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Abstract 

Partition coefficients describe the relative concentration of a chemical equilibrated between two phases. In the 

design of air samplers, the sorbent-air partition coefficient is a critical parameter, as is the ability to extrapolate 

or predict partitioning at a variety of temperatures.  Our specific interest is the partitioning of plant-derived 

terpenes (hydrocarbons formed from isoprene building blocks) and terpenoids (with oxygen-containing functional 

groups) in polydimethylsiloxane (PDMS) sorbents. To predict 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  as a function of temperature for 

compounds containing carbon, hydrogen, and oxygen, we developed a group contribution model that explicitly 

incorporates the van’t Hoff equation. For the 360 training compounds, predicted 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values strongly 

correlate (R2 > 0.987) with 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values measured at temperatures from 60 °C to 200 °C. To validate the 

model with available literature data, we compared predictions for 50 additional C10 compounds, including 6 

terpenes and 22 terpenoids, with 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values measured at 100 °C and determined an average relative error 

of 3.1 %. We also compared predictions with 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values measured at 25 °C. The modeling approach 

developed here is advantageous for properties with limited experimental values at a single temperature. 

 

 

 



Introduction 

Passive air sampling is an important technique for characterizing exposure to hazardous chemicals in indoor 

and outdoor environments.1-3 Commercially-available personal exposure badges utilize activated carbon sorbents 

and are generally intended to capture industrial chemicals such as benzene, toluene, ethylbenzene, and xylenes 

(BTEX). Direct capture of vapor samples (e.g., with evacuated canisters) can also be effective for volatile organic 

chemicals but may not be effective for semi-volatile chemicals present in lower concentrations. For these 

chemicals, sampling schemes rely on capture and concentration by a sorbent material. Passive air samplers may 

utilize activated carbon, polyurethane foam, styrene-divinylbenzene copolymer resins, semi-permeable 

membranes filled with triolein, or polydimethylsiloxane (PDMS) sheets.1-5 With the exception of activated 

carbon, these materials are intended to capture persistent organic pollutants (POPs) such as polybrominated 

diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and 

organochlorine pesticides (OCPs). Interestingly, butter acts as an indirect sampling matrix for POPs that are 

captured from the air by pasture crops and fed to livestock, allowing them to concentrate in milk fats.6    

Passive headspace sampling is a related technique that permits volatile or semi-volatile organic chemicals to 

be extracted from a complex solid or liquid matrix, concentrated, and released for identification. Sampling 

schemes often rely on capture by a sorbent material because direct capture of vapor samples (e.g., with gas-tight 

syringes) does not permit the detection of trace chemicals. For example, in current forensic science practice, the 

headspace of fire debris is sampled with activated carbon, which must be eluted with solvent to recover the 

adsorbed chemicals. Headspace solid phase microextraction (SPME) was developed as a solvent-free alternative 

in which adsorbed chemicals can be recovered by heating.7 This technique utilizes a short (1 cm long), sorbent-

coated glass fiber that is retracted into a stainless steel needle for protection once adsorption is complete. PDMS 

or other sorbents coat the fiber; PDMS is valued for its ability to capture a wide range of organic chemicals and 

withstand high injector temperatures. SPME has been applied to simulated fire debris samples8 and illicit drugs 

and explosives.9 Capillary microextraction of volatiles (CMV) is a related technique that utilizes a wide (2 mm 

diameter, 2 cm long) glass capillary packed with PDMS-coated glass microfibers, resulting in high surface area 

and sampling capacity.10 Equilibration is accelerated by forcing headspace air through the capillary. Depending 

on the target analyte and matrix, the equilibration time can be reduced to as little as 30 s. Breath collection devices 

were recently created by connecting CMVs to a mouth piece to capture organic chemicals from the exhaled breath 

of cigarette smokers.11 

The uptake profile of a passive air sampler has three regions. Mathematical models to predict uptake have been 

described in detail by others4 and will only be discussed briefly here. The concentration of a target analyte in the 

sorbent initially increases linearly with time (kinetic region) but eventually equilibrates (thermodynamic region). 

The linear uptake region is often considered to end when the sampler has accumulated 25 % of the eventual 

equilibrium value. Similarly, when the sampler has accumulated 95 % of the eventual equilibrium value, it is in 



the thermodynamic region. The transition region from approximately 25 % to 95 % of capacity requires 

consideration of kinetics and thermodynamics. In the kinetic region, Eq. 1 defines the mass of target analyte 

captured by the sorbent (𝑀𝑠𝑜𝑟𝑏𝑒𝑛𝑡).  

𝑀𝑠𝑜𝑟𝑏𝑒𝑛𝑡 = 𝑘𝑎𝑖𝑟𝐴𝑠𝑜𝑟𝑏𝑒𝑛𝑡𝐶𝑎𝑖𝑟𝑡 [1] 

In this equation, 𝑘𝑎𝑖𝑟 is the air-side mass transfer coefficient (cm/s), 𝐴𝑠𝑜𝑟𝑏𝑒𝑛𝑡 is the planar area of the exposed 

sorbent material (cm2), 𝐶𝑎𝑖𝑟 is the concentration of target analyte in air (ng/cm3) and 𝑡 is the sampling time (s). 

The sampling rate, 𝑅𝑠 = 𝑘𝑎𝑖𝑟𝐴𝑠𝑜𝑟𝑏𝑒𝑛𝑡, which has units of cm3/s, provides a sense of how much air is sampled by 

the sorbent. In the thermodynamic region, Eq. 2 defines the sorbent-air partition coefficient (𝐾𝑆𝑂𝑅𝐵𝐸𝑁𝑇 𝐴𝐼𝑅⁄ ), 

which is dimensionless. 𝐶𝑠𝑜𝑟𝑏𝑒𝑛𝑡 is the measured concentration of target analyte in the sorbent (ng/cm3) and one 

can calculate 𝐶𝑎𝑖𝑟 if 𝐾𝑆𝑂𝑅𝐵𝐸𝑁𝑇 𝐴𝐼𝑅⁄  is known.  

 
𝐾𝑆𝑂𝑅𝐵𝐸𝑁𝑇/𝐴𝐼𝑅 =

𝐶𝑠𝑜𝑟𝑏𝑒𝑛𝑡
𝐶𝑎𝑖𝑟

 [2] 

Passive air samplers can be designed to operate in either region. To sample in the kinetic region, the capacity 

of the sorbent must be high enough to avoid reaching the transition (or curvilinear) region. Personal exposure 

badges generally operate in the kinetic region; manufacturers provide 𝑅𝑠 values and maximum sampling times 

for each chemical that can be sampled by their badges. Generic, chemical-independent 𝑅𝑠 values have also been 

proposed for chemicals predominantly found in the vapor-phase rather than the particle-phase.5,12 To sample in 

the thermodynamic region, the sorbent configuration must facilitate rapid equilibration. PDMS-coated glass fibers 

(100 µm sorbent thickness) equilibrate with volatile organic chemicals within minutes to hours,13,14 whereas 

PDMS sheets (104 µm sorbent thickness) might require years to equilibrate with semi-volatile chemicals.15 

Ethylene vinyl acetate has been coated onto glass to create thin films that equilibrate with POPs within days or 

weeks.16 For environmental monitoring, one advantage to operating in the thermodynamic region is that once 

equilibrium is reached, samplers can be retrieved at any time. More analyte mass is generally recovered, leading 

to a lower detection limit. However, the same sorbent may be in the kinetic region with respect to some analytes 

and in the thermodynamic region with respect to others.4 Partition coefficients are needed for two purposes: to 

estimate the duration of the kinetic region and to calculate equilibrium concentrations in the thermodynamic 

region during adsorption or desorption. 

There are several approaches to determining partition coefficients, depending on the sorbent and analyte(s) of 

interest. 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  can be measured by equilibrating PDMS-coated fibers13,14,17,18 or other PDMS-coated 

materials19 with single compounds or mixtures. Sorbent thickness does not matter if equilibrium is achieved.17 

For semi-volatile compounds, constant linear airflow has been utilized to reduce the equilibration time.17 

𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  can also be measured by isothermal gas chromatography and extrapolated to lower temperatures within 

the linear range of the van’t Hoff equation. For example, Okeme et al. determined 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  for 76 semi-volatile 



organic compounds at temperatures from 60 °C to 190 °C and extrapolated these values to 25 °C.15 Such 

measurements, again, do not depend on the stationary phase (sorbent) thickness because the specific retention 

volume is normalized by the stationary phase volume; however, the accuracy of stationary phase dimensions must 

be verified.20 Furthermore, extrapolation can introduce errors because the relationship between log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  

and 1 𝑇⁄  may not be linear over a large range of temperatures.  

Semi-empirical prediction approaches have also been developed – most commonly a polyparameter linear free 

energy relationship (ppLFER) equation that models solute transfer between two phases at a single 

temperature.21,22 For gas-liquid partition coefficients, this approach includes five solute descriptors: excess molar 

refractivity (E), dipolarity/polarity (S), hydrogen bond acidity (A) and basicity (B), and the logarithm of the 

Ostwald partition coefficient (L) into hexadecane at 298 K. The predictive equation has the form log K = c + eE 

+ sS + aA + bB + lL, where c, e, s, a, b, and l are sorbent-specific constants. Solute descriptors must be measured 

or predicted; sorbent-specific constants are determined by regression with training compounds for which the 

partition coefficient is known. Starting with 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for 142 training compounds, Sprunger et al. 

developed a ppLFER equation to predict 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  at a single temperature (25 °C).23 Okeme et al. applied the 

equation developed by Sprunger et al. to 76 compounds; the authors concluded that the semi-empirical ppLFER 

approach was more successful than the theoretical COSMO-RS approach in predicting 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  at 25 °C.15 To 

predict 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  at other temperatures, sorbent-specific constants must be determined from 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values 

at these temperatures, essentially developing a ppLFER equation at each temperature. Analogous ppLFER 

equations have been developed to predict the enthalpy of sorption (ΔHS) on polyurethane foam24 and styrene-

divinylbenzene resin.25 Although ΔHS predictions can be used to adjust log𝐾 values to different temperatures, 

thus far training compounds have been limited (N < 55) and the quality of the correlation has been similarly 

limited (R2 ~ 0.85).24,25 

Group contribution models are based on the concept that pure component thermophysical and transport 

properties can be predicted solely by molecular structure. Group contribution models are additive – the 

contributions of each group, multiplied by its frequency within the compound, are summed to give the value for 

the pure compound.26 While property data for training compounds are required to determine group contributions 

by regression, solute descriptors are not required. Joback & Reid27 predicted temperature-independent properties 

such as the enthalpy of vaporization (Hv, widely used for the design of vapor-liquid equilibrium-based processes) 

with 41 first-order groups. Their approach was expanded to treat compounds of greater complexity by additional 

first-order groups, second-order groups28 and third-order groups.29,30 While first-order groups describe the entire 

molecule with small, non-overlapping groups, second-order groups typically do not describe the entire molecule 

and may overlap. Second-order groups were created to provide more information for aliphatic and aromatic 

compounds with one ring, and to distinguish between isomers. Similarly, third-order groups were created for 

polycyclic compounds. Octanol-water partition coefficients (KOW, a measure of lipophilicity that influences 



biodistribution and environmental fate) have been predicted at 25 °C with models containing second-order 

groups31 and third-order groups.32 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  has not been modelled by group contribution methods.26  

Identification or quantitation of plant-derived compounds by vapor-phase analysis is important for determining 

intoxication, monitoring the air quality of indoor cannabis production facilities, and enforcing legal limits for 

cannabis possession. Cannabis plant material can be distinguished from similar plants by its major cannabinoids 

(-9-tetrahydrocannabinol or cannabidiol); however, cannabinoids have low vapor pressures33 and only small 

quantities will be captured at ambient temperatures. Furthermore, highly-odorous compounds which may be 

important for cannabis detection by humans or trained canines are not necessarily the compounds present in the 

highest concentration in the vapor phase.34,35 Recent investigations indicated that three sesquiterpenes (-

santalene, valencene, and -bisabolene) are unique to cannabis,36 suggesting that terpenoids may be effective 

markers for cannabis for some applications. Cigarette smokers were distinguished from non-smokers by twelve 

chemicals in their exhaled breath, including the terpenes -myrcene and limonene and the terpenoid citral.11 

Nicotine alone was a poor indicator of recent smoking, whereas detection of multiple chemicals in combination 

was more successful.11 Recent cannabis users are likely to exhibit analogous differences in their breath profiles 

compared to non-users.  

We are interested in quantitative measurements of exhaled breath, indoor environments such as greenhouses, 

isolated plant material, and thermal desorption of adsorbed compounds. These applications require partition 

coefficients at breath temperature (34 °C), greenhouse temperature (21 °C to 27 °C), or ambient temperature (-40 

°C to 40 °C). Higher temperatures (60 °C to 80 °C) may be employed for passive headspace sampling in the lab, 

while 200 °C may be an appropriate desorption temperature for many compounds. Our goal is to enable prediction 

within the range 20 °C to 200 °C. In this work, we developed a group contribution model with 18 first-order 

groups to predict 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  as a function of temperature. We created the model with data from 360 training 

compounds and validated the model at 100 °C with 50 additional C10 compounds. 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for the 

training compounds were calculated from Kovats retention indices and isothermal gas chromatography 

measurements at temperatures from 60 °C to 200 °C. The 360 training compounds contain only carbon, hydrogen, 

and oxygen, reflecting our interest in phytochemicals such as terpenoids. For the 360 training compounds, 

𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values predicted by the resulting model correlate with measured 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values (R2 > 0.987). For 

the 50 additional C10 validation compounds, 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values predicted at 100 °C have an average relative error 

of 3.1% compared to measured 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values. We find that the modeling approach developed here is 

advantageous for properties with limited experimental values at a single temperature.  

 

 



Materials and Methods 

Determining partition coefficients by IGC (isothermal gas chromatography). We can calculate 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  

from isothermal retention times when the stationary phase is the sorbent of interest (Eq. 3).37 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values 

have been determined by this method for volatile organic compounds (n-alkanes and substituted benzenes)20 and 

semi-volatile organic compounds containing bromine, chlorine, and/or phosphate functional groups.15 

 
𝐾𝑃𝐷𝑀𝑆/𝐴𝐼𝑅 =

𝐹(𝑡𝑎𝑛𝑎𝑙𝑦𝑡𝑒 − 𝑡𝑡𝑟𝑎𝑐𝑒𝑟)

𝑉𝑃𝐷𝑀𝑆
 [3] 

In Eq. 3, 𝐹 is the flow rate of mobile phase (mL/min), 𝑡𝑎𝑛𝑎𝑙𝑦𝑡𝑒 is the retention time of the analyte (min), 𝑡𝑡𝑟𝑎𝑐𝑒𝑟 

is the retention time of a non-retained chemical (min), and 𝑉𝑃𝐷𝑀𝑆 is the volume of the liquid stationary phase 

(mL). 𝐹 was calculated at each temperature by measuring the flow rate of nitrogen carrier gas with a bubble 

flowmeter and applying corrections for water vapor and gas compressibility. 𝑉𝑃𝐷𝑀𝑆 was calculated from the 

column dimensions and the manufacturer-specified stationary phase thickness. Retention times were determined 

with a flame ionization detector and the non-retained tracer was methane for all experiments. For isothermal 

measurements, the practical temperature range depends on the compound of interest, because long retention times 

result in wide chromatographic peaks that are difficult to distinguish from baseline and short retention times result 

in peaks that cannot be distinguished from the non-retained tracer. Retention time measurements for C6 to C16 n-

alkanes were made at a series of temperatures from 60 °C to 200 °C, with at least 5 temperatures spanning a range 

of at least 60 °C for each chemical. For example, hexane was measured at temperatures from 60 °C to 140 °C, 

whereas hexadecane was measured from 140 °C to 200 °C. We employed an Agilent 6890 gas chromatograph 

with a flame ionization detector and ChemStation software. The J&W Scientific DB-1 capillary column had an 

inner diameter of 0.25 mm and a stationary phase thickness of 0.1 µm. The column was 29.0 m in length. Nine 

replicate measurements were made at each temperature. We calculated average retention times (𝑡𝑥 = 𝑡𝑎𝑛𝑎𝑙𝑦𝑡𝑒 −

𝑡𝑡𝑟𝑎𝑐𝑒𝑟) and average 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for use in Eq. 4 and Eq. 8, respectively, as will be described. 

Determining partition coefficients by combining IGC with literature 𝑰𝒙 values. Kovats retention indices 

(𝐼𝑥) convert isothermal retention times into dimensionless values by normalizing the retention time of any analyte 

by the retention times of the n-alkanes that elute before and after it.38 We can calculate the retention time for our 

experimental conditions if 𝐼𝑥 has been reported for a column with equivalent stationary phase chemistry (Eq. 4). 

This equation is simply a rearrangement of the equation defining the Kovats retention index. In Eq. 4, 𝑡𝑛 and 𝑡𝑁 

are the retention times of n-alkanes with 𝐼𝑛 < 𝐼𝑥 < 𝐼𝑁 , where 𝑛 and 𝑁 are the number of carbons in the smaller 

and larger n-alkanes, respectively. Importantly, data from capillary or packed columns can be employed and 

experimental parameters such as column dimensions, stationary phase thickness, mobile phase flow rate, and/or 

pressure can be different. Once 𝑡𝑥 is obtained for our experimental conditions, we calculate 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  from Eq. 

3. 



 
𝑙𝑜𝑔𝑡𝑥 = (

𝐼𝑥
100

− 𝑛) (𝑙𝑜𝑔𝑡𝑁 − 𝑙𝑜𝑔𝑡𝑛) + 𝑙𝑜𝑔𝑡𝑛 [4] 

We determined 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for a series of n-alkylbenzenes by both methods and compared them to 

values reported by Kloskowski et al.20 (Fig. 1). Note that benzene could not be measured at 200 °C because it did 

not separate sufficiently from the non-retained tracer. At higher temperatures (150 °C and 200 °C), there is greater 

variability in the measured 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values, which suggests that temperature is the greatest source of 

uncertainty. The correspondence between our 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for benzene, toluene, and ethylbenzene and 

values for these compounds measured with three stationary phases by Kloskowski et al.20 provides verification of 

our stationary phase volume. The data in Fig. 1 also clearly demonstrates that 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values determined by 

combining IGC measurements with literature 𝐼𝑥 values (Eq. 4 and Eq. 3) are equivalent to 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values 

determined by IGC measurements alone (Eq. 3). This is important because we need 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for a diverse 

set of training compounds and the second approach enables us to utilize Kovats retention indices reported by other 

laboratories. Kovats retention indices were identified through the NIST Chemistry Webbook39 for stationary 

phases equivalent to 100% polydimethylsiloxane. 

 

Figure 1. Log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  as a function of 1 / T [K] for a series of n-alkylbenzenes. IGC (Eq. 3) was 

conducted at 50 °C, 75 °C, 100 °C, 150 °C, and 200 °C. Nine measurements are shown at each 

temperature. IGC was combined with literature Ix values (Eq. 4 and Eq. 3) at 60 °C, 80 °C, 100 °C, 

120 °C, 140 °C, 160 °C, and 180 °C. Only the regression lines are shown. Average values reported 

by Kloskowski et al. include columns with 1 µm, 5 µm, and 18 µm thick stationary phases.20 

Abbreviations: B = benzene; T = toluene; EB = ethylbenzene, PB = propylbenzene; BB = 

butylbenzene. 

 

Model development and evaluation. Fig. 1 demonstrates that log 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  is proportional to 1 𝑇⁄  over the 

temperatures investigated, in accordance with the van’t Hoff equation (Eq. 5). Therefore, the slope (proportional 



to HS, the enthalpy of sorption) and intercept (proportional to SS, the entropy of sorption) can be determined 

by linear regression, permitting 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values to be calculated at temperatures of interest within the linear 

range of the van’t Hoff equation. Eq. 5 provides the starting point for a group contribution model that explicitly 

incorporates temperature dependence by predicting the slope and intercept as a function of molecular structure. 

We determined 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values by Eq. 3 for 21 training compounds, which included 11 n-alkanes and 10 

compounds with aldehyde and/or ether groups. We determined 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for all other training compounds 

by Eq. 4 and Eq. 3. To do this, we first identified compounds with 𝐼𝑥 = 600 – 1600 at three or more temperatures 

from the following: 60 °C, 80 °C, 100 °C, 120 °C, 140 °C, 150 °C, 160 °C, 180 °C, and 200 °C. We calculated 

𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  from each 𝐼𝑥 value and plotted log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  vs. 1 𝑇⁄  for each compound. We used these plots to 

verify that 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values are consistent with the van’t Hoff equation by examining the R2 values resulting 

from linear regression for the slope and intercept. We eliminated compounds with R2 < 0.95 from the training 

data. One compound was eliminated by this quality control check: -phellandrene (R2 = 0.87). The remaining 

339 compounds were added to the 21 compounds described above, resulting in 360 training compounds 

(Supplementary Table S1). Apart from the n-alkanes which ranged from C6 to C16, training compounds ranged in 

size from C4 alcohols to C15 terpenes.  

𝑙𝑜𝑔𝐾𝑃𝑅𝐸𝐷 =
𝑆𝑙𝑜𝑝𝑒

𝑇
− 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 [5] 

𝑆𝑙𝑜𝑝𝑒 = 𝑆 +∑𝑛𝑖

18

𝑖=1

𝑆𝑖 [6] 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝐼 +∑𝑛𝑖𝐼𝑖

18

𝑖=1

 [7] 

∑(𝑙𝑜𝑔𝐾𝑃𝑅𝐸𝐷 − 𝑙𝑜𝑔𝐾𝑀𝐸𝐴𝑆)𝑗
2

𝑁

𝑗=1

 [8] 

We selected 18 first-order groups to describe the molecular structure of each training compound. For each 

training compound at each temperature, we predicted log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  with the van’t Hoff equation (Eq. 5). In this 

equation, the slope (Eq. 6) and intercept (Eq. 7) are the sum of contributions by first-order structural groups, 𝑆𝑖 

and 𝐼𝑖, respectively, multiplied by their frequency, 𝑛𝑖, and T is the absolute temperature. To determine values of 

𝑆𝑖 and 𝐼𝑖 for the 18 first-order groups, we minimized the sum of the squared errors (Eq. 8). We applied a multistart 

approach to run a generalized reduced gradient (GRG) local solver from multiple starting points to reach a solution 

with high probability of being a global solution. N = 1625 and is greater than the number of training compounds, 

because each compound at each temperature generates a squared error. We chose this approach to minimize the 

error of the value we wish to predict (𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄ ) without reducing the model input to two values per compound. 



In this way, compounds measured at more temperatures were weighted by the model more than compounds 

measured at fewer temperatures. 

 

Results and Discussion 

Group Contribution Model with 18 Groups. The groups utilized here were compared with first-order groups 

utilized for carbon, hydrogen, and oxygen containing compounds by Joback & Reid (25 groups total),27 Marrero 

& Gani (64 groups total),32 and Stefanis et al. (37 groups total)31 (Supplementary Table S2). There are significant 

differences in group definitions. Joback & Reid27 define five cyclic groups for aliphatic and aromatic rings. 

Marrero & Gani32 use cyclic groups for aliphatic rings only, whereas Stefanis et al.31 do not define any cyclic 

groups for aliphatic rings. Marrero & Gani32 and Stefanis et al.31 both define groups for aromatic carbons, but 

Marrero & Gani32 define a variety of additional groups for substituents that replace hydrogen (e.g. aromatic carbon 

bound to alcohol, methoxy, acetyl, aldehyde, or acetate). Stefanis et al.31 define only five such substituents and 

delineate fewer groups in general (e.g., compare ethers, ketones, and esters). Our groups match the Joback & 

Reid27 groups, however, we utilized only one ether group and one ketone group due to the limited number of 

training compounds with these groups (18 and 12, respectively). Furthermore, the training compounds contain 

only one compound with a cyclic ether group (eucalyptol) and one compound with a cyclic ketone group 

(cyclohexanone).  

Table 1. First-order groups and their contributions to the slope and intercept. 

Group Slope (Si) Intercept (Ii) 

CH3 144.865 0.221633 

CH2 174.012 0.203179 

CH 175.625 0.222433 

C 135.718 0.127316 

=CH2 177.947 0.348045 

=CH 128.264 0.089427 

=C 241.677 0.272969 

CH2 (cyc)a 160.692 0.170520 

CH (cyc) 123.224 0.063547 

C (cyc) 96.295 0.075337 

=CH (cyc) 158.186 0.171851 

=C (cyc) 223.060 0.225132 

OH (alcohol) 339.926 0.415119 

OH (phenol) 480.871 0.783309 

O 192.570 0.209433 

CO 411.400 0.398990 

CHO 398.877 0.431350 

COO 459.731 0.519668 

CONSTANT 578.918 1.500359 
aSpecifies groups found within a ring structure, which includes aromatic rings. 



Group contributions (Table 1) are provided with six digits to avoid roundoff error when these values are used 

for prediction. To qualitatively examine model performance, correlation plots were separated based on functional 

groups (Fig. 2). Compounds in the plots for alkanes-alkenes, isoalkanes, cycloalkanes, or aromatic hydrocarbons 

appear only once, whereas compounds may appear more than once in the plots for alcohols-phenols, aldehydes-

ketone-ethers, esters, or terpenoids, based on multiple oxygen-containing groups. For example, vanillin contains 

a phenol group, an aldehyde group, and an ether group, and therefore appears in two plots. Furthermore, each 

compound generates several pairs of predicted/measured values – one at each temperature included in the training 

data. Fig. 2 indicates the absolute error between model predictions and measurements in the form of vertical 

distance from the solid black line. For an individual compound, higher log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values are associated with 

lower temperatures. Predictions for the simplest compounds, alkanes and alkenes, require only three groups and, 

not surprisingly, have small absolute errors. Predictions for esters, which includes linear esters and benzoates, 

and therefore many more groups, also have small absolute errors. The model systematically underpredicts a subset 

of isoalkanes, whereas aromatic hydrocarbon outliers are both under- and over-predicted. Note that aromatic 

hydrocarbons include fused ring compounds such as indane and naphthalene. Compounds with alcohol, phenol, 

aldehyde, ketone, or ether functional groups have the largest absolute errors, which may reflect the simplified 

group assignments, the limited number of training compounds with these functional groups, or the presence of 

multiple oxygen-containing groups.  

 

Figure 2. Correlation between predicted log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values and measured log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values 

for 360 training compounds. Solid black lines indicate 1:1 correspondence. Solid blue lines are 

regression lines. 

 

Model performance statistics (Table 2) indicate that the overall correlation between predicted and measured 

values is high (R2 > 0.987). Many of the qualitative observations from Fig. 2 are quantified here; for example, the 



average absolute error (AAE) of 0.07 log units for compounds with alcohol or phenol groups indicates lower 

predictive capability for these compounds. However, the maximum absolute error (AEMAX) is equal to 0.3 log 

units for individual compounds with a variety of functional groups, suggesting that model performance could be 

improved by a variety of approaches. AAE is frequently utilized to compare the performance of different models 

when the training compounds remain the same. For example, Marrero & Gani32 developed a three-level group 

contribution model to predict KOW at 25 °C with a diverse set of more than 9500 training compounds. AAE for 

the training data decreased from 0.35 log units when first-order groups were employed, to 0.27 log units and 0.24 

log units when second-order and third-order groups, respectively, were included. AAE for the training data 

modeled here is nearly an order of magnitude smaller (0.05 log units) but cannot be directly compared because 

the training compounds were different.  One advantage to creating small models for compounds of interest rather 

than large, inclusive models is minimizing absolute errors. Average relative error (ARE) provides an estimate of 

uncertainty for model predictions based on the functional groups involved, meaning that predictions for a 

compound with an ester group have lower uncertainty than predictions for a compound with aldehyde or alcohol 

groups.  

Table 2. Statistical performance of the group contribution model. 

COMPOUNDS N R2 SDa AAEb AEMAX AREc RE > 5%d 

Alkane-Alkene (18) 102 0.998 0.04 0.02 0.1 1.4 1 

Isoalkane (29) 121 0.987 0.07 0.05 0.2 3.0 4 

Cycloalkane (30) 128 0.985 0.06 0.05 0.2 2.6 2 

Aromatic Hydrocarbon (71) 318 0.984 0.07 0.05 0.3 2.2 3 

Alcohol-Phenol (66) 306 0.979 0.09 0.07 0.3 3.2 8 

Aldehyde-Ketone-Ether (43) 183 0.974 0.09 0.06 0.3 3.0 5 

Ester (95) 422 0.990 0.05 0.04 0.3 1.7 1 

Terpenoid (38) 184 0.980 0.07 0.06 0.2 2.5 6 

Training Compounds (360) 1625 0.987 0.07 0.05 0.3 2.3 23 

aStandard deviation (SD) is estimated by calculating the root mean squared error: 𝑆𝐷 =

√
1

𝑁
∑(𝑙𝑜𝑔𝐾𝑃𝑅𝐸𝐷 − 𝑙𝑜𝑔𝐾𝑀𝐸𝐴𝑆)

2. bAverage absolute error (AAE) measures the deviation of predicted 

values from measured values: 𝐴𝐴𝐸 =
1

𝑁
∑|𝑙𝑜𝑔𝐾𝑃𝑅𝐸𝐷 − 𝑙𝑜𝑔𝐾𝑀𝐸𝐴𝑆|. 

cAverage relative error (ARE) 

normalizes each deviation by the measured value: 𝐴𝑅𝐸 =

1

𝑁
∑100|(𝑙𝑜𝑔𝐾𝑃𝑅𝐸𝐷 − 𝑙𝑜𝑔𝐾𝑀𝐸𝐴𝑆) 𝑙𝑜𝑔𝐾𝑀𝐸𝐴𝑆⁄ |. dAt three or more temperatures. 

 

Relative error (RE) can be used to identify compounds that are poorly described by the model. We identified 

compounds with RE > 5 % at three or more temperatures to provide direction for selecting second-order groups. 

Twenty-three compounds fell into this category; most had multiple substituents, such as multiple methyl groups 

or multiple oxygen-containing groups. Our model consistently underpredicts 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  for four isoalkanes with 

multiple methyl groups: 2,2,3-trimethylbutane, 2,3,3-trimethylpentane, 2,3,4-trimethylpentane, and 2,2,3,3-



trimethylbutane. This leads to multiple points below the y = x line in Fig. 2. There are no alternative approaches 

to selecting first-order groups; however, the following second-order groups30 provide additional structural 

information: (CH3)2CH, (CH3)3C, CH(CH3)CH(CH3), CH(CH3)C(CH3)2, and C(CH3)2C(CH3)2. Only nine of the 

isoalkanes do not include a second-order group and the four compounds identified above include up to four 

second-order groups (2 unique groups in each molecule). Second-order groups such as (CH3)2CH are also found 

in many terpenoids. Second-order groups have also been created to distinguish isomers, especially the isomers 

that result from substituted aromatic rings. Many training compounds with aromatic rings have multiple 

substitutions and predicted 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for compounds such as o-, m-. and p-xylene or o-, m-, and p-

ethyltoluene are approximately equal to the average 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  value. For example, our model predicts 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  

for the isomers durene (1,2,4,5-tetramethylbenzene), isodurene (1,2,3,5-tetramethylbenzene), and prehnitene 

(1,2,3,4-tetramethylbenzene) identically. Durene and isodurene have similar (lower) 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values than 

prehnitene. Another example is o-hydroxybenzaldehyde, which our model overpredicts, and p-

hydroxybenzaldehyde, which our model underpredicts. Second-order groups that distinguish these isomers are 

expected to improve predictions.  

Model Predictions for Validation Compounds at 100 °C. Terpenes are based on a five-carbon isoprene unit 

(2-methyl-1,3-butadiene); monoterpenes consist of 2 isoprene units and sesquiterpenes consist of 3 isoprene units. 

We identified 50 ten-carbon (C10) validation compounds with Kovats retention indices at 100 °C, including 6 

terpenes and 22 terpenoids (Supplementary Table S3). Compared to the training compounds, the validation 

compounds have more alcohol, ether, ketone, and aldehyde functional groups (Fig. 3). The reliability of 

𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for these compounds is also lower because there was no possibility to verify consistency with 

the van’t Hoff equation. Predicted values are correlated with measured values (Fig. 4). AAE and ARE for the 

validation compounds are comparable to values from the alcohol-phenol and ether-ketone-aldehyde classes of 

training compounds. 

 

Figure 3. Distribution of oxygen-containing functional groups within the training compounds (360) 

and the C10 validation compounds (50). 



 

Figure 4. Log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for 50 C10 compounds were predicted at 100 ℃ and compared with 

log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values calculated from Kovats retention indices. Solid black line indicates 1:1 

correspondence. Solid red line is a regression line. AAE is 0.09 log units and ARE is 3.1 % for all 

50 compounds. 

 

Model Predictions from 20 °C to 40 °C. We first compare model predictions to extrapolated values for the 

360 training compounds. This approach assumes a constant slope over a wide temperature range (20 °C to 200 

°C) and the error (log𝐾𝑃𝑅𝐸𝐷 – log 𝐾𝐸𝑋𝑇𝑅) indicates how well the model replicates single compound extrapolation. 

We examined histograms of the error at intervals of 20 °C and found that they were normally distributed 

(Supplementary Figure S1). The mean error is within ± 0.01 log units at each temperature. The standard deviation 

decreases from 0.14 log units at 20 °C to 0.06 log units at 200 °C, which indicates that predictions at 20 °C to 40 

°C have greater absolute errors than predictions at higher temperatures, as we expect based on the temperature 

distribution of the training compounds (60 °C to 200 °C). However, the standard deviation is less than 3 % of the 

average log𝐾𝐸𝑋𝑇𝑅 value at 20 °C, demonstrating that predictions at 20 °C to 40 °C do not a priori lead to greater 

uncertainty than predictions at higher temperatures (e.g., 100 °C). We next compare model predictions to 

measured values, which are limited. 

Martos et al.13 measured 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  at 25 °C by equilibrating PDMS-coated fibers with a mixture of 29 

isoalkanes (100 µm coating) or 33 aromatic hydrocarbons (30 µm coating). We used our model to predict 

𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  at 25 °C (Fig. 5). The training data included 10 of the isoalkanes and 26 of the aromatic hydrocarbons. 

Fig. 5 shows that model predictions can be successfully extended to 25 °C, however, our model tends to 

overpredict 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  for both isoalkanes and aromatic hydrocarbons. For the isoalkanes, RE was greater than 5 

% for four compounds – 3-methylpentane, 2,4-dimethylpentane, 2-methylhexane, 2,5-dimethylhexane – and in 

each case the model overpredicted 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄ . This is particularly interesting because the model underpredicts 

𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  for several isoalkane training compounds. Here the result may reflect the general observation that the 

model’s RE at 25 °C is smallest for decane (0.0%); the model overpredicts smaller n-alkanes and underpredicts 



larger n-alkanes. This is a consequence of the training compounds, whose average carbon number is in the range 

C9 – C10, and the n-alkane structure, which has two CH3 groups and therefore only differs by the number of CH2 

groups. For the aromatic hydrocarbons, RE was greater than 5 % for one compound – isobutylbenzene. 

 

Figure 5. Log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for 29 isoalkanes, 33 aromatic hydrocarbons, and 10 n-alkanes were 

predicted at 25 °C and compared to log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values measured by Martos et al.13 Solid black 

lines indicate 1:1 correspondence. Solid red lines are regression lines. AAE is 0.08 log units and 

ARE is 2.3 % for all 72 compounds. 

 

𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  was directly measured at 20 °C to 30 °C by equilibrating PDMS-coated stir bars with headspace 

vapors of naphthalene and camphor19 and at 25 °C by equilibrating PDMS-coated fibers with aliphatic alcohols, 

aliphatic ketones and monoterpenes.14,18 Each of these compounds was part of the training data, so several useful 

comparisons can be made (Fig. 6). Regression lines based on model input (at higher temperatures) indicate that 

extrapolated log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values were consistently lower than measured log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for oxygen-

containing compounds. On average, extrapolated values were 8 % lower. In contrast, extrapolated and measured 

log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for the five monoterpenes were within 2 % of each other. Fig. 6 indicates that the predictive 

ability of the group contribution model at 25 °C depends on whether extrapolation from higher temperatures is 

valid. This is true whether 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values at higher temperatures are measured or predicted. We also predicted 

log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values at 25 °C by combining the predictive equation developed by Sprunger et al.23 with solute 

descriptors for terpenes.40 Our predictions were consistently larger than predictions from the Sprunger et al. 

model; both models had the highest absolute error for -pinene. This limited comparison indicates similar 

performance by the two approaches. 



 

Figure 6. Log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for camphor were predicted at 20 °C, 25 °C, and 30 °C (stars) and 

compared to log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values measured by De Coensel et al.19 (open squares) and to 

log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄   values extrapolated from higher temperatures (solid regression line). Predicted, 

measured, and extrapolated log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄   values for three ketones and five terpenes are similarly 

plotted. Measurements by Isidorov et al.14 and Nilsson et al.18 Inset compares log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  

measurements at 25 °C (open squares) to Sprunger et al.’s model23,40 (triangles; AAE is 0.07 log 

units and ARE is 1.9 %) and our model (stars; AAE is 0.06 log units and ARE is 1.5 %).  

 

𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values can be calculated from Kovats retention indices at many temperatures; however, the data at 

any one temperature is limited. For example, our model incorporates training data for nearly 300 compounds at 

140 °C, whereas at 60 °C there are fewer than 200 compounds. By incorporating multiple temperatures, the group 

contribution method developed here increases model input. We further note that Kovats retention indices have 

been measured for hundreds of hydrocarbons and oxygen-containing organics at one (or perhaps two) 

temperatures.39 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  values for such compounds cannot be extrapolated to other temperatures of interest. 

The quality control check that we implemented in this work only eliminated one compound from the training 

data. Incorporating such compounds into a future model would further increase model input. 

 

Conclusions 

We developed a group contribution model to predict 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  from 20 °C to 200 °C. Our model employs 18 

first-order groups to describe the molecular structure of 360 training compounds containing carbon, hydrogen, 

and oxygen. Predictions at 25 °C for 72 hydrocarbons have an average relative error of 2.3 %. Predictions at 100 

°C for 50 C10 validation compounds, including 6 terpenes and 22 terpenoids, have an average relative error of 3.1 

%, which is comparable to average relative errors for the alcohol-phenol and aldehyde-ketone-ether classes of 

training compounds. We are interested in the partitioning of plant-derived terpenoids; additional training 



compounds with oxygen-containing groups are a priority to improve the model. Ideas for acquiring such 

compounds were discussed. Our results demonstrate that incorporating the van’t Hoff equation into a predictive 

group contribution model is a viable approach to estimating 𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  at multiple temperatures. The value of 

this modeling approach lies in its ability to incorporate all available data, which is particularly advantageous for 

properties with limited experimental values at a single temperature.  
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Table S1. Training compounds (360) with Standard IUPAC InChI Key. R2 values reported from van’t Hoff plots of 

log𝐾𝑃𝐷𝑀𝑆 𝐴𝐼𝑅⁄  vs. 1 𝑇⁄ . #C = carbon no. AA = Alkane-Alkene, IA = Isoalkane, CA = Cycloalkane, AH = Aromatic 

Hydrocarbon, AP = Alcohol-Phenol, AKE = Aldehyde-Ketone-Ether, E = Ester, T = Terpenoid 

No Compound Standard IUPAC InChI Key R2 # C Class 

1 hexane VLKZOEOYAKHREP-UHFFFAOYSA-N  0.9993 6 AA 

2 heptane IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.9994 7 AA 

3 1-heptene ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.9980 7 AA 

4 octane TVMXDCGIABBOFY-UHFFFAOYSA-N 0.9993 8 AA 

5 1-octene KWKAKUADMBZCLK-UHFFFAOYSA-N 0.9996 8 AA 

6 nonane BKIMMITUMNQMOS-UHFFFAOYSA-N 0.9995 9 AA 

7 1-nonene JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.9996 9 AA 

8 decane DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.9993 10 AA 

9 1-decene AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.9996 10 AA 

10 undecane RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.9992 11 AA 

11 1-undecene DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.9994 11 AA 

12 dodecane SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.9990 12 AA 

13 1-dodecene CRSBERNSMYQZNG-UHFFFAOYSA-N 0.9993 12 AA 

14 tridecane IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.9997 13 AA 

15 tetradecane BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.9994 14 AA 

16 1-tetradecene HFDVRLIODXPAHB-UHFFFAOYSA-N 0.9997 14 AA 

17 pentadecane YCOZIPAWZNQLMR-UHFFFAOYSA-N 0.9995 15 AA 

18 hexadecane DCAYPVUWAIABOU-UHFFFAOYSA-N 0.9994 16 AA 

19 2-methyl-hexane GXDHCNNESPLIKD-UHFFFAOYSA-N 0.9995 7 IA 

20 3-methyl-hexane VLJXXKKOSFGPHI-UHFFFAOYSA-N 0.9994 7 IA 

21 2,2-dimethylpentane CXOWYJMDMMMMJO-UHFFFAOYSA-N 0.9991 7 IA 

22 2,3-dimethyl-pentane WGECXQBGLLYSFP-UHFFFAOYSA-N 0.9959 7 IA 

23 2,4-dimethyl pentane BZHMBWZPUJHVEE-UHFFFAOYSA-N 0.9994 7 IA 

24 3,3-dimethyl-pentane AEXMKKGTQYQZCS-UHFFFAOYSA-N 0.9994 7 IA 

25 2,2,3-trimethyl-butane ZISSAWUMDACLOM-UHFFFAOYSA-N 0.9990 7 IA 

26 3-methyl-heptane LAIUFBWHERIJIH-UHFFFAOYSA-N 0.9992 8 IA 

27 2,2-dimethyl-hexane FLTJDUOFAQWHDF-UHFFFAOYSA-N 0.9997 8 IA 
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No Compound Standard IUPAC InChI Key R2 # C Class 

28 2,3-dimethyl-hexane JXPOLSKBTUYKJB-UHFFFAOYSA-N 0.9998 8 IA 

29 2,4-dimethyl-hexane HDGQICNBXPAKLR-UHFFFAOYSA-N 0.9986 8 IA 

30 2,5-dimethyl-hexane UWNADWZGEHDQAB-UHFFFAOYSA-N 0.9993 8 IA 

31 3,3-dimethyl-hexane KUMXLFIBWFCMOJ-UHFFFAOYSA-N 0.9996 8 IA 

32 2,3,3-trimethyl-pentane OKVWYBALHQFVFP-UHFFFAOYSA-N 0.9993 8 IA 

33 2,3,4-trimethyl-pentane RLPGDEORIPLBNF-UHFFFAOYSA-N 0.9996 8 IA 

34 2,2,4-trimethyl-pentane NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.9998 8 IA 

35 2,2,3,3-tetramethyl-butane OMMLUKLXGSRPHK-UHFFFAOYSA-N 0.9998 8 IA 

36 2,2,4-trimethyl-hexane AFTPEBDOGXRMNQ-UHFFFAOYSA-N 0.9999 9 IA 

37 2,2,5-trimethyl-hexane HHOSMYBYIHNXNO-UHFFFAOYSA-N 0.9996 9 IA 

38 2-methyl-nonane SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.9998 10 IA 

39 4-methyl-nonane IALRSQMWHFKJJA-UHFFFAOYSA-N 0.9998 10 IA 

40 3-ethyl-octane OEYGTUAKNZFCDJ-UHFFFAOYSA-N 0.9997 10 IA 

41 2-methyl-decane CNPVJWYWYZMPDS-UHFFFAOYSA-N 0.9995 11 IA 

42 2,2-dimethyl-nonane WDSBVMLUILIJOW-UHFFFAOYSA-N 0.9995 11 IA 

43 2,4-dimethyl-nonane JZUUOAUSQCXSTN-UHFFFAOYSA-N 0.9995 11 IA 

44 2-methyl-undecane GTJOHISYCKPIMT-UHFFFAOYSA-N 0.9993 12 IA 

45 3-methyl-undecane HTZWVZNRDDOFEI-UHFFFAOYSA-N 0.9987 12 IA 

46 4-methyl-undecane KNMXZGDUJVOTOC-UHFFFAOYSA-N 0.9991 12 IA 

47 5-methyl-undecane QULNVKABFWNUCW-UHFFFAOYSA-N 0.9987 12 IA 

48 methyl-cyclopentane GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.9870 6 CA 

49 ethyl-cyclopentane IFTRQJLVEBNKJK-UHFFFAOYSA-N 0.9997 7 CA 

50 propyl-cyclopentane KDIAMAVWIJYWHN-UHFFFAOYSA-N 0.9996 8 CA 

51 1-methylethyl-cyclopentane TVSBRLGQVHJIKT-UHFFFAOYSA-N 1.0000 8 CA 

52 1,2,3-trimethyl-cyclopentane VCWNHOPGKQCXIQ-RNLVFQAGSA-N 0.9997 8 CA 

53 butyl-cyclopentane ZAGHKONXGGSVDV-UHFFFAOYSA-N 0.9997 9 CA 

54 cyclohexane XDTMQSROBMDMFD-UHFFFAOYSA-N 0.9995 6 CA 

55 methyl-cyclohexane UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.9994 7 CA 

56 ethyl-cyclohexane IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.9990 8 CA 

57 propyl-cyclohexane DEDZSLCZHWTGOR-UHFFFAOYSA-N 0.9992 9 CA 

58 1-methylethyl-cyclohexane GWESVXSMPKAFAS-UHFFFAOYSA-N 0.9994 9 CA 

59 butyl-cyclohexane GGBJHURWWWLEQH-UHFFFAOYSA-N 0.9996 10 CA 

60 tert-butyl-cyclohexane XTVMZZBLCLWBPM-UHFFFAOYSA-N 0.9999 10 CA 

61 cis-1,2-dimethyl-cyclohexane KVZJLSYJROEPSQ-OCAPTIKFSA-N 0.9999 8 CA 

62 trans-1,2-dimethyl-cyclohexane KVZJLSYJROEPSQ-YUMQZZPRSA-N 0.9993 8 CA 

63 cis-1,3-dimethyl-cyclohexane SGVUHPSBDNVHKL-OCAPTIKFSA-N 0.9946 8 CA 

64 trans-1,3-dimethyl-cyclohexane SGVUHPSBDNVHKL-YUMQZZPRSA-N 0.9974 8 CA 

65 cis-1,4-dimethyl-cyclohexane QRMPKOFEUHIBNM-OCAPTIKFSA-N 0.9994 8 CA 

66 trans-1,4-dimethyl-cyclohexane QRMPKOFEUHIBNM-ZKCHVHJHSA-N 0.9994 8 CA 

67 cis-1,3,5-trimethyl-cyclohexane ODNRTOSCFYDTKF-AYMMMOKOSA-N 0.9998 9 CA 

68 trans-1,2,3,5-tetramethyl-cyclohexane VWWAILZUSKHANH-ZYUZMQFOSA-N 0.9980 10 CA 

69 cis-decalin NNBZCPXTIHJBJL-AOOOYVTPSA-N 0.9998 10 CA 

70 trans-decalin NNBZCPXTIHJBJL-MGCOHNPYSA-N 0.9997 10 CA 

 



 

No Compound Standard IUPAC InChI Key R2 # C Class 

71 adamantane ORILYTVJVMAKLC-UHFFFAOYSA-N 0.9953 10 CA 

72 1-methyl-adamantane UZUCFTVAWGRMTQ-UHFFFAOYSA-N 0.9997 11 CA 

73 2-methyl-adamantane VMODAALDMAYACB-UHFFFAOYSA-N 0.9993 11 CA 

74 2-ethyl-adamantane LIAWCKFOFPPVGF-UHFFFAOYSA-N 0.9958 12 CA 

75 1,3,5-trimethyl-adamantane WCACLGXPFTYVEL-UHFFFAOYSA-N 0.9999 13 CA 

76 1-n-butyl-adamantane AZCUIXHZJHFUFI-UHFFFAOYSA-N 0.9827 14 CA 

77 2-n-butyl-adamantane ZOQLCQXGZZFWAF-UHFFFAOYSA-N 0.9982 14 CA 

78 benzene UHOVQNZJYSORNB-UHFFFAOYSA-N 0.9989 6 AH 

79 toluene YXFVVABEGXRONW-UHFFFAOYSA-N 0.9995 7 AH 

80 ethylbenzene YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.9992 8 AH 

81 o-xylene CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.9986 8 AH 

82 m-xylene IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.9992 8 AH 

83 p-xylene URLKBWYHVLBVBO-UHFFFAOYSA-N 0.9978 8 AH 

84 styrene PPBRXRYQALVLMV-UHFFFAOYSA-N 0.9996 8 AH 

85 propylbenzene ODLMAHJVESYWTB-UHFFFAOYSA-N 0.9993 9 AH 

86 cumene RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.9994 9 AH 

87 o-ethyltoluene HYFLWBNQFMXCPA-UHFFFAOYSA-N 0.9993 9 AH 

88 m-ethyltoluene ZLCSFXXPPANWQY-UHFFFAOYSA-N 0.9995 9 AH 

89 p-ethyltoluene JRLPEMVDPFPYPJ-UHFFFAOYSA-N 0.9992 9 AH 

90 1,2,3-trimethylbenzene FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.9994 9 AH 

91 1,2,4-trimethylbenzene GWHJZXXIDMPWGX-UHFFFAOYSA-N 0.9991 9 AH 

92 1,3,5-trimethylbenzene AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.9982 9 AH 

93 allylbenzene HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.9997 9 AH 

94 alpha-methylstyrene XYLMUPLGERFSHI-UHFFFAOYSA-N 0.9997 9 AH 

95 1-ethenyl-2-methylbenzene NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.9996 9 AH 

96 1-ethenyl-3-methylbenzene JZHGRUMIRATHIU-UHFFFAOYSA-N 0.9996 9 AH 

97 indane PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.9998 9 AH 

98 indene YBYIRNPNPLQARY-UHFFFAOYSA-N 0.9979 9 AH 

99 butylbenzene OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.9991 10 AH 

100 secbutylbenzene ZJMWRROPUADPEA-UHFFFAOYSA-N 0.9991 10 AH 

101 tertbutylbenzene YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.9992 10 AH 

102 o-diethylbenzene KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.9994 10 AH 

103 m-diethylbenzene AFZZYIJIWUTJFO-UHFFFAOYSA-N 0.9988 10 AH 

104 p-diethylbenzene DSNHSQKRULAAEI-UHFFFAOYSA-N 0.9997 10 AH 

105 o-propyltoluene YQZBFMJOASEONC-UHFFFAOYSA-N 0.9986 10 AH 

106 m-propyltoluene QUEBYVKXYIKVSO-UHFFFAOYSA-N 0.9989 10 AH 

107 p-propyltoluene JXFVMNFKABWTHD-UHFFFAOYSA-N 0.9995 10 AH 

108 o-cymene WWRCMNKATXZARA-UHFFFAOYSA-N 0.9983 10 AH 

109 m-cymene XCYJPXQACVEIOS-UHFFFAOYSA-N 0.9994 10 AH 

110 p-cymene HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.9985 10 AH 

111 3-ethyl-o-xylene QUBBAXISAHIDNM-UHFFFAOYSA-N 0.9998 10 AH 

112 4-ethyl-o-xylene SBUYFICWQNHBCM-UHFFFAOYSA-N 0.9998 10 AH 

113 4-ethyl-m-xylene MEMBJMDZWKVOTB-UHFFFAOYSA-N 0.9986 10 AH 

 



 

No Compound Standard IUPAC InChI Key R2 # C Class 

114 5-ethyl-m-xylene LMAUULKNZLEMGN-UHFFFAOYSA-N 0.9988 10 AH 

115 2-ethyl-p-xylene AXIUBBVSOWPLDA-UHFFFAOYSA-N 0.9985 10 AH 

116 durene SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.9984 10 AH 

117 isodurene BFIMMTCNYPIMRN-UHFFFAOYSA-N 0.9970 10 AH 

118 prehnitene UOHMMEJUHBCKEE-UHFFFAOYSA-N 0.9954 10 AH 

119 beta-methylindane MWGYLUXMIMSOTM-UHFFFAOYSA-N 0.9922 10 AH 

120 tetraline CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.9993 10 AH 

121 naphthalene UFWIBTONFRDIAS-UHFFFAOYSA-N 0.9957 10 AH 

122 pentylbenzene PWATWSYOIIXYMA-UHFFFAOYSA-N 0.9978 11 AH 

123 isopentylbenzene XNXIYYFOYIUJIW-UHFFFAOYSA-N 0.9995 11 AH 

124 terpentylbenzene QHTJSSMHBLGUHV-UHFFFAOYSA-N 0.9996 11 AH 

125 1-butyl-2-methylbenzene NUJILYKLNKQOOX-UHFFFAOYSA-N 0.9994 11 AH 

126 1-butyl-3-methylbenzene OAPCPUDMDJIBOQ-UHFFFAOYSA-N 0.9995 11 AH 

127 1-butyl-4-methylbenzene SBBKUBSYOVDBBC-UHFFFAOYSA-N 0.9995 11 AH 

128 4-tertbutyltoluene QCWXDVFBZVHKLV-UHFFFAOYSA-N 0.9995 11 AH 

129 1-ethyl-2-propylbenzene DMUVQFCRCMDZPW-UHFFFAOYSA-N 0.9993 11 AH 

130 1-ethyl-3-propylbenzene QCYGXOCMWHSXSU-UHFFFAOYSA-N 0.9994 11 AH 

131 1-ethyl-4-propylbenzene ADQDTIAWIXUACV-UHFFFAOYSA-N 0.9995 11 AH 

132 1-ethyl-2-isopropylbenzene ZAJYARZMPOEGLK-UHFFFAOYSA-N 0.9994 11 AH 

133 1-ethyl-3-isopropylbenzene GSLSBTNLESMZTN-UHFFFAOYSA-N 0.9994 11 AH 

134 1-ethyl-4-isopropylbenzene GUUDUUDWUWUTPD-UHFFFAOYSA-N 0.9995 11 AH 

135 3,5-diethyltoluene HILAULICMJUOLK-UHFFFAOYSA-N 0.9999 11 AH 

136 pentamethylbenzene BEZDDPMMPIDMGJ-UHFFFAOYSA-N 0.9995 11 AH 

137 1-methylnaphthalene QPUYECUOLPXSFR-UHFFFAOYSA-N 0.9995 11 AH 

138 2-methylnaphthalene QIMMUPPBPVKWKM-UHFFFAOYSA-N 0.9976 11 AH 

139 hexylbenzene LTEQMZWBSYACLV-UHFFFAOYSA-N 0.9996 12 AH 

140 1,2-diisopropylbenzene OKIRBHVFJGXOIS-UHFFFAOYSA-N 0.9995 12 AH 

141 1,3-diisopropylbenzene UNEATYXSUBPPKP-UHFFFAOYSA-N 0.9996 12 AH 

142 1,4-diisopropylbenzene SPPWGCYEYAMHDT-UHFFFAOYSA-N 0.9996 12 AH 

143 1,3,5-triethylbenzene WJYMPXJVHNDZHD-UHFFFAOYSA-N 0.9996 12 AH 

144 2-ethylnaphthalene RJTJVVYSTUQWNI-UHFFFAOYSA-N 0.9963 12 AH 

145 biphenyl ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.9994 12 AH 

146 diphenylmethane CZZYITDELCSZES-UHFFFAOYSA-N 0.9995 13 AH 

147 fluorene NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.9993 13 AH 

148 1,3,5-triisopropylbenzene VUMCUSHVMYIRMB-UHFFFAOYSA-N 0.9994 15 AH 

149 1-butanol LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.9968 4 AP 

150 2-methyl-1-propanol ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.9860 4 AP 

151 3-buten-1-ol ZSPTYLOMNJNZNG-UHFFFAOYSA-N 0.9989 4 AP 

152 1-pentanol AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.9944 5 AP 

153 2-pentanol JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.9937 5 AP 

154 3-pentanol AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.9987 5 AP 

155 2-methyl-1-butanol QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.9996 5 AP 

156 3-methyl-1-butanol PHTQWCKDNZKARW-UHFFFAOYSA-N 0.9961 5 AP 
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157 3-methyl-2-butanol MXLMTQWGSQIYOW-UHFFFAOYSA-N 0.9914 5 AP 

158 amylene hydrate MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.9854 5 AP 

159 1-penten-3-ol VHVMXWZXFBOANQ-UHFFFAOYSA-N 0.9995 5 AP 

160 4-penten-1-ol LQAVWYMTUMSFBE-UHFFFAOYSA-N 0.9798 5 AP 

161 4-penten-2-ol ZHZCYWWNFQUZOR-UHFFFAOYSA-N 0.9941 5 AP 

162 1-hexanol ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.9972 6 AP 

163 2-hexanol QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.9970 6 AP 

164 3-hexanol ZOCHHNOQQHDWHG-UHFFFAOYSA-N 0.9997 6 AP 

165 2-methyl-1-pentanol PFNHSEQQEPMLNI-UHFFFAOYSA-N 0.9981 6 AP 

166 4-methyl-1-pentanol PCWGTDULNUVNBN-UHFFFAOYSA-N 0.9958 6 AP 

167 2-methyl-2-pentanol WFRBDWRZVBPBDO-UHFFFAOYSA-N 0.9965 6 AP 

168 (Z)-3-hexen-1-ol UFLHIIWVXFIJGU-ARJAWSKDSA-N 0.9856 6 AP 

169 (E)-3-hexen-1-ol UFLHIIWVXFIJGU-ONEGZZNKSA-N 0.9830 6 AP 

170 cyclohexanol HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.9803 6 AP 

171 1-heptanol BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.9980 7 AP 

172 2-heptanol CETWDUZRCINIHU-UHFFFAOYSA-N 0.9995 7 AP 

173 4-heptanol YVBCULSIZWMTFY-UHFFFAOYSA-N 0.9994 7 AP 

174 1-octanol KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.9987 8 AP 

175 1-octen-3-ol VSMOENVRRABVKN-UHFFFAOYSA-N 0.9986 8 AP 

176 2-ethyl-1-hexanol YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.9989 8 AP 

177 1-nonanol ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.9977 9 AP 

178 2-nonanol NGDNVOAEIVQRFH-UHFFFAOYSA-N 0.9988 9 AP 

179 1-decanol MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.9979 10 AP 

180 3,7-dimethyl-3-octanol DLHQZZUEERVIGQ-UHFFFAOYSA-N 0.9997 10 AP 

181 1-undecanol KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.9992 11 AP 

182 1-dodecanol LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.9988 12 AP 

183 phenol ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.9964 6 AP 

184 o-cresol QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.9995 7 AP 

185 m-cresol RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.9988 7 AP 

186 p-cresol IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.9995 7 AP 

187 phenylmethanol WVDDGKGOMKODPV-UHFFFAOYSA-N 0.9985 7 AP 

188 phenylethanol WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.9989 8 AP 

189 2-ethyl-phenol IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.9997 8 AP 

190 2,3-dimethyl-phenol QWBBPBRQALCEIZ-UHFFFAOYSA-N 0.9988 8 AP 

191 2,4-dimethyl-phenol KUFFULVDNCHOFZ-UHFFFAOYSA-N 0.9994 8 AP 

192 3,5-dimethyl-phenol TUAMRELNJMMDMT-UHFFFAOYSA-N 0.9996 8 AP 

193 thymol MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.9995 10 AP 

194 2-ethoxyethanol ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.9993 4 AP; AKE 

195 pentanal HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.9995 5 AKE 

196 2-pentanone XNLICIUVMPYHGG-UHFFFAOYSA-N 0.9971 5 AKE 

197 3-pentanone FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.9998 5 AKE 

198 hexanal JARKCYVAAOWBJS-UHFFFAOYSA-N 0.9996 6 AKE 

199 2-hexanone QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.9996 6 AKE 
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200 methyl isobutyl ketone NTIZESTWPVYFNL-UHFFFAOYSA-N 0.9994 6 AKE 

201 2-methoxy-2-methyl-butane HVZJRWJGKQPSFL-UHFFFAOYSA-N 0.9995 6 AKE 

202 cyclohexanone JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.9997 6 AKE 

203 heptanal FXHGMKSSBGDXIY-UHFFFAOYSA-N 0.9995 7 AKE 

204 2-heptanone CATSNJVOTSVZJV-UHFFFAOYSA-N 0.9998 7 AKE 

205 4-heptanone HCFAJYNVAYBARA-UHFFFAOYSA-N 0.9999 7 AKE 

206 octanal NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.9991 8 AKE 

207 2-octanone ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.9999 8 AKE 

208 nonanal GYHFUZHODSMOHU-UHFFFAOYSA-N 1.0000 9 AKE 

209 2-nonanone VKCYHJWLYTUGCC-UHFFFAOYSA-N 0.9998 9 AKE 

210 decanal KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.9999 10 AKE 

211 undecanal KMPQYAYAQWNLME-UHFFFAOYSA-N 0.9988 11 AKE 

212 benzaldehyde HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.9962 7 AKE 

213 o-hydroxybenzaldehyde SMQUZDBALVYZAC-UHFFFAOYSA-N 0.9944 7 AP; AKE 

214 p-hydroxybenzaldehyde RGHHSNMVTDWUBI-UHFFFAOYSA-N 1.0000 7 AP; AKE 

215 p-methylbenzaldehyde FXLOVSHXALFLKQ-UHFFFAOYSA-N 0.9991 8 AKE 

216 acetophenone KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.9969 8 AKE 

217 o-hydroxyacetophenone JECYUBVRTQDVAT-UHFFFAOYSA-N 0.9992 8 AP; AKE 

218 o-methylacetophenone YXWWHNCQZBVZPV-UHFFFAOYSA-N 0.9996 9 AKE 

219 m-methylacetophenone FSPSELPMWGWDRY-UHFFFAOYSA-N 0.9993 9 AKE 

220 p-methylacetophenone GNKZMNRKLCTJAY-UHFFFAOYSA-N 0.9987 9 AKE 

221 anisole RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.9953 7 AKE 

222 ethoxybenzene DLRJIFUOBPOJNS-UHFFFAOYSA-N 0.9998 8 AKE 

223 methoxymethylbenzene GQKZBCPTCWJTAS-UHFFFAOYSA-N 0.9995 8 AKE 

224 p-methoxybenzaldehyde ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.9979 8 AKE 

225 vanillin MWOOGOJBHIARFG-UHFFFAOYSA-N 0.9991 8 AP; AKE 

226 p-ethoxybenzaldehyde JRHHJNMASOIRDS-UHFFFAOYSA-N 0.9966 9 AKE 

227 4-acetylanisole NTPLXRHDUXRPNE-UHFFFAOYSA-N 0.9935 9 AKE 

228 cuminaldehyde WTWBUQJHJGUZCY-UHFFFAOYSA-N 1.0000 10 AKE 

229 eugenol RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.9976 10 AP; AKE 

230 acetic acid, propyl ester YKYONYBAUNKHLG-UHFFFAOYSA-N 0.9736 5 E 

231 acetic acid, 2-methoxyethyl ester XLLIQLLCWZCATF-UHFFFAOYSA-N 0.9994 5 AKE; E 

232 acetic acid, butyl ester DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.9955 6 E 

233 acetic acid, 2-methylpropyl ester GJRQTCIYDGXPES-UHFFFAOYSA-N 0.9997 6 E 

234 acetic acid, pentyl ester PGMYKACGEOXYJE-UHFFFAOYSA-N 0.9951 7 E 

235 acetic acid, 3-methylbutyl ester MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.9993 7 E 

236 acetic acid, hexyl ester AOGQPLXWSUTHQB-UHFFFAOYSA-N 0.9989 8 E 

237 acetic acid, heptyl ester ZCZSIDMEHXZRLG-UHFFFAOYSA-N 0.9957 9 E 

238 acetic acid, octyl ester YLYBTZIQSIBWLI-UHFFFAOYSA-N 0.9996 10 E 

239 1-octenyl-3-acetate DOJDQRFOTHOBEK-UHFFFAOYSA-N 0.9999 10 E 

240 acetic acid, nonyl ester GJQIMXVRFNLMTB-UHFFFAOYSA-N 0.9997 11 E 

241 acetic acid, decyl ester NUPSHWCALHZGOV-UHFFFAOYSA-N 0.9998 12 E 

242 acetic acid, dodecyl ester VZWGRQBCURJOMT-UHFFFAOYSA-N 0.9982 14 E 
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243 acetic acid, phenylmethyl ester QUKGYYKBILRGFE-UHFFFAOYSA-N 0.9932 9 E 

244 propanoic acid, methyl ester RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.9935 4 E 

245 propanoic acid, ethyl ester FKRCODPIKNYEAC-UHFFFAOYSA-N 0.9917 5 E 

246 propanoic acid, propyl ester MCSINKKTEDDPNK-UHFFFAOYSA-N 0.9822 6 E 

247 propanoic acid, 1-methylethyl ester IJMWOMHMDSDKGK-UHFFFAOYSA-N 0.9974 6 E 

248 propanoic acid, 2-methyl-, ethyl ester WDAXFOBOLVPGLV-UHFFFAOYSA-N 0.9998 6 E 

249 propanoic acid, 2-propenyl ester XRFWKHVQMACVTA-UHFFFAOYSA-N 0.9805 6 E 

250 propanoic acid, butyl ester BTMVHUNTONAYDX-UHFFFAOYSA-N 0.9987 7 E 

251 propanoic acid, 1-methylpropyl ester VPSLGSSVPWVZFG-UHFFFAOYSA-N 0.9949 7 E 

252 propanoic acid, 2-methyl, propyl ester AZFUASHXSOTBNU-UHFFFAOYSA-N 0.9943 7 E 

253 propanoic acid, 1,1-dimethylethyl ester JAELLLITIZHOGQ-UHFFFAOYSA-N 0.9909 7 E 

254 propanoic acid, 3-butenyl ester IVOGAUVYWHQIBD-UHFFFAOYSA-N 0.9868 7 E 

255 propanoic acid, pentyl ester TWSRVQVEYJNFKQ-UHFFFAOYSA-N 0.9982 8 E 

256 propanoic acid, isopentyl ester XAOGXQMKWQFZEM-UHFFFAOYSA-N 0.9966 8 E 

257 propanoic acid, 1-methylbutyl ester IPVKBEOJURLVER-UHFFFAOYSA-N 0.9958 8 E 

258 propanoic acid, 1,1-dimethylpropyl ester RHSLWHLBYFOBAF-UHFFFAOYSA-N 0.9866 8 E 

259 propanoic acid, 1,2 dimethylpropyl ester RYYMZRUXQWULCT-UHFFFAOYSA-N 0.9960 8 E 

260 propanoic acid, 4-pentenyl ester ROJSQZUHNAFOPE-UHFFFAOYSA-N 0.9952 8 E 

261 propanoic acid, 1-methyl-3-butenyl ester QTJLXWLLLXXECC-UHFFFAOYSA-N 0.9929 8 E 

262 propanoic acid, hexyl ester GOKKOFHHJFGZHW-UHFFFAOYSA-N 0.999 9 E 

263 propanoic acid, Z-3-hexenyl ester LGTLDEUQCOJGFP-WAYWQWQTSA-N 0.9961 9 E 

264 propanoic acid, E-3-hexenyl ester LGTLDEUQCOJGFP-AATRIKPKSA-N 0.9958 9 E 

265 propanoic acid, heptyl ester BGYICJVBGZQOCY-UHFFFAOYSA-N 0.9990 10 E 

266 propanoic acid, octyl ester CEQGYPPMTKWBIU-UHFFFAOYSA-N 0.9991 11 E 

267 propanoic acid, nonyl ester MPSVBCFDONBQFM-UHFFFAOYSA-N 0.9993 12 E 

268 propanoic acid, decyl ester HUOYUOXEIKDMFT-UHFFFAOYSA-N 0.9989 13 E 

269 propanoic acid, undecyl ester YYOMLCJPYHLLRY-UHFFFAOYSA-N 0.9995 14 E 

270 propanoic acid, phenylmethyl ester VHOMAPWVLKRQAZ-UHFFFAOYSA-N 0.9996 10 E 

271 butanoic acid, methyl ester UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.9976 5 E 

272 butanoic acid, ethyl ester OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.9958 6 E 

273 butanoic acid, propyl ester HUAZGNHGCJGYNP-UHFFFAOYSA-N 0.9989 7 E 

274 butanoic acid, 1-methylethyl ester FFOPEPMHKILNIT-UHFFFAOYSA-N 0.9980 7 E 

275 butanoic acid, 2-propenyl ester RMZIOVJHUJAAEY-UHFFFAOYSA-N 0.9778 7 E 

276 butanoic acid, butyl ester XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.9993 8 E 

277 butanoic acid, 1-methylpropyl ester QJHDFBAAFGELLO-UHFFFAOYSA-N 0.9910 8 E 

278 butanoic acid, 2-methylpropyl ester RGFNRWTWDWVHDD-UHFFFAOYSA-N 0.9970 8 E 

279 butanoic acid, 1,1-dimethylethyl ester TWBUVVYSQBFVGZ-UHFFFAOYSA-N 0.9956 8 E 

280 butanoic acid, 3-butenyl ester VDMZXZOJKWISSE-UHFFFAOYSA-N 0.9913 8 E 

281 butanoic acid, pentyl ester CFNJLPHOBMVMNS-UHFFFAOYSA-N 0.9988 9 E 

282 butanoic acid, 1-methylbutyl ester DJOCFLQKCMWABC-UHFFFAOYSA-N 0.9957 9 E 

283 butanoic acid, 3-methyl-, butyl ester AYWJSCLAAPJZEF-UHFFFAOYSA-N 0.9964 9 E 

284 butanoic acid, 1,1-dimethylpropyl ester VTZSXMMBJHMLEE-UHFFFAOYSA-N 0.9957 9 E 

285 butanoic acid, 1,2-dimethylpropyl ester YBSMWGNIGFSKPE-UHFFFAOYSA-N 0.9955 9 E 
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286 butanoic acid, 4-pentenyl ester DTGXDHGNUDOWJS-UHFFFAOYSA-N 0.9918 9 E 

287 butanoic acid, 1-methyl-3-butenyl ester GBDHZZRHBRVVII-UHFFFAOYSA-N 0.9891 9 E 

288 butanoic acid, hexyl ester XAPCMTMQBXLDBB-UHFFFAOYSA-N 0.9980 10 E 

289 butanoic acid, Z-3-hexenyl ester ZCHOPXVYTWUHDS-WAYWQWQTSA-N 0.9932 10 E 

290 butanoic acid, E-3-hexenyl ester ZCHOPXVYTWUHDS-AATRIKPKSA-N 0.9924 10 E 

291 butanoic acid, heptyl ester JPQHLIYIQARLQM-UHFFFAOYSA-N 0.9970 11 E 

292 butanoic acid, octyl ester PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.9998 12 E 

293 butanoic acid, nonyl ester RVNCBAPCNVAWOY-UHFFFAOYSA-N 0.9990 13 E 

294 butanoic acid, decyl ester PUCQHFICPFUPKW-UHFFFAOYSA-N 0.9990 14 E 

295 pentanoic acid, ethyl ester ICMAFTSLXCXHRK-UHFFFAOYSA-N 0.9960 7 E 

296 hexanoic acid, ethyl ester SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.9976 8 E 

297 heptanoic acid, ethyl ester TVQGDYNRXLTQAP-UHFFFAOYSA-N 0.9997 9 E 

298 octanoic acid, ethyl ester YYZUSRORWSJGET-UHFFFAOYSA-N 0.9997 10 E 

299 nonanoic acid, ethyl ester BYEVBITUADOIGY-UHFFFAOYSA-N 0.9999 11 E 

300 decanoic acid, ethyl ester RGXWDWUGBIJHDO-UHFFFAOYSA-N 1.0000 12 E 

301 benzoic acid, methyl ester QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.9969 8 E 

302 methyl salicylate OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.9988 8 AP; E 

303 benzoic acid, ethyl ester MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.9965 9 E 

304 benzoic acid, propyl ester UDEWPOVQBGFNGE-UHFFFAOYSA-N 0.9988 10 E 

305 benzoic acid, 1-methylethyl ester FEXQDZTYJVXMOS-UHFFFAOYSA-N 0.9817 10 E 

306 benzoic acid, 2-propenyl ester LYJHVEDILOKZCG-UHFFFAOYSA-N 0.9830 10 E 

307 benzoic acid, butyl ester XSIFPSYPOVKYCO-UHFFFAOYSA-N 0.9997 11 E 

308 benzoic acid, 1-methylpropyl ester LSLWNAOQPPLHSW-UHFFFAOYSA-N 0.9928 11 E 

309 benzoic acid, 2-methylpropyl ester KYZHGEFMXZOSJN-UHFFFAOYSA-N 0.9951 11 E 

310 benzoic acid, E-2-butenyl ester QYOVCBKZFRCMCG-NSCUHMNNSA-N 0.9958 11 E 

311 benzoic acid, 3-butenyl ester HCAQKYMCZZDLGU-UHFFFAOYSA-N 0.9950 11 E 

312 benzoic acid, pentyl ester QKNZNUNCDJZTCH-UHFFFAOYSA-N 0.9982 12 E 

313 benzoic acid, isopentyl ester MLLAPOCBLWUFAP-UHFFFAOYSA-N 0.9984 12 E 

314 benzoic acid, 1,2-dimethylpropyl ester LTUYGFZKXSBLDW-UHFFFAOYSA-N 0.9962 12 E 

315 benzoic acid, 4-pentenyl ester MFUGAJWSACDNNH-UHFFFAOYSA-N 0.9989 12 E 

316 benzoic acid, 1-methyl-3-butenyl ester QLQPHDBTEQSJKE-UHFFFAOYSA-N 0.9954 12 E 

317 benzoic acid, hexyl ester UUGLJVMIFJNVFH-UHFFFAOYSA-N 0.9984 13 E 

318 benzoic acid, cis-3-hexenyl ester BCOXBEHFBZOJJZ-ARJAWSKDSA-N 0.9994 13 E 

319 benzoic acid, trans-3-hexenyl ester BCOXBEHFBZOJJZ-ARJAWSKDSA-N 0.9992 13 E 

320 benzeneacetic acid, methyl ester CRZQGDNQQAALAY-UHFFFAOYSA-N 0.9992 9 E 

321 benzeneacetic acid, ethyl ester DULCUDSUACXJJC-UHFFFAOYSA-N 0.9983 10 E 

322 adamantane-1-carboxylic acid, methyl ester CLYOOVNORYNXMD-UHFFFAOYSA-N 0.9993 12 E 

323 alpha-terpinene YHQGMYUVUMAZJR-UHFFFAOYSA-N 0.9973 10 T 

324 gamma-terpinene YKFLAYDHMOASIY-UHFFFAOYSA-N 0.9991 10 T 

325 terpinolene MOYAFQVGZZPNRA-UHFFFAOYSA-N 0.9979 10 T 

326 limonene XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.9986 10 T 

327 alpha-sabinene NDVASEGYNIMXJL-UHFFFAOYSA-N 0.9986 10 T 

328 alpha-pinene GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.9968 10 T 
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329 L-alpha-pinene GRWFGVWFFZKLTI-VEDVMXKPSA-N 0.9996 10 T 

330 beta-pinene WTARULDDTDQWMU-UHFFFAOYSA-N 0.9978 10 T 

331 2-carene IBVJWOMJGCHRRW-UHFFFAOYSA-N 0.9993 10 T 

332 alpha-thujene KQAZVFVOEIRWHN-UHFFFAOYSA-N 0.9987 10 T 

333 camphene CRPUJAZIXJMDBK-UHFFFAOYSA-N 0.9984 10 T 

334 beta-myrcene UAHWPYUMFXYFJY-UHFFFAOYSA-N 0.9998 10 T 

335 cis-beta-ocimene IHPKGUQCSIINRJ-NTMALXAHSA-N 0.9997 10 T 

336 trans-beta-ocimene IHPKGUQCSIINRJ-CSKARUKUSA-N 0.9993 10 T 

337 myrtenal KMRMUZKLFIEVAO-UHFFFAOYSA-N 0.9992 10 AKE; T 

338 D-carvone ULDHMXUKGWMISQ-SECBINFHSA-N 0.9992 10 AKE; T 

339 pulegone NZGWDASTMWDZIW-QMMMGPOBSA-N 0.9994 10 AKE; T 

340 camphor DSSYKIVIOFKYAU-UHFFFAOYSA-N 0.9983 10 AKE; T 

341 beta-citral WTEVQBCEXWBHNA-YFHOEESVSA-N 0.9995 10 AKE; T 

342 myrtenol RXBQNMWIQKOSCS-UHFFFAOYSA-N 0.9998 10 AP; T 

343 cis-verbenol WONIGEXYPVIKFS-UHFFFAOYSA-N 0.9990 10 AP; T 

344 trans-verbenol WONIGEXYPVIKFS-VGMNWLOBSA-N 0.9992 10 AP; T 

345 alpha-terpineol WUOACPNHFRMFPN-SECBINFHSA-N 0.9973 10 AP; T 

346 gamma-terpineol NNRLDGQZIVUQTE-UHFFFAOYSA-N 0.9980 10 AP; T 

347 terpinen-4-ol WRYLYDPHFGVWKC-UHFFFAOYSA-N 0.9988 10 AP; T 

348 isopulegol ZYTMANIQRDEHIO-AEJSXWLSSA-N 0.9990 10 AP; T 

349 eucalyptol WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.9983 10 AKE; T 

350 trans-4-thujanol KXSDPILWMGFJMM-UHFFFAOYSA-N 0.9767 10 AP; T 

351 borneol DTGKSKDOIYIVQL-CCNFQMFXSA-N 0.9993 10 AP; T 

352 linalool CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.9989 10 AP; T 

353 lavandulol CZVXBFUKBZRMKR-SNVBAGLBSA-N 0.9995 10 AP; T 

354 cis-geraniol GLZPCOQZEFWAFX-YFHOEESVSA-N 0.9986 10 AP; T 

355 levomenthol NOOLISFMXDJSKH-AEJSXWLSSA-N 0.9992 10 AP; T 

356 citronellol QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.9992 10 AP; T 

357 linalyl acetate UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.9994 12 E; T 

358 lavandulyl acetate HYNGAVZPWWXQIU-UHFFFAOYSA-N 0.9990 12 E; T 

359 caryophyllene NPNUFJAVOOONJE-IOMPXFEGSA-N 0.9963 15 T 

360 beta-farnesene JSNRRGGBADWTMC-NTCAYCPXSA-N 0.9995 15 T 

 

 

Table S2. First-order functional groups from this work compared to a subset of groups containing carbon, hydrogen, 

and oxygen defined by Joback & Reid (25 total), Marrero & Gani (64 total), and Stefanis et al. (37 total). 
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Table S3. C10 validation compounds (50) with standard IUPAC InChI Key. 𝐾𝑀𝐸𝐴𝑆 was calculated at 100 °C by combining IGC with 

literature 𝐼𝑥 values. 𝐾𝑃𝑅𝐸𝐷 was calculated at 100 °C with group contribution model. RE = relative error. AH = Aromatic Hydrocarbon, 

AP = Alcohol-Phenol, AKE = Aldehyde-Ketone-Ether, E = Ester, T = Terpenoid 

No Compound Standard IUPAC InChI Key 
log 

KMEAS 
log 

KPRED 
RE 
[%] 

Class 

1 isobutylbenzene KXUHSQYYJYAXGZ-UHFFFAOYSA-N 2.47 2.53 2.4 AH 

2 m-ethylstyrene XHUZSRRCICJJCN-UHFFFAOYSA-N 2.67 2.62 1.9 AH 

3 2,5-dimethylstyrene DBWWINQJTZYDFK-UHFFFAOYSA-N 2.70 2.64 2.3 AH 

4 2-methyl-1-phenyl-2-propanol RIWRBSMFKVOJMN-UHFFFAOYSA-N 2.85 3.01 5.6 AP 

5 carvacrol RECUKUPTGUEGMW-UHFFFAOYSA-N 3.22 3.18 1.2 AP; T 

6 benzilideneacetone BWHOZHOGCMHOBV-UHFFFAOYSA-N 3.41 3.06 10.3 AKE 

7 anethole RUVINXPYWBROJD-ONEGZZNKSA-N 3.19 2.95 7.5 AKE 

8 estragole ZFMSMUAANRJZFM-UHFFFAOYSA-N 2.96 2.92 1.3 AKE 

9 acetic acid, 1-phenylethyl ester QUMXDOLUJCHOAY-UHFFFAOYSA-N 2.92 2.99 2.4 E 

10 acetic acid, 2-phenylethyl ester MDHYEMXUFSJLGV-UHFFFAOYSA-N 3.09 3.09 0.1 E 

11 anisyl acetate HFNGYHHRRMSKEU-UHFFFAOYSA-N 3.51 3.42 2.6 AKE; E 

12 
butanoic acid, 2-methyl-,3-

methylbutyl ester 
VGIRHYHLQKDEPP-UHFFFAOYSA-N 2.71 2.72 0.2 E 

13 
butanoic acid, 3-methyl-,3-

methylbutyl ester 
XINCECQTMHSORG-UHFFFAOYSA-N 2.71 2.72 0.1 E 

14 cis-alloocimene GQVMHMFBVWSSPF-SOYUKNQTSA-N 2.83 2.48 12.2 T 

15 trans-alloocimene GQVMHMFBVWSSPF-SOYUKNQTSA-N 2.79 2.48 11.0 T 

16 dihydrocitronellol PRNCMAKCNVRZFX-UHFFFAOYSA-N 2.96 2.86 3.5 AP 

17 tetrahydromyrcenol WRFXXJKURVTLSY-UHFFFAOYSA-N 2.71 2.75 1.6 AP 

18 tetrahydrolavandulol SFIQHFBITUEIBP-SNVBAGLBSA-N 2.87 2.75 4.2 AP 

19 9-decen-1-ol QGFSQVPRCWJZQK-UHFFFAOYSA-N 3.14 3.04 3.2 AP 

20 6,7-dihydrolinalool IUDWWFNDSJRYRV-UHFFFAOYSA-N 2.79 2.70 3.3 AP 

21 dihydromyrcenol XSNQECSCDATQEL-UHFFFAOYSA-N 2.61 2.70 3.6 AP; T 

22 trans-geraniol GLZPCOQZEFWAFX-JXMROGBWSA-N 3.11 3.09 0.4 AP; T 

23 citronellal NEHNMFOYXAPHSD-UHFFFAOYSA-N 2.84 2.86 0.6 AKE; T 

24 hydroxycitronellal WPFVBOQKRVRMJB-UHFFFAOYSA-N 3.17 3.22 1.7 AP; AKE 

25 beta-phellandrene LFJQCDVYDGGFCH-UHFFFAOYSA-N 2.54 2.42 4.4 T 

26 cis-carveol BAVONGHXFVOKBV-UWVGGRQHSA-N 3.05 3.06 0.3 AP; T 

27 trans-carveol BAVONGHXFVOKBV-VHSXEESVSA-N 3.02 3.06 1.3 AP; T 

28 dihydrocarveol KRCZYMFUWVJCLI-UHFFFAOYSA-N 2.96 2.96 0.0 AP; T 

29 carvone ULDHMXUKGWMISQ-UHFFFAOYSA-N 3.09 3.00 2.7 AKE; T 

30 carvenone RLYSXAZAJUMULG-UHFFFAOYSA-N 3.11 2.91 6.4 AKE; T 

31 piperitone YSTPAHQEHQSRJD-UHFFFAOYSA-N 3.11 2.91 6.2 AKE; T 

32 tetrahydrocarvone GCRTVIUGJCJVDD-RKDXNWHRSA-N 2.97 2.82 5.0 AKE; T 

33 isocineole RFFOTVCVTJUTAD-UHFFFAOYSA-N 2.52 2.51 0.2 AKE; T 

34 menthol NOOLISFMXDJSKH-KXUCPTDWSA-N 2.92 2.88 1.7 AP; T 

35 neo-menthol NOOLISFMXDJSKH-UHFFFAOYSA-N 2.89 2.88 0.4 AP; T 

36 cis-menthone NFLGAXVYCFJBMK-RKDXNWHRSA-N 2.89 2.82 2.4 AKE; T 

37 trans-menthone NFLGAXVYCFJBMK-DTWKUNHWSA-N 2.84 2.82 0.9 AKE; T 

38 methofurane YGWKXXYGDYYFJU-UHFFFAOYSA-N 2.90 3.11 7.2 AKE; T 
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39 terpin RBNWAMSGVWEHFP-UHFFFAOYSA-N 3.23 3.27 1.2 AP 

40 isocyclocitral DEMWVPUIZCCHPT-UHFFFAOYSA-N 2.79 2.87 2.8 AKE 

41 isocyclocitral (isomer) YJSUCBQWLKRPDL-UHFFFAOYSA-N 2.86 2.87 0.6 AKE 

42 tetrahydrocitral UCSIFMPORANABL-UHFFFAOYSA-N 2.89 2.74 5.4 AKE 

43 delta-3-carene BQOFWKZOCNGFEC-DTWKUNHWSA-N 2.49 2.41 3.3 T 

44 thujone USMNOWBWPHYOEA-MRTMQBJTSA-N 2.72 2.74 0.7 AKE; T 

45 alpha-fenchene XCPQUQHBVVXMRQ-UHFFFAOYSA-N 2.34 2.38 1.6 T 

46 beta-fenchene FUIDRYCKEXJNOK-SCZZXKLOSA-N 2.32 2.21 5.0 T 

47 alpha-fenchol IAIHUHQCLTYTSF-ZCUBBSJVSA-N 2.77 2.73 1.7 AP; T 

48 fenchone LHXDLQBQYFFVNW-UHFFFAOYSA-N 2.70 2.67 1.1 AKE; T 

49 isoborneol DTGKSKDOIYIVQL-CCNFQMFXSA-N 2.89 2.73 5.7 AP; T 

50 verbenone DCSCXTJOXBUFGB-UHFFFAOYSA-N 2.99 2.86 4.5 AKE; T 

 

 

Figure S1. Histograms were created by binning errors calculated from log𝐾𝑃𝑅𝐸𝐷 – log𝐾𝐸𝑋𝑇𝑅 for each compound. 

𝐾𝑃𝑅𝐸𝐷 was calculated with the group contribution model and 𝐾𝐸𝑋𝑇𝑅 was extrapolated to 20 °C, 40 °C, 60 °C, 80 °C, 

100 °C, 120 °C, 140 °C, 160 °C, 180 °C, and 200 °C by the van’t Hoff equation. The histogram at 100 °C is provided 

as an example (a). The mean and the standard deviation of the error (b) and the number of training compounds (c) are 

plotted as a function of temperature. 

 

 


