}Nn=1, evaluating

the transformation g on these samples to obtain a Monte Carlo sample of y, {yn}Nn=1,

where

yn = g(xn), for n = 1, . . . , N. (1)

The distribution of the Monte Carlo sample {yn}Nn=1 approximates the probability

distribution of Y due to variability in X. This sampling distribution can be used in

Page 2 of 17AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 3

uncertainty analysis to estimate the expected value and variability in the quantity of

interest Y .

The input sample distribution, here {xn}Nn=1, is typically formed by using a

pseudorandom number generator (PRNG), which generates a sequence of pseudorandom

numbers with a discrete distribution that agrees with, in some measure, that of the

specified distribution.

2.2. Importance of Consistency

Suppose that we now perform a further uncertainty analysis on quantity of interest

Z = h(X, Y ), where Y = g(X) and we reuse the Monte Carlo sample calculated in

Eq. (1). This occurs frequently in practice when one wants to avoid additional costly

computation (in reevaluating g(xn)), doesn’t have the expertise to reevaluate yn = g(xn),

or wants to maintain traceability to previous analyses for metrology purposes. This

analysis then uses both of the Monte Carlo samples {xn}Nn=1 and {yn}Nn=1 of Eq. (1) to

obtain the associated Monte Carlo sample of Z

zn = h(xn, yn), for n = 1, . . . , N (2)

where yn = g(xn).

In order to maintain the accuracy and validity of the results of this approach, the

samples {xn}Nn=1 must match in both Monte Carlo uncertainty analyses Eqs. (1) and

(2). That is, even if the calculation of {yn}Nn=1 has been performed previously, one

needs to ensure that the same sequence {xn}Nn=1 used in Eq. (1) is also used in Eq. (2).

Otherwise, if X ∼ fX(X) is resampled, the resulting sample {x̃n}Nn=1 will be independent

of {xn}Nn=1. Then, calculating

z̃n = h(x̃n, f(xn)), for n = 1, . . . , N, (3)

will produce incorrect results, as the two sequences approximating the distribution of

the single quantity X are different. A Monte Carlo method that does not preserve

the dependencies of random variables using different sequences to represent the same

quantity is inconsistent, whereas an implementation which preserves these dependencies

and maintains a single sequence for each unique random variable is consistent.

Obviously the usage of an inconsistent Monte Carlo method is incorrect, although

in practice care must be taken to ensure implementing a consistent Monte Carlo method.

Mathematically, if variables are dependent upon each other as X and Y are, then this

dependence must be preserved. However, in practice tracking these dependencies can

become non-trivial in complicated multi-step analyses. Implementations of the Monte

Carlo method which perform multi-step analyses must take this into account.

To formalize the above, we introduce the following definition and proposition.

Definition 1. A consistent Monte Carlo method is one in which the dependencies

of random variables are preserved within the Monte Carlo samples. Practically, this

Page 3 of 17 AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 4

requires that each input random variable has a unique Monte Carlo sample associated

with it, resulting in the exact same sequence being used no matter how many times or

where it appears in the analysis. An inconsistent Monte Carlo method does not preserve

these dependencies.

Proposition 1. Suppose that a random variable Z is a composite function of

independent random variables X1, X2, ..., Xm

Z = h(X1, X2, . . . , Xm, g(Xi1 , Xi2 , . . . , Xip)) (4)

where g is a function of some subset of the random variables {Xik}
p
k=1 ⊆ {Xi}mi=1 and

that there exists a Monte Carlo sample of size N for g

yn = g(xi1,n, xi2,n, . . . , xip,n) for n = 1, . . . , N (5)

such that each random variable Xik , k = 1, . . . , p, has been independently sampled N

times, obtaining {xik,n}Nn=1.

If an inconsistent Monte Carlo sample is drawn such that for any ik0 = i0 the Monte

Carlo sample drawn for Xi0 and used in Eq. (4) is independent of {xik0 ,n}
N
n=1 used in

Eq. (5), then the sample variance of the resulting Monte Carlo sample of Z is biased.

Proof. We prove the proposition for scalar random variables and affine functions g and

h. The extension to multivariate and nonlinear functions is straightforward.

For an affine g we can write

g(Xi1 , Xi2 , . . . , Xip) = a0 +

p∑
k=1

aikXik .

For notational simplicity we can rewrite g to be a function of all of the random variables

{Xi}mi=1

g(Xi1 , Xi2 , . . . , Xim) =g̃(X1, X2, . . . , Xm)

=a0 +
m∑
i=1

aiXi

where we have replaced each ik with the corresponding value in {i}Ni=1 and introduced

coefficients ai = 0 for each i /∈ {ik}pk=1. We can now write an affine h as

h(X1, X2, . . . , Xm, g̃(X1, X2, . . . , Xp)) = b0 +
m∑
i=1

biXi + a0 +
m∑
i=1

aiXi

= (a0 + b0) +
m∑
i=1

(ai + bi)Xi

and the second order moment of Z is

V (Z) =
m∑
i=1

(ai + bi)
2V (Xi). (6)

Page 4 of 17AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 5

Provided Monte Carlo samples of each Xik , {xik,n}Nn=1, for k = 1, . . . , p we can write

g̃(x1,n, x2,n, . . . , xm,n) = a0 +
m∑
i=1

aixi,n.

Denoting separate Monte Carlo samples of Xi, i = 1, . . . ,m, used in the subsequent

evaluation of h as {x̃i,n}Nn=1 we can write

h(x̃1,n, x̃2,n, . . . , x̃m,n, g̃(x1,n, x2,n, . . . , Xp,n)) = b0 +
m∑
i=1

bix̃i,n + a0 +
m∑
i=1

aixi,n.

For consistent Monte Carlo samples, where x̃i,n ≡ xi,n for all i = 1, . . . ,m and

n = 1, . . . , N , we can write the unbiased sample variance of {zn}Nn=1 as

σ̂2
z =

m∑
i=1

(ai + bi)
2σ̂2

xi

where the σ̂2
xi

represents the unbiased sample variance of the {xi,n}Nn=1.

However an inconsistent Monte Carlo sample, where for any ik0 = i0 the Monte

Carlo sample {x̃i0,n}Nn=1 is independent of {xik0 ,n}
N
n=1, yields a biased sample variance

σ̂2
z̃ =

m∑
i=1
i6=i0

(ai + bi)
2σ̂2

xi
+ a2i0σ̂

2
xi0

+ b2i0σ̂
2
x̃i0

when both ai0 and bi0 are nonzero.

As a simple example, suppose that we have a standard normal input distribution,

X ∼ N(0, 1), and wish to calculate

Y = X + 3 (7)

followed by

Z = X + Y. (8)

First we sample the distribution of X yo obtain {xn}Nn=1 and evaluate Eq. (7) yielding

{yn}Nn=1. Consistently resampling X for Eq. (8) we again produce {xn}Nn=1 and so the

resulting distribution is

zn = xn + yn

= xn + xn + 3

= 2xn + 3

and the Monte Carlo sample {zn}Nn=1 will approximate that of Z ∼ N(3, 4).

Page 5 of 17 AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 6

On the other hand, if X is not sampled consistently in Eq. (8) and instead a different

and independent sample {x̃n}Nn=1 is obtained, then

z̃n =x̃n + yn

=x̃n + xn + 3

the Monte Carlo distribution of z̃ will approximate z̃n ∼ N(3, 2). Here, an estimate

of uncertainty, the sample variance, is negatively biased. The independence of the two

samples of X leads to incorrect results and can have a large impact on the resulting

calculation of uncertainty. In other cases, say when Y = X + 3 and Z = X − Y ,

the inconsistent method will produce a sample that gives positively biased estimates of

uncertainty.

This example demonstrates that similar effects may arise in more complicated,

distributed, multi-laboratory analyses where it may not be clear which or how

uncertainty mechanisms were accounted for in previous results. In the recommended

implementation in Sec. 3.1, each input uncertainty mechanism is given a label which is

tracked and used to generate consistent samples avoiding inconsistencies in situations

as above.

2.3. Pitfalls of Summary Statistics

Using summary statistics at each stage of the uncertainty analysis may also lead to

incorrect results. Here, the sample statistics of Eq. (1) can be calculated and the

distribution of Y can be approximated. However, one cannot sample this resulting

distribution, obtaining {ỹn}Nn=1 as these samples are again independent of the {xn}Nn=1.

Thus, when propagating uncertainty through multiple stages of an analysis, either

the entire problem must be analyzed at once or the Monte Carlo sample sequences must

be consistent across different stages of analysis. The use of summary statistics does not

maintain consistency.

2.4. Monte Carlo Samples on Distributed Memory Computers

A similar issue arises when using distributed-memory parallel computation. A common

way to perform the Monte Carlo method on a distributed compute is to generate

an independent subsequence on each process. In [8] the authors recommend this

implementation using the Wichmann-Hill PRNG [9]. However, running one step of

the analysis on a certain number of processes but then using a different number of

processes for a later step would produce an inconsistent sample.

In order to maintain consistency in a general distributed Monte Carlo

implementation, where the number of processes may change from one step to another,

each process must obtain a sequence of pseudorandom numbers yielding a consistent

global sequence no matter how many processes are used. Improper handling of

pseudorandom number generation in parallel may lead to inconsistent Monte Carlo

Page 6 of 17AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 7

samples, lack of reproducibility, or distributions that do not achieve desired statistical

properties.

For example, as we will show in Sec. 4.1, applying the Monte Carlo method on the

first step of a multiple step uncertainty analysis using P processes but then completing

the analysis on a different number of processes requires that the sequences corresponding

to the sampled random variables is the same in both cases.

Additionally, as inter-process communication can limit efficiency and scalability of

simulations, this communication is to be avoided, so a consistent distributed Monte

Carlo implementation should not require any additional inter-process communication

(other than possibly an initial setup) in order to maintain efficiency.

2.5. Pseudorandom Number Generators

Before moving on to describe a parallel implementation of a consistent Monte Carlo

method, we give a little background on PRNGs. Generally, PRNGs are used in

many disparate applications including cryptology, gambling, and simulation. Each of

these applications requires specific features from a PRNG. For example, in gambling

applications, the ability to prevent an attacker from determining the next number in the

pseudorandom sequence is critical. For Monte Carlo uncertainty analysis, the primary

concerns are lack of bias, clustering and representative coverage of the distribution. That

is, generally, the distribution provided by the PRNG should approximate the specified

probability distribution attributed to the PRNG.

Typical PRNGs, like linear congruential generators, operate in the following way.

The PRNG is seeded with an initial value, typically a collection of integers, which

generates an initial state. Subsequent calls to the PRNG use this state to generate

a pseudorandom number and advance the PRNG to the next state. As each state is

generated from the previous state, we see that these PRNGs are reproducible§ in that,

for a specified seed, the PRNG will return the same sequence. Thus for typical PRNGs

generating the ith pseudorandom number requires i−1 calls to the generator. However,

for Monte Carlo samples that require tens or even hundreds of thousands of samples

generated on distributed processes, this can be inefficient.

Moving from a sequential PRNG implementation to a parallel implementation,

as required for a distributed Monte Carlo implementation, necessitates additional

constraints [11]. Previous work [8, 9] has implemented independent sequences of

pseudorandom random numbers on each process of a distributed memory computer.

As mentioned in section 2.4, these sequences can be used in Monte Carlo uncertainty

analyses which are processed all at once, but become inconsistent when then number of

processes changes during the course of a sequential analysis.

For our purposes, in order to maintain consistency over multi-step analyses, an

efficient parallel implementation requires the specification of a global pseudorandom

§ Note that for true reproducibility an implementation must assure consistent computer arithmetic

using a common standard like the IEEE Standard for Floating-Point Arithmetic (IEEE 754) [10].

Page 7 of 17 AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 8

sequence and the ability to skip through the sequence to obtain the ith pseudorandom

number (and corresponding PRNG state) with much less than i operations. L’Ecuyer

[12] shows for multiplicative linear congruential generators (MLCGs), of standard

uniform distributions, how to “jump ahead” in the sequence, allowing one to efficiently

move to the ith number directly.

2.6. Monte Carlo Sample Size

The Monte Carlo method provides estimates of statistics that converge as the sample

size increases, N →∞. Additionally, obtaining coverage intervals corresponding to high

coverage probability (say greater than 95%) may require even larger sample sizes [8]. A

suitable Monte Carlo sample size depends upon the typically unknown distribution of

the output quantity and so must be uniquely determined for each application, output

quantity, and required level of accuracy. Although there are automated techniques to

assess the suitability of the size of a sample [1, 13], sample sizes ranging from 103 to 106

are often used.

In order to produce consistent Monte Carlo samples across a multi-step analysis

one must determine a sample size sufficient for all aspects of the analysis and use this

size for all Monte Carlo samples. This adds some difficulty in distributed analyses where

a specific sample size may be large enough for some components of the analysis but not

for latter components (which may only be known at a later time). For this reason, we

recommend that a consistent Monte Carlo uncertainty analysis use as large a sample

size as is feasible and practical for the first step of the analysis and verify the suitability

of that size for every output quantity of interest.

In the following, we assume that the sample size of each Monte Carlo sample is

large enough for all aspects of the total uncertainty analysis. In general, care should be

taken to ensure an appropriate sample size.

3. Implementation and Evaluation

In the previous section, we showed that preserving the consistency of the Monte

Carlo sample in various parts of the analysis is critical to obtain accurate uncertainty

results. Here, we outline an implementation which maintains consistency even for multi-

step analyses that are distributed over computational resources. We also discuss the

evaluation of PRNGs to ensure that the results are suitable for accurate uncertainty

analyses.

3.1. Implementation of a Consistent Distributed Monte Carlo Method

An efficient, consistent, distributed Monte Carlo implementation involves (a) creating

reproducible pseudorandom number sequences distributed across an arbitrary number

of processes, each of which correspond to unique random variables (quantities with

Page 8 of 17AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 9

uncertainty), that can be recalled throughout the analysis and (b) efficiently indexing

through the sequences in parallel on distributed processes.

For task (a) we begin by using a unique text label, say a string, for every

input uncertainty mechanism that is to be sampled. This label is used to refer to a

specific mechanism of uncertainty and facilitates the tracking of this mechanism through

complicated analyses. From this label we then generate a seed to be used for a PRNG.

This seed can be generated for example by hashing a string into a sequence of bytes

(using, say, Secure Hash Algorithm 256 (SHA256) [14]) and then converting these bytes

to form the (typically) integer values required as seeds for PRNGs. These seeds (or,

equivalently, the string to be hashed) are then distributed to all processes involved in

the calculation in an initialization step.

Task (b) requires a PRNG that efficiently indexes through the pseudorandom

number sequence. Although there are other PRNG implementations that can skip to

specific indices in the sequence, including Mersenne Twister [15], we use the MLCG from

[12] as there is an implementation available in the software package documented in [16].

Our implementation indexes this PRNG to the appropriate point in the pseudorandom

sequence for each of our distributed processes. This provides an efficient method to

index the sequence in parallel.

Using this PRNG, a consistent Monte Carlo implementation can be completed as

follows. Each process p = 1, . . . , P determines the beginning αp and ending βp indices

corresponding to its range of Monte Carlo samples to compute. Each process is given the

labels for all input uncertainty mechanisms and initializes PRNGs with corresponding

seeds and then skips to the αpth number in each of the sequences. The input Monte Carlo

sample is obtained from these PRNGs, the transformation is applied to this sample, and

the resulting output sample is saved to disk to be used in further analyses.

When a situation like that of Eqs. (1) and (2) arises, the sequence corresponding

to the sample of Y is read from disk, the label for X is again read and used to generate

the seed for the PRNG obtaining a Monte Carlo sample for X. This sequence and the

sequence used to generate the sample for X used to calculate that of Y are identical

and thus the Monte Carlo analysis is consistent. This methodology works for multiple

input distributions as well as multivariate data.

Note that additional care may be needed to extend this implementation from

uniform distributions to other distributions. Typically, methods like inverse sampling

[17] or Box-Muller [18] are used to generate other probability distributions from uniform

distributions; these implementations must also preserve a one-to-one (or equivalent)

correspondence with the sequence of uniform draws to maintain consistency.

Finally, we note that the NIST Microwave Uncertainty Framework [19] implements

a method similar to the above in order to maintain consistent Monte Carlo uncertainty

analyses in distributed applications. This software tool is used to evaluate the

uncertainty of complicated, multi-laboratory uncertainty analyses of high-frequency

electronic applications. This framework facilitates collaboration across laboratories,

yielding consistent Monte Carlo analyses for these complicated distributed systems, and

Page 9 of 17 AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 10

providing additional productivity for users of the tool.

3.2. Evaluating Accuracy using Testing Suites

In addition to consistency, the accuracy of the generated PRNG sequence is paramount

for Monte Carlo analysis. Note that other applications, e.g. cryptology- or gambling-

related applications, may have other quality criteria, such as correlation between

replicates, as well [20]. For uncertainty analyses, ensuring that the distribution of the

sequence matches that of the specified probability distribution to some level is the

primary concern. To verify this one can run tests such as the Kolmogorov-Smirnov

test [21]. However, this is just one of many potential tests; In order to obtain better

testing coverage and have more certainty of the quality of a PRNG, one should run

a suite of many tests. There are several high-quality testing suites available to test

the suitability of a PRNG including the Diehard battery [22], the Dieharder test suite

[23], the NIST Statistical Test Suite [24] and the TestU01 testing suite [20, 25]. The

TestU01 suite contains many tests to evaluate the performance of a PRNG by sampling

the PRNG to compute test statistics which are used to test against the null hypothesis

that the sampled distribution approximates a standard uniform distribution. These

tests are grouped into small (“Small Crush”), medium (“Crush”) and larger (“Big

Crush”) collections. As uncertainty analysis practitioners often have expertise outside

of pseudorandom number generation, it is important to check the resulting PRNG

implementation using a comprehensive test suite like TestU01 to verify that it is fit

for purpose for uncertainty analysis. We apply the TestU01 test suite to examples in

the next section.

4. Examples and Testing

4.1. Maintaining consistency in Distributed Samples

We return to the example of Section where we

Y = X + 3

Z = X + Y
(9)

but here X is distributed uniformly as U [0, 1].

We illustrate that the recommended implementation maintains consistency even

when the number of processes changes between the two steps. This is in contrast to

using independent sequences of pseudorandom numbers, one for each process, similar

to [8], which can lead to an inconsistent method. Here, we perform the first step of the

analysis (evaluating Y = X + 3) using multiple processes and then change the number

of processes in the evaluation of the second step (Z = X + Y ).

For the consistent method we proceed by sampling X distributed over 10 processes

using the recommended implementation to obtain {xn}Nn=1 for a total sample size of

N = 10, 000 and use this sample to compute {yn = xn + 3}Nn=1. For the next step of

Page 10 of 17AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 11

3.0 3.5 4.0 4.5 5.0
Value

0

50

100

150

200

Oc
cu

rre
nc

e

Consistent
Inconsistent
Uniform

Figure 1. Histograms of the consistent and inconsistent distributed Monte Carlo

sequences of Eq. 9 for a sample size of 10 × 104. We see that the consistent sample

approximates the true distribution U [3, 5] while the inconsistent sample is biased.

the analysis, evaluating Z = X + Y , the recommended implementation will recall the

same sequence {xn}Nn=1 and use this to evaluate {zn}Nn=1 resulting in a consistent Monte

Carlo sample.

For the inconsistent approach, for each of the 10 processes an independent sequence

of numbers is sampled from X in the first step of the analysis, Y = X + 3. For the

second step, using a different number of processes generates a different sequence for X,

{x̃n}Nn=1, which is then an inconsistent Monte Carlo sample.

Histograms of these two Monte Carlo samples, the consistent and inconsistent

samples, are shown in Figure 1 where we see that the consistent sample approximates

the expected distribution of Z ∼ U [3, 5], whereas the inconsistent distribution is clearly

biased.

4.2. Näıve Usage of Pseudorandom Number Generators

We have highlighted the importance of consistent Monte Carlo implementations.

In this section, we show the importance of the correct usage of PRNGs in these

implementations. For this we implement a consistent Monte Carlo implementation that

näıvely applies PRNGs, we denote this the näıve implementation, and compare this with

the recommended implementation in Section 3.1. Although the näıve implementation

incorrectly applies PRNGs, it is similar to what could be implemented by one who

does not have expertise in PRNGs and uses built-in algorithms provided by standard

Page 11 of 17 AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 12

software packages. The purpose of this comparison is to highlight differences between

PRNG implementations that have appropriate statistics and those that don’t, as well

as to show the efficacy of methods that evaluate the performance and test the statistics

of resulting sequences.

For the näıve implementation, we use the Monte Carlo index i appended to a

parameter label to generate a unique string for every Monte Carlo replicate. Then

this string is hashed using the Fowler-Noll-Vo 1a-64 hash algorithm (FNV1a-64) [26] to

create two 32 bit integers to seed the MLCG from [27] provided in the software package

ALGLIB‖ [28] in the routine hqrnd and a single number is taken from each PRNG for

each Monte Carlo replicate. We see that this method produces a reproducible sequence

even when distributed over an arbitrary number of processes and is therefore consistent.

We compare this method to the implementation recommended in Section 3.1 to

demonstrate the effect of implementing a poor distributed PRNG and highlight some

tools to evaluate fit-for-purpose of PRNGs. We generate a pseudorandom sequence

of a standard uniform distribution with each of these generators using the label

“parameter.” Figure 2 shows the histogram of the näıve implementation (a) and the

recommended implementation (b) for 5 × 104 replicates. Here we see that, while the

numbers are qualitatively well distributed, there seems to be some clustering in the näıve

implementation. To investigate the further suitability of these PRNGs we examine the

data from each sequence more thoroughly.

We begin with a lag plot of lag one as shown in Fig. 3. Here, the näıve

implementation, Fig. 3(a), shows a considerable amount of correlation between draws,

whereas the recommended implementation (b) does not. Note that this behavior is

similar to that of the generators discussed in L’Ecuyer [27] (see Fig. 5(a) in that

reference). Finally, we investigate this correlation more thoroughly in Fig. 4 which

shows the results of an autocorrelation on each of the sequences. There we see that

there is substantial correlation in the näıve implementation for many lags.

Finally, in this case we can intuit the suitability of the PRNGs simply by looking at

the values of the pseudorandom numbers. Figure 5 shows a scatter plot of the first 500

pseudorandom numbers versus their index for each of the näıve (a) and recommended

(b) implementations. Here we see that there is significant clustering in the näıve

implementation as well as intervals where there is undersampling. This undersampling

can have serious consequences for uncertainty analyses where some critical regions may

not be represented in the resulting Monte Carlo sample.

4.3. Evaluation of PRNGs

The above analysis shows that the näıve method has significant correlation and therefore

the generator does not approximate independent sampling. Additionally, Figure 5

shows non-trivial clustering. Here, we press on to see the results of further testing on

‖ Any mention of commercial products is for completeness only; it does not imply recommendation or

endorsement

Page 12 of 17AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 13

Figure 2. Histograms for the first 5 × 104 numbers from the näıve (a) and

recommended (b) sequences.

Figure 3. Lag plots of lag one for the näıve (a) and recommended (b) sequences.

Note the significant structure of the näıve sequence in (a).

Page 13 of 17 AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 14

Figure 4. Autocorrelation of the näıve (a) and recommended (b) sequences. The näıve

sequence has significant correlation for many lags. As expected, the recommended

sequence shows negligible correlation for all lags larger than zero. Note the different

scales in (a) and (b).

these implementations. A standard test to determine whether a sampling distribution

matches an analytical distribution is the Kolmogorov-Smirnov test. Here the empirical

cumulative distribution for the sample and the analytical cumulative distribution

function are compared. We present the p-value of this test for each of the distributions

in table 1 where we see that the p-value for the näıve implementation, while rather

small, would pass many testing criteria.

Finally, we now turn to statistical testing suites to further, in an automated way,

evaluate the performance of these generators. For this we use the TestU01 [20, 25]

test suite. Of course when performing many statistical tests there is a non-negligible

chance that one of the tests will fail so we rerun these tests 100 times using labels

“parameter1” through “parameter100” to initialize each generator. We ran the Small

Crush, and Crush test batteries¶, which include 15 and 144 tests respectively, and show

these results in table 1. Here we see that the näıve implementation reliably fails nearly

every test in these batteries while the recommended implementation reliably passes

nearly all of them (as expected from a well-studied PRNG).

Many of the tests included in these batteries assess features outside of the interest

¶ We limited our testing to these batteries as the Big Crush battery is computationally intense, a single

run of which requires approximately 24 hours of runtime

Page 14 of 17AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 15

Figure 5. The first 500 values of the näıve (a) and recommended (b) sequences. The

näıve sequence show significant clustering as well as lack of coverage in some intervals.

of Monte Carlo uncertainty analysis. However, some of the tests in TestU01 test for

bias or differences in the spread in the sample, including the svaria SampleMean,

svaria SumLogs and svaria WeightDistrib tests, and the näıve method failing these

tests shows that this generator is not fit for purpose to be used for uncertainty analysis.

Additionally, we follow the guideline in [20] for PRNGs that “the bad ones fail very

simple tests whereas the good ones fail only very complicated tests...” and take these

results to show that the näıve implementation is not suitable whereas the recommended

generator is fit for purpose.

Although the sheer number of tests applied in these batteries can be overwhelming,

the thoroughness of the testing gives confidence in the use of a given generator for

uncertainty analysis. This is in contrast to simply using one test (say the Kolmogorov-

Smirnov test) to evaluate the behavior, as we saw even the näıve implementation, which

exhibited extensive clustering, passed some tests. For uncertainty analysis purposes, it

is important to run many tests to ensure that the statistics of the PRNG are fit for

purpose.

5. Conclusion

Consistency is paramount in Monte Carlo uncertainty analysis; without consistency

the analysis is invalid. In complicated uncertainty analyses, which are often distributed

Page 15 of 17 AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 16

Table 1. The results of various tests applied to the näıve and recommended generators.

The Kolmogorov-Smirnov test results and the average number of failures for over 100

runs of the Small Crush and Crush test batteries from TestU01 are shown. We see that

the although the näıve implementation has strong correlation between draws and fails

many TestU01 tests it does pass a few of these tests as well as the Kolmogorov-Smirnov

test.

Kolmogov-Smirnov Small Crush Crush

(p-value) Avg. % failure Avg. % failure

Näıve .137 94.2% 87.7%

Recommended .758 0.333% 0.250%

across computing platforms, different laboratories, and long time frames, inconsistencies

can easily enter the analysis leading to uncertainty estimates that are biased.

Additionally, the use of summary statistics in temporally distributed Monte Carlo

uncertainty analyses can lead to inconsistent Monte Carlo samples.

We developed a consistent Monte Carlo implementation that is reproducible and

efficiently generates pseudorandom sequences in parallel over many processes. For this

we used the PRNG in [12] which allows skipping within the pseudorandom number

sequence. Combined with using a label for each uncertainty mechanism, this allows us to

generate consistent, reproducible pseudorandom number sequences having satisfactory

statistics (as evident by passing the TestU01 tests) even for analyses that are distributed

across processes or separate analyses. We recommend that Monte Carlo uncertainty

analysis practitioners choose an implementation like this based on well studied and

documented PRNGs for their analyses. Software tools that evaluate uncertainties, such

as the NIST Microwave Uncertainty Framework [19], produce more accurate and robust

uncertainty analyses through the such an implementation.

Finally, we highlight the importance of testing the statistics of custom PRNGs

using a testing suite similar to TestU01. As many uncertainty analysis practitioners

come from backgrounds other than pseudorandom number generation, they may not

have the expertise to ascertain that they are implementing an accurate method in their

analyses. A test suite like TestU01 can efficiently evaluate the behavior of a PRNG,

verifying that it is fit for purpose and providing confidence in its use for Monte Carlo

uncertainty analysis.

Bibliography

[1] Joint Committee for Guides in Metrology Geneva Switzerland 2008 Evaluation of measurement

data - Supplement 1 to the Guide to the expression of uncertainty in measurement -

Propagation of distributions using a Monte Carlo method

[2] Joint Committee for Guides in Metrology Geneva, Switzerland 1993 Evaluation of measurement

data - Guide to the expression of uncertainty in measurement

[3] Hammersley J M and Handscomb D C 1964 Monte Carlo Methods (Methuen & Co., London, and

John Wiley & Sons, New York)

[4] Bhavsar V C and Isaac J R 1987 SIAM Journal on Scientific and Statistical Computing 8 s73–s95

Page 16 of 17AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Consistency in Monte Carlo Uncertainty Analyses 17

[5] Williams D F, Lewandowski A, Clement T S, Wang J C M, Hale P D, Morgan J M, Keenan D A

and Dienstfrey A 2006 IEEE Transactions on Microwave Theory and Techniques 54 481–491

ISSN 0018-9480

[6] McKay M D, Beckman R J and Conover W J 1979 Technometrics 21 239–245 ISSN 00401706

[7] National Research Council Washington, DC 2012 Assessing the Reliability of Complex Models:

Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty

Quantification

[8] Esward T J, de Ginestous A, Harris P M, Hill I D, Salim S G R, Smith I M, Wichmann B A,

Winkler R and Woolliams E R 2007 Metrologia 44 319–326

[9] Wichmann B A and Hill I D 2006 Comput. Stat. Data Anal. 51 16141622 ISSN 0167-9473 URL

https://doi.org/10.1016/j.csda.2006.05.019

[10] 2008 IEEE Std 754-2008 1–70

[11] Hellekalek P 1998 Don’t trust parallel Monte Carlo! Proceedings. Twelfth Workshop on Parallel

and Distributed Simulation PADS ’98 (Cat. No.98TB100233) pp 82–89

[12] L’Ecuyer P 1990 Commun. ACM 33 8597 ISSN 0001-0782

[13] Koehler E, E B and Haneuse S J P A 2009 The American statistician 63(2)

[14] National Institute of Standards and Technology 2012 Federal Information Processing Standard

(FIPS) 180-4. Secure Hash Standard

[15] Haramoto H, Matsumoto M, Nishimura T, Panneton F and L’Ecuyer P 2008 INFORMS Journal

on Computing 20 385–390

[16] L’Ecuyer P, Simard R, Chen E J and Kelton W D 2002 Operations Research 50 1073–1075

[17] Devroye L 1986 Non-Uniform Random Variate Generation (Springer-Verlag)

[18] Box G E P and Muller M E 1958 Ann. Math. Statist. 29 610–611 URL

https://doi.org/10.1214/aoms/1177706645

[19] Williams D F NIST Microwave Uncertainty Framework

https://www.nist.gov/services-resources/software/wafer-calibration-software

accessed: 2018-02-05

[20] L’Ecuyer P and Simard R 2007 ACM Trans. Math. Softw. 33 ISSN 0098-3500

[21] Knuth D E 1998 The Art of Computer Programming, Volume 2: Seminumerical Algorithms 3rd

ed (Addison-Wesley)

[22] Marsaglia G The Marsaglia Random Number CDROM, with The Diehard Battery of Tests of

Randomness

https://web.archive.org/web/20161114211602/http://stat.fsu.edu:80/pub/diehard/

accessed: 2020-06-15

[23] Brown R G Dieharder: A Random Number Test Suite

https://webhome.phy.duke.edu/ rgb/General/dieharder.php accessed: 2020-06-15

[24] Bassham L E, Rukhin A L, Soto J, Nechvatal J R, Smid M E, Barker E B, Leigh S D, Levenson

M, Vangel M, Banks D L, Heckert N A, Dray J F and Vo S 2010 Sp 800-22 rev. 1a. a

statistical test suite for random and pseudorandom number generators for cryptographic

applications Tech. rep. Gaithersburg, MD, USA

[25] L’Ecuyer P and Simard R A Software Library in ANSI C for Empirical Testing of Random

Number Generators User’s guide Département dÍnformatique et de Recherche Opérationnelle

Université de Montréal

[26] FNV web site http://www.isthe.com/chongo/tech/comp/fnv/index.html accessed:

2020-01-10

[27] L’Ecuyer P 1988 Commun. ACM 31 742751 ISSN 0001-0782

[28] Bochkanov S ALGLIB http://www.alglib.net accessed: 2020-01-10

Page 17 of 17 AUTHOR SUBMITTED MANUSCRIPT - MET-101678.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


