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ABSTRACT 
Manufacturers currently struggle with the assessment of a 

machine/robots’ accuracy degradation that limits the efficiency 

of machine/robots in high precision applications. Current best 

practice in industry is to inspect the final products or add 

redundancies (local calibration, etc.) during the process to 

determine the machine’s accuracy and performance. These create 

complexities in the process and increase the maintenance costs 

of applications such as high precision robot operations (welding, 

robotic drilling/riveting, and composite material layout), in-

process metrology, and machines in mobile applications. A 

higher speed, more precise control of position and orientation is 

required to remedy these complexities. A novel smart target was 

designed at the National Institute of Standards and Technology 

(NIST) to integrate with a vision system to acquire high-

accuracy, real-time 6‐D (six-dimensional x, y, and z position, 

roll, pitch, and yaw orientation) information. This paper presents 

the development of the smart target and the image processing 

algorithm to output 6-D information. A use case is presented 

using the smart target on universal robots (UR3 and UR5) to 

demonstrate the feasibility of using the smart target to perform 

the robot accuracy assessment. 

 

INTRODUCTION 
Machines and robots are key automation instruments that 

are widely used in manufacturing, material handling, 

construction, medicine, and aerospace [1].  In recent years, 

robots have become more accurate due to improvements in 

motion control, actuators, and other technologies [2]. These 

improvements enable the broader use of robots in many new 

applications. Machines and robots’ accuracy assessment is 

crucial to these applications. Unexpected disturbances due to 

accuracy degradation may lead to a degradation of the system 

performance, causing losses in productivity and business 

opportunities [3]. With current industry practice, it is difficult to 

detect the accuracy degradation because the machine or robot is 

continuously running and appears to be making parts that 

wouldn’t not meet the quality requirements, including accuracy 

requirement. 

As shown in Fig. 1, the typical robot errors contain static 

errors and dynamic errors. Static errors of a 6-axis robot include 

geometric error (e.g., linkage length, tools, and object in 

workspace), elasticities (e.g., base, runout, and gears), and 

temperature change created errors (quasi-static errors); dynamic 

errors include the trajectory following errors, gear cyclic errors, 

and axis dynamic limits [2, 4]. Because these errors influence 

robots’ absolute accuracy, traditional hard automation must 

depend on robot teaching, which is very time-consuming thus 

increasing the costs of manufacturing. To work around the 

accuracy problems, many extra sensors and redundancies are 

added. For example, flexible grippers or extra sensors are 

implemented to increase task tolerance. Local calibrations are 

developed to improve local accuracy for the success of precision 

operations. Sometimes external guidance, for example, a laser 

tracking system, is added to guide the robot’s precision 

operations [5, 6]. These workaround methods significantly 

increase the complexity of the manufacturing system and the cost 

of system maintenance. Moreover, there are new emerging robot 

applications that require more precise robot operations, for 

example, high precision assembly, welding, robotic 

drilling/riveting, robot metrology, and composite material 

layout. There needs to be an innovative way to design new robot 

systems instead of continuously using 20-year-old methods. The 

robot accuracy needs to be measured, assessed, monitored, and 

improved to support the development of an optimized and 

simplified production line by enhancing the absolute accuracy. 

Moreover, economic factors also motivate facilities and factories 

to perform accuracy degradation assessment and monitoring the 

robot performance to detect faults and failures. The purpose is to 

improve maintenance techniques and operations, especially 

eliminating unexpected shutdowns. 

https://www.robots.com/applications/welding-automation
https://www.robots.com/applications/welding-automation
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A robot’s position (x, y, z) and orientation (pitch, yaw, roll) 

need to be measured to assess the robot’s accuracy. The measured 

6-D information can be used to calculate the deviations  of robot 

position and orientation, allowing for accuracy degradation 

monitoring of a robot. The data can also be used as feedback for 

more accurate control, or as the input of an algorithm to perform 

calibration for robot performance improvement.  

A novel smart target (patent pending) was developed at the 

National Institute of Standards and Technology (NIST) to 

integrate with a vision system to acquire high accuracy 6-D 

information of a moving object. The smart target is mounted on 

the object of interest, for example, the end effector/tool of a robot 

arm or the last link of a machine tool to measure/track the 

object’s 6-D position and orientation. The smart target 

development is a part of the Prognostics and Health Management 

for reliable operations in Smart Manufacturing (PHM4SM) 

research at NIST. The PHM4SM project works on developing 

and deploying measurement science to promote the 

implementation, verification, and validation of advanced 

monitoring, diagnostic, and prognostic technologies to increase 

reliability and decrease downtime in smart manufacturing 

systems. This paper will present the research background, 

advanced sensing development, and a software tool to efficiently 

measure, monitor, diagnose, predict, and maintain the health of 

a robot. A use case was developed at NIST using Universal Robot 

UR3 and UR5 to demonstrate the feasibility of the smart target 

in accuracy assessment application. 

RESEARCH BACKGROUND AND APPROACH 
There are various measurement systems to acquire 3-D/6-D 

information [7, 8]. Some old methods including gauges, pose 

matching, and coordinate measurement machines are very slow. 

Trilateration with a theodolite, using cable potentiometer 

systems, or laser interferometers and other methods usually lack 

orientation information [9-13]. The laser tracker and vision-

based system are gaining more attention in recent years. 

Laser trackers are one type of high precision 3-D/6-D 

measurement system [18]. As an important part of the 

measurement system, measurement targets define what 

dimensional information can be captured by the system. If a 3-D 

target is used, 3-D information is captured. If a 6-D target is used, 

6-D information is captured. Retro-reflective spheres are an 

example of a 3-D target for laser trackers. A laser tracker tracks 

the target to measure distance from the reflected laser beam. 

Encoders on the laser tracker provide two angular orientations of 

the tracker’s two mechanical axes. By combining the distance 

and two encoders’ angles, the center (x, y, z) of the retro-

reflective target is measured [14, 16]. For 6-D information 

measurement, extra sensors are added to the existing 3-D target, 

for example, multiple light-emitting diodes (LEDs), thus making 

a already-expensive system more complex. The retro-reflective 

target needs to be held in contact with the object of interest. Also, 

laser tracker systems need to maintain line-of-sight between the 

laser tracker and the target. This means that the tracker will 

ultimately lose its view of the target when observing the target 

on a robot rotating to an angle.  

Figure 1. Robot accuracy degradation and influences 
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Vision-based systems have the advantages of cost-

effectiveness and broader application potentials with advanced 

image processing technology. The vision-based system includes 

camera array and structured light technology. 

The camera array approach uses multiple cameras placed at 

different positions to capture multiple images of the same target 

[17, 19]. A dual-camera system is the simplest yet most popular 

camera array. Two cameras are separated by a distance, usually 

with a similar angle of view to benefit the disparity calculation. 

For each point in space, there is a measurable disparity between 

its positions in the two camera images. The depth of the point is 

then calculated using geometry. The main challenge of a camera 

array is how to find matching points in multiple images with 

good accuracy. Non-ideal point matching decreases the system’s 

accuracy. Particularly, when multiple cameras are placed with a 

certain angle to enlarge the overlap of cameras’ imaging for 

larger measurement capability, the non-ideal point matching 

problem gets more severe. Also, when the measured parts do not 

have enough features, for example, a smooth surface, the 

measurement accuracy decreases.  

Structured light is an example of a special version of a 

camera array. Additional active projectors are added to solve the 

image matching problem in camera array. Projected patterns 

include fringes, random pattern laser dots, or other known 

patterns.  These known patterns created a phase map to match 

the matching points in multiple images. A receiver detects the 

distortion of the reflected pattern to calculate a depth map based 

on geometry. The structured light system has better depth 

accuracy performance compared to the camera array system. 

However, the structured light system may be more expensive 

because of the costs of active projectors.  

Both the camera array and structured light system are 

sensitive to environmental light. For the camera array, a bright 

environment works best. Structured light systems work best in a 

dark environment. When the brightness of the environment 

changes, images captured by a camera array may become noisy, 

and contrast becomes poor. This makes point matching 

extremely difficult resulting in inaccurate depth estimates. 

Moreover, structured light systems usually need to scan through 

a set of projected patterns. The measurement instrument and the 

measured part need to stay stationary during the measurement, 

which is not suitable for dynamic measurement.  

Thus, although a variety of 6‐D measurement systems and 

targets are available, these conventional systems do not have 

acceptable accuracy and dynamic features that are sufficiently 

accurate as required by some applications. As such, a new smart 

target was developed at NIST working with vision-based 

systems to overcome the challenges presented by complex 

industrial environments, enabling the measurement of dynamic 

poses.  

ADVANCED SENSING DEVELOPMENT  
The smart target system (patent pending) is a novel design 

to exceed the performance of existing vision-based measurement 

systems, especially with respect to accuracy and real-time 

processing potential. As shown in Fig. 2, the smart target consists 

of fixed-wavelength light pipes and two high-precision rotary 

gimbals. Three cylindrical light pipes, each a different color, are 

used to define line features that construct the 6-D information of 

a coordinate frame. The fixed-wavelength design makes the 

target stand out from an industrial background. At the same time, 

the target is not sensitive to environmental light. The red cross 

allows the vision system to detect the cross center as a coordinate 

origin. The gimbals are motorized to constantly rotate the red 

cross toward the measurement instrument for non-blocking 

dynamic measurement. It maximizes the target’s line-of-sight to 

the vision system, thereby reducing measurement uncertainty. 

The blue and green pipes move with the object of interest and 

allow the camera system to determine orientation. This novel 

design enhances the matching of features across multiple images, 

especially in the presence of complex, industrial backgrounds. 

The smart target is mounted on the object of interest, for 

example, the end effector or tool of a robot arm, or the last link 

of a machine tool to measure and track the object’s 6-D position 

and orientation. The smart target provides: 

1) High accuracy. Traditional targets have large uncertainty 

in measuring orientation. The most common traditional targets 

for vision systems are spheres. With infrared camera systems, the 

spheres are coated with reflective material or wrapped with 

reflective tapes. The center of the sphere is the feature to be 

measured. Multiple spheres are put together to define a 

coordinate frame. One sphere center may be used to define the 

origin of the coordinate frame. An axis is defined by two spheres 

centers. For this type of target, the measurement uncertainties of 

the sphere center are transferred one-to-one to the coordinate 

origin definition. Since only two points are used to define the 

axial direction, the angle measurement uncertainties are enlarged 

since a small distance error of the sphere center can create a large 

angular error. On the contrary, the axial direction of the smart 

target is defined using many points along the cylindrical target’s 

centerline. Thus, the constructed center line is more accurate by 

fitting multiple points instead of only two points. For the same 

reason, the origin of the coordinate is created by intersecting two 

centerlines, which leads to an accuracy increase of 3 times 

compared to the traditional method of defining the origin using 

a sphere center. Moreover, extra features of the light pipe, 

including the fixed-wavelength color, the edge features of 

cylinders, etc., give more redundant information to improve the 

line detection accuracy.  

2) Non-blocking measurement design to measure both static 

and dynamic robot tool center point (TCP) data. Traditional 

targets have the problem of bad pose (perpendicular to the 

Figure 2. NIST designed smart target 
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camera) when the target pose is not sensitive to camera 

measurement, or the target may block itself in some poses. The 

smart target has the red cross mounted on rotary axes. The red 

cross can constantly rotate toward the measurement system. The 

red cross center is defined as the coordinate system’s origin. The 

rotation mechanism makes the smart target’s origin good for 

measurement in different views without self-blocking. 

3) A unique definition of a coordinate frame. Traditional 

spherical targets do not have a unique definition of a frame. With 

the bad pose problem, spheres that define the origin may be 

blocked for measurement. Traditional sphere targets usually use 

best-fit transformation to find translation and rotation of two sets 

of center points. Best-fit usually uses the minimum least square 

errors for the conversing condition, thus not guaranteeing the 

consistent and minimum error for the origin. The 6-D smart 

target has a consistent and unique definition of a frame to avoid 

confusion when multiple coordinates exist in a system. 

The 6-D smart target allows the continuous measurement of 

the 6-D information of a moving object with high accuracy. 

Applications of the smart target can be any general measurement 

system that requires high accuracy 6-D information of a moving 

object, for example, the robot and machine calibration, or 

multiple machines/tools/objects registrations, or adaptive objects 

location for unplanned adaptive control, or precisely tracking the 

pose of an object. 

SOFTWARE TOOL DEVELOPMENT 
A software tool is needed to process smart target-captured 

images, extract features, and output 6-D data. Software 

development was divided between creating a graphical user 

interface (GUI) to interface with the stereo camera system and 

designing and implementing an image processing algorithm to 

identify the smart target and determine its position using stereo 

images. 

The GUI interfaces with the stereo camera system to allow 

for image processing is shown in Fig. 3. The software 

implements basic features such as image capture from each 

camera, video recording from one or both cameras, video 

playback, live video feeds, and smart target identification. An 

event handler responds to cameras connecting and 

disconnecting, as well as image transfer including transfer errors. 

The software receives images from the two cameras, displays 

them, and processes them as the user desires.  

Figure 3. GUI to interface with the stereo camera system 

 

While the GUI is receiving images from the cameras, the 

smart target can be tracked. An area of interest is drawn around 

the smart target in the live video feeds on the GUI to indicate the 

portion of the image to be used for further processing for location 

and orientation.  

The image processing algorithm uses multiple layers of 

processing to identify the smart target and extract its location in 

3D space. A software filter is applied to images from the two 

cameras to accentuate the red, blue, and green colors of the smart 

target. The filter accentuates both the horizontal and vertical 

cylinders of the red cross so the two can be distinguished. In each 

image, an area of interest (AOI) is found that encompasses the 

entire target as shown in Fig. 4 (a). The AOI reduces the size of 

the frame that must be further processed to reduce processing 

time for each frame.  

To find the AOI, a threshold filter is applied to identify the 

bright smart target. A morphological opening is also applied to 

reduce noise and to remove unwanted pixels that pass through 

the threshold filter. The detected AOI is drawn on top of live 

video feed on the GUI to display the part of the frame that will 

be processed further. To identify the three parts of the smart 

target and differentiate them based on color, a HSV filter is used. 

The three parts of the smart target can be identified (as shown in 

Fig. 4 (b)).  

The next important part of the image processing is to 

identify the center lines of the green and blue cylinders and the 

center point of the red cross. The center of the red cross is found 

by finding the intersection of the lines running through the center 

of the red cross. A Laplacian of Gaussian (LOG) filter is applied 

to each colored part of the smart target. The filter marks the edges 

of the cylinder by a sharp jump from negative intensity to 

positive intensity. The zero crossing on each edge can be found 

and from there the centerline. Zero crossings on either side of the 

cylinder correspond with a point along the center of the cylinder. 

A line of best fit is found through the center points (Fig. 5 (a)). 

The center points, shown in black in Fig. 5 (a), come from the 

(a) (b) 

Figure 5. Feature detection of the smart target 

(a) (b) 

Figure 4. Identify target from complex background 
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edges of the cylinder. The line of best fit, shown in white in Fig. 

5 (a), is found from the center points.  

The red cross presents a challenge due to its more complex 

shape and unequal lighting. One cylinder of the red cross is 

evenly lit while the other is dim and uneven. This requires 

different processing techniques for the two parts. The evenly lit 

section of the cross is processed the same way as the blue and 

green cylinders using a LOG filter. The output of the Laplacian 

of Gaussian filter is shown in Fig 5 (b). The bright cylinder of 

the cross is the horizontal cylinder in Fig. 5 (b), and the dark 

cylinder is the vertical cylinder.  

After the LOG filter, the two edges of the cylinder are found, 

then the center points, and the line of best fit of the centerline. 

The darker cylinder of the red cross is processed using a Canny 

filter to clearly identify the weaker edges of the vertical cylinder 

as shown in Fig. 6 (a). The Canny filter is not used in place of 

the LOG filter in other parts of the processing as it is prone to 

noise and weak edges found in the background. The LOG filter 

is more effective at singling out the edges of the bright cylinders. 

The results of the two processing methods for the cross are 

combined to find the center point of the red cross (Fig. 6 (b)). To 

determine the smart target position in 3D space, the location of 

the red cross center point, and the line of best through the green 

and blue cylinders are used from the two stereo images. The 

image pixel coordinates of the red cross and equations of the two 

lines are undistorted and normalized to using parameters from 

the camera calibration to account for distortion in the camera 

lenses. Camera calibration is determined beforehand and loaded 

into the GUI for processing. The camera calibration includes 

information such as focal length, rotation matrix, and translation 

vector between the two stereo cameras.  

The 2-D to 3-D construction uses two cameras calibrated 

poses (not detailed in this paper). In each camera, a vector is 

found from the pinhole camera origin to the cross center. The 

intersection of the two vectors is found as the location of the red 

cross in 3D space as shown in Fig. 7. 

For both green and blue cylinders from the two images, a 

plane is found using the origin and the specific line. The line of 

intersection of the corresponding blue or green planes between 

the two frames is found. This line of intersection is the centerline 

through the green or blue cylinder in 3D space.  

The position information about the smart target can be 

displayed on the GUI and will update with each new pair of 

images from the cameras. The position data is also written to a 

user-specified file with a timestamp. The next step is to optimize 

the algorithm to speed up the calculation. To capture dynamic 

movement, the measurement speed needs to be above 30 frames 

per second. Adding GPU (Graphics Processing Unit) and parallel 

calculation will help to speed up the image processing process.  

 

USE CASE DEVELOPMENT 
NIST is developing a quick health assessment methodology 

using a smart target to assess the accuracy degradation of the 

TCP throughout the robot workspace. The methodology includes 

the advanced sensing development (the smart target) to acquire 

the robot TCP’s 6-D information, a test method to define the 

robot movements and a robot error model to reflect the robot 

geometric and non-geometric errors, and algorithms to process 

measured data to assess the robot’s accuracy degradation. 

As shown in Fig. 8 (a), the 6-D smart target is mounted on 

the last joint of the UR3 robot. A vision-based measurement 

instrument is set up in the environment, which is at the opposite 

end of the kinematic chain from the target. The idea is to compare 

the measured TCP position to nominal positions. A set of 

predefined robot movements is created (as shown in Fig. 9) 

based upon the robot’s kinematics, geometry, available working 

volume, and expected operational activities. The left picture of 

Fig. 9 shows the generation of the target positions. The right 

picture of Fig. 9 shows the simulation of the robot moving to the 
(a) (b) 

Figure 6. Center point identification on red cross 

Figure 8. Use case setup for robot quick health assessment 

Figure 7. Intersecting vectors from pinhole 

cameras to center of the red cross 

 



 6  

planned positions with collision detection algorithms embedded. 

Unreachable positions or positions having collision problem is 

removed and updated in the display. The robot movement is 

measured by the vision-based instrument. The measured TCP 6-

D data is used to calculate the deviations from robot normal 

positions. The calculated deviations are input into the robot error 

model. The error model handles both the geometric/non-

geometric errors and the uncertainties of the measurement 

system. An algorithm is developed to process the data to assess 

the robot’s accuracy degradation [15]. The first output is the 

derived error from the calculation of the robot tool center 

accuracy of the robot through the workspace Fig. 8 (b). The 

results are more accurate because they are derived from the error 

model instead of directly calculating from the limited size of 

sample measurements. This output can be used to view the 

overall accuracy of a robot within the working volume and find 

the sweet zone of the robot where the accuracy is suitable for 

production. The second output is the identified maximum 

likelihood estimation of axis error parameters. By observing the 

error pattern, users can monitor the change of robot accuracy. 

Further analysis can be used to identify the potential error 

sources of the given errors (for example, zero shift of a joint 

encoder).  

The quick health assessment can be used to swiftly (within 

10 minutes) detect degradations in robot accuracy by finding the 

robot pose deviations from the nominal poses. The use of this 

methodology will monitor the degradation of robot performance, 

reduce unexpected shutdowns, and help the optimization of 

maintenance strategy to improve productivity.  
 
CONCLUSION  

Accuracy degradation impacts machine/robot’s 

performance. NIST’s development of smart target can be 

integrated with a vision system to acquire high accuracy position 

and orientation information of a moving object, allowing for 

machine/robot’s accuracy degradation assessment and accuracy 

improvement. This paper presented the novel design of the smart 

target and a software tool. With smart target’s measurement, 

deviations of machine/robot position and orientation are 

quantified, leading to more accurate calibration or control, 

improving overall performance. NIST is seeking to develop 

additional industrial use cases for further applications. 

 

NIST DISCLAIMER 
Certain commercial entities, equipment, or materials may be 

identified in this document in order to illustrate a point or 

concept. Such identification is not intended to imply 

recommendation or endorsement by NIST, nor is it intended to 

imply that the entities, materials, or equipment are necessarily 

the best available for the purpose. 
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