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MnBi2Te4 has recently been the subject of intensive study, due to the prediction of axion insulator,
Weyl semimetal, and quantum anomalous Hall insulator phases, depending on the structure and
magnetic ordering. Experimental results have confirmed some aspects of this picture, but several
experiments have seen zero-gap surfaces states at low temperature, in conflict with expectations. In
this work, we develop a first-principles-based tight-binding model that allows for arbitrary control of
the local spin direction and spin-orbit coupling, enabling us to accurately treat large unit-cells. Using
this model, we examine the behavior of the topological surface state as a function of temperature,
finding a gap closure only above the Néel temperature. In addition, we examine the effect of magnetic
domains on the electronic structure, and we find that the domain wall zero-gap states extend over
many unit-cells. These domain wall states can appear similar to the high temperature topological
surface state when many domain sizes are averaged, potentially reconciling theoretical results with
experiments.

I. INTRODUCTION

Since the pioneering work of Haldane[1], there has been
great interest in the topological properties of materials
systems, with many exciting developments in the past
dozen years[2–4]. However, much of the progress on topo-
logical systems has been focused on topological classes
with time-reversal symmetry (TRS), and topological ma-
terials with broken TRS, i.e. magnetic materials, remain
challenging to design and study. The zero-field quantum
anomalous Hall effect in particular has only been realized
in magnetically-doped topological insulators, with sub-
Kelvin temperatures necessary to observe robust quanti-
zation, limiting possible applications of this effect[5–8].

MnBi2Te4 and MnBi2Se4 have recently been the
subject of intensive study[9–23], due to theoreti-
cal predictions[24–30] that they are antiferromagnetic
(AFM) topological insulators (TI), a type of axion insu-
lator, in bulk[31–34]. In addition, they can display Weyl
semimetal phases under strain and/or external magnetic
field. In two-dimensional geometries, they are predicted
to be Chern insulators for systems with an odd num-
ber of layers. This materials class offers the possibil-
ity of observing broken-TRS topological effects in single-
crystal materials with reasonably high magnetic transi-
tion temperatures (TN ≈ 24 K[26]) and large band gaps,
which should improve the robustness of the topological
effects. However, there has been some disagreement be-
tween experiments and theoretical expectations, and in
some cases between different experiments, on fundamen-
tal properties of this material. Under external magnetic
field sufficient drive a transition from the layered AFM
ground state to a fully spin-polarized ferromagnetic (FM)
state, the quantum anomalous Hall effect has been ob-
served, as expected, but the anomalous Hall conductivity
(AHC) of odd-layer systems is not observed to be quan-
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tized at zero field[11, 12]. In addition, several experi-
ments have observed surface state features even below
the Néel temperature[14–18, 26, 35–37], which are ex-
pected to be gapped by the broken TRS on the surface,
while other experiments have seen inconsistent or con-
flicting results[6, 13, 14, 19, 38] (see discussion in Ref. 18).
Either a different surface magnetic ordering or domain
walls[16–18, 36] have been suggested as possible expla-
nations for the low temperature surface states. Recently,
the presence of domain walls has been confirmed using
atomic-force microscopy[39], but at relatively low densi-
ties, while robust surface A-type AFM ordering has also
been confirmed[37, 40].

To address these discrepancies, in this work, we de-
velop a first principles-based model of the magnetic de-
grees of freedom and electronic structure of MnBi2Te4
that can be applied to large unit cells. Using this model,
we can directly calculate some of the proposed scenar-
ios for explaining the various experimental results, which
may help clarify the experimental situation. We first
briefly consider the iso-symmetric topological transition
the occurs as a function of spin-orbit coupling (SOC)
strength. Next, we study the temperature-driven topo-
logical phase transition that accompanies the Néel transi-
tion, observing how the bulk and surface band structures
change in response to changes in the spin ordering. We
find that consistent with expectations, the system has a
bulk band gap both above and below the transition tem-
perature, but only has a surface state above TN when
TRS is restored. We also consider configurations with
partially ordered surface spins, and we find that such
configurations can cause the surface gap to close if the
disorder is large enough, even if the surface still has bro-
ken TRS on average. Finally, we study domain walls in
low temperature MnBi2Te4, which can be understood as
a type of topological transition that occurs as a function
of spatial location[26, 31, 41]. We find spin-polarized
metallic edge states localized on the surface at the do-
main walls, but that extend over many unit-cells along
the surface perpendicular to the domain wall. These sur-
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a) Side View                     b) Top View

                                          c)

FIG. 1. a-b) Side and top view of layered AFM structure of
MnBi2Te4. Mn spin up is red, spin down is blue, Te is yellow
and Bi is green. c) Brillioun zone. We use hexagonal labels
to more easily compare bulk and surface calculations.

face features can appear similar to the topological surface
states we observe in the disordered spin configurations,
which may help reconcile some of the unexpected exper-
imental observations with theory.

We show the crystal structure of MnBi2Te4, space
group R3̄m, in Fig. 1. The structure consists of a stack of
seven atom layers (septuple layers). In the ground state,
the Mn within each layer are ordered ferromagnetically,
and alternating layers are aligned antiferromagneticaly,
with spins oriented along the ±z direction.

II. METHODS

A. First principles

We perform first principles density functional theory
(DFT) calculations[42, 43] with the Quantum Espresso
code[44] using the PBEsol[45] functional. We use a
DFT+U correction with U=3 eV on the Mn-d states[46–
48]. We use norm-conserving ONCV pseudopotentials
with SOC[49–51]. We use Wannier90 [52–55] to generate
first principles tight-binding Hamiltonians, and we cal-
culate topological invariants with both WannierTools[56]
and our own code. Our initial Wannier projection con-
sists of Bi/Te-p orbitals and Mn-d orbitals, which de-
scribes all the bands near the Fermi level.

B. Magnetic tight-binding model

In order to calculate the electronic structure of the
large unit-cells that are necessary to treat structures with
disordered spins or domain walls, we develop a tight-
binding model, based on Wannier Hamiltonians, that
allows us to calculate the electronic structure for arbi-
trary orientations of the Mn spins, as well as variable
SOC. The model is similar in spirit to the model in Ref.
57, which treats chemical disorder in topological insu-
lators. The basis of our model is three separate DFT
plus Wannier calculations. First, we perform a calcu-
lation with TRS and without SOC, getting the Hamil-
tonian HTRS . Second, we perform a calculation with
TRS and SOC, getting HTRS

SOC . By subtracting these
two Hamiltonians, we can isolate the SOC contribution,
HSOC = HTRS

SOC−HTRS . Finally, we perform a FM calcu-
lation without SOC, which is separated into independent
spin up (Hup) and spin down (Hdn) terms.

We then assemble the total model for a single unit-cell,
Htot:

Havg =
1

2
(Hup +Hdn) (1)

Hdiff =
1

2
(Hup −Hdn) (2)

Htot = Havgσ0 +Hdiff (m · σ) +HSOC , (3)

where the vector m is the normalized magnetization di-
rection, σ0 is the identity matrix, and σ are the three
Pauli matrices. To generate tight-binding Hamiltonians
for supercells with different magnetic orderings (m’s) in
each cell, we keep the onsite terms as above and average
the inter-cell matrix elements. This approximation allows
us to treat arbitrary magnetic orderings based solely on
FM DFT calculations, and we verify its accuracy below.

To construct surfaces, we create supercells of the de-
sired thickness, but then set to zero any hoppings that
would go across the surface. This approximation is
reasonable for MnBi2Te4 because of the layered crystal
structure, and direct surface calculations show that the
surface relaxation energy of MnBi2Te4 is only 5 meV per
surface unit cell. We can also artificially adjust the mag-
nitude of the SOC by multiplying the final term in the
model by a number between zero and one.

In order to verify the accuracy of this model, we com-
pare the model band structure to equivalent calculations
done directly with DFT-derived Wannier Hamiltonians
for several spin configurations. In Fig. 2a and b, we
show the DFT and model band structures for the ground
state AFM phase with spins in the ±z-direction. Com-
paring the two figures, we find excellent agreement, with
all major features of the band structure reproduced by
the model. We emphasize that the model is built us-
ing only FM spin configurations and only non-magnetic
SOC calculations, so its success describing an AFM cal-
culation with SOC is encouraging. We show several more
bulk band structure comparisons with various spin order-
ings in Fig. S1 of the supplementary materials (SM)[58].
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FIG. 2. a) Band structure of AFM phase with spins in z-
direction calculated using DFT. b) Same, but calculated with
model. The colors show projections onto Bi Wannier func-
tions. c) Band gap in eV as a function of SOC fraction. d)
Model band structure at SOC=0.59, the critical value.

a) b)

FIG. 3. a) DFT and b) model band structure of three layer
slab with surfaces, with out-of-plane AFM spin ordering. The
DFT calculation includes surface relaxation. Colors as in
Fig. 2.

In Fig. 3, we directly compare a three-layer thick sur-
face DFT calculation with our model. For both the
bulk and surface calculations, we find excellent agree-
ment. In order to interpret the band structures of sys-
tems with large unit cells and magnetic disorder, we use
band unfolding to produce effective primitive cell spectral
functions[57, 59–61].

C. Spin model

Similar to previous works on this material class[24, 26],
we model the energetics of the spin-spin interactions
in our system using a Heisenberg model with onsite
anisotropy.

H =
1

2

∑
ij

Jij ~Si · ~Sj +
∑
i

A|Szi |2 (4)

We treat the ~Si variables as classic spins. We fit the

coupling parameters, Jij and A, using a least squares ap-
proach and taking into account crystal symmetries[62].
Symmetry allows for additional anisotropic intersite
coupling terms in magnetic materials with spin-orbit
coupling; however, given the success of the previous
works[26] describing magnetic interactions in MnBi2Te4,
we limit our model to Heisenberg intersite terms. We fit
to DFT calculations of various spin configurations in the
equivalent of 2 × 2 × 2 and 3 × 3 × 3 unit cells, using
the method of Lloyd-Williams et al. to generate smaller
non-diagonal cells[63]. We then use Metropolis Monte
Carlo sampling to generate spin configurations at a given
temperature[64].

III. RESULTS

A. Variable spin-orbit

Using our tight-binding model, we can now study
changes in the electronic structure during several types
of topological phase transitions. As a warm-up, we first
consider the iso-symmetric topological transition that oc-
curs when artificially varying the strength of the SOC. In
Fig. 2c, we show the band gap of the ground state AFM
phase as a function of the strength of SOC. The non-
trivial AFM topological state of MnBi2Te4 is driven by
SOC-induced band inversion. Therefore, at zero SOC,
MnBi2Te4 is a trivial AFM insulator. As the fraction of
SOC is increased, the bulk band gap closes, and at the
critical value of the SOC, 0.59, the the band structure
becomes inverted. Above this value, our model is in a
topologically non-trivial AFM insulating phase, which is
also an axion insulator. This transition is an example of
an iso-symmetric transition between a topologically non-
trivial and trivial state, which requires a bulk gap closure.
In practice, directly controlling the SOC experimentally
is not possible, but this transition might be similar to a
topological transition that occurs as a function of doping
elements with weaker SOC into the MnBi2Te4 structure.

B. Temperature-dependent electronic structure

Next, we consider the topological phase transition that
occurs as a function of temperature. Above the Néel
temperature, the spins in MnBi2Te4 become disordered,
restoring TRS on average and causing a topological phase
transition.

We generate spin configurations at a given tempera-
ture using our magnetic model (see Sec. II C). We find
that our model has a transition temperature of 40 K,
which is in reasonable agreement with experiment, con-
sidering that quantum fluctuations lower transition tem-
peratures. As expected for a layered structure, we find
that within-layer spin-spin correlations are much larger
than inter-layer correlations, and remain small but non-
zero above the transition temperature (see Fig. S2-S3 for
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FIG. 4. a) Band gap (meV) versus temperature. Solid red
line: minimum surface gap. Dashed green line: mean bulk
gap. Blue points: individual surface calculations. b-d) Un-
folded average surface band structure at 1 K, 25 K and 100
K, respectively.

more details).

Using our magnetic model, we can generate spin config-
urations at a given temperature, and then study the av-
erage electronic structure using our tight-binding model.
We first perform this analysis in a periodic 3 × 3 × 6
unit cell without a surface. We confirm that the bulk
gap does not close near TN , which is consistent with the
fact that the bands near the Fermi level are primarily
Bi and Te states, with the Mn supplying spin-splitting.
In fact, the bulk gap opens slightly, as shown by the
dashed line in Fig. 4a (see also supplementary materials
Fig. S5-S6)[58]. Unlike the iso-symmetric SOC-driven
transition studied above, here, the order-to-disorder spin
transition restores TRS at high temperatures. Because
of the symmetry change, the relevant topological invari-
ants are different above and below TN , and no bulk gap
closure is required despite the topological transition.

Next, we monitor the same transition, but in 3× 3× 5
unit-cell, with surfaces perpendicular to the z-direction.
In this odd-layered case, we find that MnBi2Te4 is a
Chern insulator at zero temperature, consistent with pre-
vious work[24–26]. In Fig. 4a, the blue points are the
gaps of individual spin configurations, and the solid red
line shows the minimum gap at each temperature. We
find that above TN , the minimum surface gap closes. In-
dividual spin configurations can have small gaps of ≈25
meV even above TN , which we attribute to spin fluctua-
tions breaking TRS. We expect that unit-cells with larger
areas than we can easily calculate would have smaller

a)                                                b)

FIG. 5. a) Surface band gap (meV) of 3×3×5 supercell with
ordered bulk and partially disordered surface spins (see text).
Each point is one spin configuration. b) Unfolded averaged
band structure at 0.5 mixing between ordered and disordered
surface spins.

minimum gap fluctuations above TN , but that a spa-
tially local measurement of the gap would continue to
fluctuate.

In Figs. 4b-d, we show the unfolded surface band struc-
ture, averaged over 20 spin configurations, at T =1 K,
25 K, and 100 K, respectively. At low temperature, when
the spins are almost perfectly aligned, we find sharply
defined bands and a clear band gap. However, as the
temperature is raised to 25 K, which is slightly below the
Néel temperature in our model, the bands become more
diffuse, and the spin-polarized bands begin to show the
influence of disorder. In addition, the gap at Γ begins to
close. Finally, at 100 K, we find a closed gap, with a clear
Dirac cone surface feature, which shows that the system
is in a non-trivial TRS-invariant (Z2 =1) topological in-
sulating state. This average topological state emerges
despite the fact that the individual band structures that
go into the average break TRS.

C. Surface spin disorder

To better quantify the amount of disorder necessary to
close the surface band gap, we again consider a 3× 3× 5
supercell with surfaces, but now we keep the bulk three
layers fixed to a perfectly ordered AFM configuration and
consider partially disordered surface spins. Specifically,
we choose surface spins such that each spin is a mixture
of a perfectly ordered spin, oriented along the z direc-
tion, and a randomly oriented spin. We consider a range
of mixing fractions from 0 (perfectly ordered surface) to 1
(fully disordered). Notably, all of the surface spin config-
urations with disorder fraction < 1 have broken TRS on
the surface on average. Despite this broken TRS, we find
that disorder fractions above 0.5 are enough to close the
average surface gap, as shown in Fig. 5a,b. As discussed
above, thermal flucuations alone are not enough to close
the surface band gap at temperatures significantly be-
low TN . Other possible sources of spin disorder include
quantum spin fluctuations or chemical disorder.
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D. Domain wall electronic structure

The above discussion of temperature-driven topologi-
cal states provides a clear explanation of the surface fea-
tures observed experimentally above TN ; however, the
states observed at low temperature remain unexplained.
One possible explanation is that the low temperature sur-
face spin configuration does not match the theoretical
predictions. However, in this section, we consider the al-
ternate explanation that there is a significant density of
domains in the AFM phase at low temperature, possibly
pinned by sample dependent defects. In the bulk of an
AFM topological insulator, the topological index on ei-
ther side of a domain boundary is the same, as the spin
configurations are related by a translation by one layer
in the z-direction. Therefore, a gap closure at the do-
main wall is not required. Equivalently, the axion angle
of both domains equals π ± 2π[31, 34]. However, in the
presence of a surface, this translation is no longer possi-

ble. Each surface of an AFM TI contributes ± e2

2h to the
total AHC, with the sign determined by the direction of
the spins in the top layer[31]. Therefore, there are two
distinct topological phases at the surface of an AFM TI,
and a domain wall between these surfaces must have a
1D conducting channel that contributes a total of ± e

2

h
to the AHC. In this work, we consider sharp Ising-like
domain walls, where the spins suddenly change from +z
to −z, or vice versa, at the boundary. Of course, more
complicated configurations where the spins rotate grad-
ually (Bloch-like) are also possible; however, we will find
that even sharp interfaces result in extended conducting
states. Furthermore, we note that similar considerations
apply to step edges.

Using our model, we first study domains in a 24×1×5
unit cell, with surfaces in the z direction, with two do-
mains 12 unit cells wide, and therefore two domain walls.
As expected, we find a gap closure at k = Γ, with four
degenerate states. These states correspond to the states
localized at the two domain walls on each surface, al-
though at the degeneracy point they are all mixed to-
gether. To make the plotting clearer, we move slightly
away from Γ, and consider two empty degenerate states
at kx = 0.05 2π

a . In Fig. 6a, we plot |ψ|2 for that pair of
states, using larger circles to represent larger magnitudes
of the eigenvector. We find that as expected, the pair
of eigenvectors are surface states localized at the domain
walls at x = 0 and x = 0.5 on the bottom and top sur-
faces. Even though we fix the spins to reverse direction
abruptly at the domain wall, we see that the electronic
states decay rather slowly perpendicular to the domain
wall, extending ≈ 10 unit cells around the wall.

In Fig. 6b, we consider the unfolded band structure for
a single example of a pair of domains, in a 20×1×5 unit
cell. We see that there is a gap closure at Γ, and that the
band structure looks somewhat similar to the 2D topo-
logical surface state for disordered spins (see Fig. 4d),
even though the metallic edge channel is 1D. However,
because we are only considering a single pair of perfectly

a)                                                                  

b)                                            c)

FIG. 6. a) Real-space representation of |ψ|2 localized at do-
main wall in 24× 1× 5 cell. Larger circles have more weight.
Blue circles are Te, green are Bi, and red are Mn. b) Unfolded
band structure in 20×1×5 unit cell with 10 unit cell domains.
c) Average unfolded band structure (see text).

ordered and periodic domains, the unfolded topological
surface band has a variety of artifacts related to wavevec-
tors of the superlattice. In an experimental situation,
we expect that there will instead be domains of varying
sizes. Therefore, in Fig. 6c, we average the unfolded sur-
face band structures of dozens of similar domains, with
thicknesses of 4 to 10 unit cells, in supercells of 8 to
20 unit cells. We see that we recover an average band
structure that looks quite similar to the 2D topological
surface state with disordered spins shown in Fig. 4d, even
though every spin is perfectly aligned along the ±z di-
rection and the domain walls are sharp and aligned. We
expect that if we go even further and include configura-
tions with partially disordered spins and domain walls in
varying directions, the result will be band structures that
closely resemble the Dirac cone features we see at high
temperatures.

IV. CONCLUSIONS

In conclusion, we generated a model to study the elec-
tronic structure of large unit cells of the AFM topolog-
ical insulator MnBi2Te4 with arbitrary spin configura-
tions, which we have used to study three types of topo-
logical phase transitions. First, we considered an artifi-
cial transition driven by adjusting the magnitude of the
SOC, which proceeds via a bulk gap closure. Next, we
considered a topological transition driven by a tempera-
ture dependent magnetic ordering. We find that as TRS
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is restored on average above TN , MnBi2Te4 goes from
an AFM topological insulator with a surface gap to a
TRS-invariant Z2 topological insulator with an associ-
ated Dirac cone surface state, but with minimal change
in the bulk gap. Finally, we consider the electronic sur-
face states associated with AFM domain walls, which
are 1D topological states. We find that these states are
strongly localized at the surface, but extend many unit
cells perpendicular to the domain walls, and that many
1D domain walls can together resemble a Dirac cone-like
topological surface state on average.

Consistent with previous ideas, this work suggests that
additional sources of spin disorder beyond thermal fluc-
tuations are necessary to explain the gapless states ob-

served experimentally at low temperatures. We address
this possibility more quantitatively, finding that partially
ordered surface spin configurations with broken TRS can
still result in a closed surface band gap. However, disor-
der fractions above 50% are necessary to fully close the
surface gap. Possible sources of disorder beyond ther-
mal flucuations include quantum fluctuations or chemical
disorder. Alternatively, AFM domain walls can produce
electronic features that mimic the closed band gap seen
above TN . Further experiments that quantify the local
band gap of MnBi2Te4 and that correlate the local gap
with ARPES and transport experiments may help clarify
the topology and electronic structure in this material.
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Supplementary materials: Topological surfaces states of MnBi2Te4 at finite
temperatures and at domain walls

Supplementary materials. Additional details on I. tight-binding model evaluation II. the magnetic model III. the
temperature dependent band structure and topology.

V. TIGHT-BINDING MODEL EVALUATION

Fig. S1 shows several more bulk comparisons of direct DFT-Wannier band structures with model band structures.
Compare left and right panels.

VI. MAGNETIC MODEL

We perform sampling in a 12× 12× 12 unit cell for bulk analysis of the model. To generate spin configurations for
the tight-binding model, we use a 3 × 3 × 5 unit cell with the model truncated along the z direction to simulate a
surface. In Fig. S2, we show the magnetic phase diagram under varying magnetic field at fixed temperature (top) and
at varying temperature and zero field (bottom). We consider the ground state AFM z-direction spin configuration
(blue), spins polarized FM along the z-direction (red), and spins oriented AFM between layers, but in-plane (green).
We can observe a spin-flop transition in the top panel under increasing field, followed by saturation at high field.

In Fig. S3, we show the nearest neighbor in-plane (blue) and out-of-plane (red) correlation as a function of tem-

perature. Solid lines show 〈~Si · ~Sj〉 − 〈~Si〉 · 〈 ~Sj〉, which goes to zero at low temperature, while dashed lines show

〈~Si · ~Sj〉, which goes to one below the phase transition. In-plane correlations are much larger and remain significant to
higher temperatures, which is consistent with the shorter distances between Mn atoms in-plane and the much larger
magnetic interaction coefficients (Jij) in-plane.

VII. TEMPERATURE DEPENDENT TOPOLOGY AND BAND STRUCTURES

Fig. S4 (bottom) shows the average Chern number for the 3× 3× 5 with surfaces system studied in Fig. 2 in the
main text, as a function of temperature. While for any single magnetic snapshot, the Chern number is always an
integer, the average over many snapshots can indicate how robust the topology is relative to magnetic fluctuations.
We expect that in a very large unit cell, instead of the snapshots of a small periodic cell that we can calculate, the
Chern number would not fluctuate, but the local electronic structure and local band gap would fluctuate and approach
zero in regions close to but below the Néel temperature.

In Fig. S5, we show bulk versions of the band structures in Fig. 2 in the main text, in 3× 3× 6 unit cells unfolded
to 1× 1× 6 cells. Note the lack of states in the gap, and the relatively small changes in electronic structure besides
averaging of spin-polarized bands above TN .



1

E
n

e
rg

y 
–

 E
F
 (

e
V

)

E
n

e
rg

y 
–

 E
F
 (

e
V

)
E

n
e

rg
y 

–
 E

F
 (

e
V

)

a) FM-X: DFT                                                           b) FM-X: Model

c) FM-Z: DFT                                                            d) FM-Z: Model

e) AFM-Z-211: DFT                                                    f) AFM-Z-211: Model

E
n

e
rg

y 
–

 E
F
 (

e
V

)
E

n
e

rg
y 

–
 E

F
 (

e
V

)

E
n

e
rg

y 
–

 E
F
 (

e
V

)

FIG. S1. Comparison of DFT and model band structures, as in Fig. 1. a,c,e) DFT, b,c,d) Model. a-b) FM, spins in x-direction.
c-d) FM, spins in z-direction, e-f) AFM, spins in ±z direction, alternating in-plane (not the ground state).
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FIG. S2. Magnetic phase diagram as a function of field (top) and temperature (bottom). See text. Error bars are smaller than
symbols.
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FIG. S3. Magnetic nearest neighbor spin-spin correlation as a function of temperature at zero field. Blue line is in-plane
correlation, red line is out-of-plane correlation. See text.
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FIG. S5. Bulk band structure in 3× 3× 6 unit cell, periodic in all three directions (no surface), unfolded to 1× 1× 6 unit cell,
for comparison with Fig. 2 b-d. a) 10 K b) 60 K.


