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Microwave-based arbitrary CPHASE gates for transmon qubits
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Superconducting transmon qubits are of great interest for quantum computing and quantum simulation. A
key component of quantum chemistry simulation algorithms is breaking up the evolution into small steps,
which naturally leads to the need for nonmaximally entangling, arbitrary CPHASE gates. Here we design such
microwave-based gates using an analytically solvable approach leading to smooth, simple pulses. We use the
local invariants of the evolution operator in SU(4) to develop a method of constructing pulse protocols, which
allows for the continuous tuning of the phase. We find CPHASE fidelities of more than 0.999 and gate times as
low as 100 ns.
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I. INTRODUCTION

Quantum computing promises solutions to a number of
problems in computing, chemistry, and material science. Su-
perconducting qubits are a promising candidate for qubits
because their fabrication relies on existing techniques [1,2],
and they can also have their characteristics tailored for specific
applications.

Superconducting qubits have been recently used in the im-
plementation of quantum algorithms for molecular problems
[3–5], reinforcing the idea that quantum chemistry is one of
the most appealing applications of quantum computing [6]. In
many quantum simulation algorithms, gate decompositions of
Trotterized Hamiltonians often include CPHASE gates, which
are then written in terms of two maximally entangling CNOT

gates [7]. This decomposition is shown in Fig. 1. Clearly,
using CPHASE gates instead of CNOTs would reduce circuit
depth and potentially improve resource use in terms of time
and fidelity.

Fast high-fidelity two-qubit gates remain challenging in su-
perconducting qubits [8]. Spectral crowding makes accurately
addressing an individual transition to produce a controlled
operation difficult over short times because the bandwidth
required to resolve differences between nearby transitions
becomes very small, increasing the time required for each gate
[9]. The trade-off is then that either gate times are long or the
gate fidelity is low.

One approach to implementing two-qubit gates in super-
conducting qubits is to dynamically tune elements of the
circuit. For example, one can tune the qubit frequency [2,10–
14], resonator frequency [15,16], or the coupling strength
[17,18]. Unfortunately, tunable elements introduce charge
noise, leading to decoherence and low fidelity. An alternative
method is to apply microwave pulses to the qubits to drive
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transitions that implement unitary rotations [19–33]. Typi-
cally, microwave-based control selects a single transition to
implement a two-qubit gate. However, spectral crowding is a
generic issue for systems controlled exclusively by microwave
pulses since, without tuning, their spectra are fixed (to Stark
shift effects) and this usually forces the gate time to be very
long to spectrally select the target transition. Moreover, the
always-on coupling in these systems makes single-qubit gates
nontrivial, especially for strongly coupled qubits.

In this work, we develop a collection of microwave-based
CPHASE gates using the speeding up wave forms by inducing
phases to harmful transitions (SWIPHT) [22] protocol, which
overcomes spectral crowding. This protocol was recently used
in experiment to produce CNOT gates between two trans-
mon qubits [33]. Here we make use of hyperbolic secant
(sech) pulse envelopes [34] which are smooth and simple to
implement and produce high fidelities with low gate times
for a variety of angles [35,36]. These type of pulses were
recently used on transmons in experimental demonstrations
of Z gates [37] and as part of a two-qubit gate [28]. We use
the local invariants [38,39] of the two-qubit analytic evolution
operator with control sech pulses to find conditions on the
pulse parameters that achieve the desired two-qubit operation.
Through simulations of transmons with typical parameters,
we show that our CPHASE gates produce high fidelities for
low gate times. These CPHASE gates are applicable in either an
all-microwave context or a microwave-tuning hybrid context.
Regarding the latter, our CPHASE gates are applicable in the
sense that they only rely on a weak effective Z ⊗ Z coupling
compared to methods that dynamically tune circuit elements.
This reliance on only a weak amount of dynamical tuning
of the circuit parameters allows these gates to be performed
in a variety of parameter regimes. To address the generic
challenge of implementing single-qubit gates with fixed-
frequency, always-coupled transmons, we design a composite
pulse protocol that gives high-fidelity X rotations, which
along with our two-qubit gates and previously available Z
gates [37,40] form a universal set. These single-qubit gates all
take less than 50 ns each and have fidelities in excess of 0.992.
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FIG. 1. Nonmaximally entangling CPHASE gate decomposed into
two maximally entangling CNOT gates.

This paper is organized as follows. In Sec. II we introduce
the two-qubit Hamiltonian for the system of transmons cou-
pled by a resonator. In Sec. III we present the results of the
analytical CPHASE protocols and numerical performance, as
well as their robustness in other coupling strength regimes.
In Sec. IV we present our single-qubit gates along with their
fidelities. We conclude in Sec. V.

II. TRANSMON HAMILTONIAN

We focus on two superconducting transmon qubits coupled
by a cavity [41]. The transmons are modeled as weakly
anharmonic oscillators and the cavity as a harmonic oscillator.
The Hamiltonian for this system is given by

H0 = ωca†a +
∑
j=1,2

ε j,1a†
j a j − η j

2
a†

j a j (a
†
j a j − 1)

+ g j (a
†
j a + a†a j ), (1)

where ωc is the frequency of the cavity connecting the two
qubits, ε j,1 is the transition frequency between the ground and
first excited states for the jth qubit, η j is the anharmonicity of
the jth qubit, g j is the coupling strength between the cavity
and the jth qubit, a (a†) is the annihilation (creation) operator
for the cavity, and a j (a†

j ) is the annihilation (creation) opera-
tor for the jth qubit. The Hamiltonian describing the coupling
to the external microwave electric field is given by

Hp(t ) =
∑
j=1,2

Ej (t )eiωp, j t a j + H.c., (2)

where Ej (t ) and ωp, j are the pulse envelope and frequency
driving the jth qubit, respectively. For the design of our gates
we only drive (without loss of generality) the second qubit so
that E1(t ) = 0, E2(t ) = E (t ), and ωp,2 = ωp.

The states in the system are |i; j, k〉 = |i〉c | j, k〉, where |i〉c
is the ith cavity level and the jth (kth) index denotes the
level of the first (second) transmon. It is advantageous to
write out the Hamiltonian in the dressed basis [42], which
diagonalizes H0, and the indices of each element of the
dressed basis is determined by the state in the bare basis that
has the largest overlap with the dressed state. For example,
for indices si we write an element of the dressed basis as
an eigenstate of H0 with |̃s1〉 = ∑

i αi |si〉, where |α1| > |αi|
with i �= 1. We encode each qubit into the lowest two lev-
els of each transmon. Consequently, the projection opera-

tor for the two-qubit subspace is PQSS = |˜0; 0, 0〉 〈˜0; 0, 0| +
|˜0; 0, 1〉 〈˜0; 0, 1| + |˜0; 1, 0〉 〈˜0; 1, 0| + |˜0; 1, 1〉 〈˜0; 1, 1|. Going
to the dressed basis and projecting into the qubit subspace

spanned by the basis |˜0; 0, 0〉, |˜0; 0, 1〉, |˜0; 1, 0〉, |˜0; 1, 1〉, the
approximate two-qubit Hamiltonian when only one qubit is

driven is given by

HQSS ≈

⎡⎢⎢⎣
−ωI,1/2 �1(t )eiωpt 0 0

�1(t )∗e−iωpt +ωI,1/2 0 0
0 0 −ωI,2/2 �2(t )eiωpt

0 0 �2(t )∗e−iωpt +ωI,2/2

⎤⎥⎥⎦.

(3)

The block-diagonal approximation here corresponds to ne-
glecting the presence of the cross-resonance interaction that
is introduced when strongly driving qubits at or near the
frequency of neighboring qubits. Our pulses are limited to
comparatively small driving fields so we expect the cross-
resonance effect to be negligible. Indeed, this is confirmed by
our numerical simulations. We define δωI as the difference
between the transition frequencies of the two subspaces ωI,1

and ωI,2 each corresponding with subspace 1 (upper left
block) and subspace 2 (lower right block) of the Hamiltonian,
respectively, as well as �i(t ) = E (t )di for the dipole moment
di of each transition. Here we have made the approximation
that terms in the Hamiltonian that couple states with a differ-
ent number of excitations on the first qubit will vanish. This is
due to the fact that in the dressed basis, since our off-diagonal
coupling terms in H0 are small compared to the diagonal
terms, | 〈˜i; j, k〉 i; j, k| is large compared to contributions from
other states.

To design fast gates, we avoid spectrally selecting one of
the two subspaces and allow the pulse to drive both transitions.
Because in general d1 �= d2 and ωI,1 �= ωI,2, the same E (t ) on
each block will produce different evolutions. Our goal is to
design control pulses E (t ) that generate two-qubit gates of the
form |0〉 〈0| ⊗ I2 + |1〉 〈1| ⊗ U , and other control pulses that
generate single-qubit gates of the form I2 ⊗ U .

III. CPHASE GATES

For each of the following CPHASE gates, we use hyperbolic
secant pulses of the form �(t ) = �0sech(σ t ) with bandwidth
σ , amplitude �0, and pulse frequency ωp. This pulse is cho-
sen because it gives an analytically solvable time-dependent
Schrödinger equation for a two-level system [34], is smooth,
and has nice analytic properties for rotations about the Z axis
[35] (see Appendix A for the derivation of the evolution opera-
tor and discussion of its properties). Specifically, for detuning
	 and bandwidth σ , a 2π hyperbolic secant pulse will induce
a phase 2 arctan(σ/	) and a 4π pulse will induce a phase
2 arctan [ 4	/σ

(	/σ )2−3 ] [36]. A plot of two examples of hyperbolic
secant pulses is shown in Fig. 2. The main idea is that the
same sech pulse acts on both (target and harmful) transitions,
causing a cyclic evolution to each subspace. This assumes that
the dipoles of the two transitions are the same, which is not
strictly the case. Nevertheless, approximately equal dipoles, as
is the case for the parameters here, suffice for high fidelities.
Due to the different detunings of the two transitions from the
pulse, each acquires a different phase. The choice of phases
for the two transitions, which we can control through the
bandwidth and frequency of the pulse, determines the specific
CPHASE gate. Since we focus on CPHASE gates, we use 2π and
4π pulses, which only implement cyclic transitions between
energy levels. Our pulses generate generalized CPHASE gates,
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FIG. 2. Hyperbolic secant 2π (lower curve) and 4π (upper
curve) pulses. These two different pulse areas have different alge-
braic properties, which lead to different types of protocols.

defined as CPHASE′ = diag(eiφ00 , eiφ01 , eiφ10 , eiφ11 ), which is
equivalent to a regular CPHASE gate, CPHASE = (1, 1, 1, eiθ ),
up to local Z rotations. The phases in both the generalized
and regular CPHASE gates satisfy θ = φ00 − φ01 − φ10 + φ11.
In systems of transmons, it has been shown that zero-duration
single-qubit Z rotations may be accomplished by shifting the
phase of the microwave pulse [40], so this generalization does
not affect our gate times or fidelities. Moreover, as discussed
in Appendix A, the pulse areas considered here produce no
transfer of population and hence only perform rotations about
the Z axis. For this reason, although the local invariants allow
us to consider arbitrary evolutions in SU(4) up to arbitrary
rotations in SU(2) (see Appendix B), our pulses only require
that we consider local operations of the form RZ (φ), which, as
discussed above, do not affect gate times or fidelities.

In the following results, we denote protocols that use
transitions that exist inside the qubit subspace as “IQSS”
and protocols that use transitions partially outside the qubit
subspace as “OQSS.” These two sets of transitions are illus-
trated in Fig. 3. In particular, when we refer to a protocol
that is “IQSS,” the transitions and their respective frequencies
that we consider are ωI,1 : |0̃; 00〉 ↔ |0̃; 01〉, ωI,2 : |0̃; 10〉 ↔
|0̃; 11〉. On the other hand, if the protocol is “OQSS,” then the
transitions and their respective frequencies that we consider
are ωO,1 : |0̃; 01〉 ↔ |0̃; 02〉, ωO,2 : |0̃; 11〉 ↔ |0̃; 12〉. As per
the SWIPHT protocol, in either of these cases we designate
either the IQSS or OQSS transitions with either the harmful or
target transitions with transition frequencies ωx,h and ωx,t , re-
spectively. From these we define the difference δωx = ωx,t −
ωx,h with x ∈ {I, O} depending on the transitions chosen.

When evaluating the performance of the derived protocols,
we numerically solve the Schrödinger equation to obtain the
evolution operator at the end of each pulse. In our simulations
we keep 3 states for the cavity and 4 states for each of the
qubits, so that the Hilbert space simulated is 48 dimensional.
This sufficiently simulates the full dynamics of the system
in that adding more available states does not change our

E

Higher Excited States

··
·

ω I,
1

ω I,
2 ωO

,1

ωO
,2

0; 0, 0

0; 0, 10; 1, 0

0; 1, 1
0; 0, 2

0; 1, 2

FIG. 3. Transitions between two-qubit states. The purple tran-
sitions (labeled ωI,1 and ωI,2) correspond to the IQSS protocols,
and the orange transitions (labeled ωO,1 and ωO,2) correspond to the
OQSS protocols.

resulting fidelities. To compare the final evolution operator
we obtain from the simulation with the target one, we cal-
culate the fidelity given by F = 1

n(n+1) [Tr(MM†) + |Tr(M )|2]

[43], where M = U †
0 U , with U0 being the desired gate and

U being the actual gate from simulations. Each U and
U0 are truncated so that they act only on the qubit sub-
space. In our numerical simulations we use ωc = 7.15 GHz,
ε1,1 = 6.2 GHz, ε2,1 = 6.8 GHz, η1 = η2 = η = 350 MHz,
and g1 = g2 = g = 130 MHz as the fixed parameters, except
in Sec. III B, where we evaluate the performance of the
gates when varying the coupling strength g. From these, we
find that δωI = 3.23 MHz and δωO = −11.07 MHz. Bell-
shaped pulses such as Gaussians or hyperbolic secants used
here theoretically extend to infinity. In practice, of course,
experimentalists switch on and off the pulses at finite times.
Similarly, simulations require truncation of the pulses. We
choose the gate time such that the simulation runtime is
reasonable without sacrificing accuracy. We find that T =
10/σ [which corresponds to �(T )/�0 ≈ 0.01347] suffices to
achieve this. Moreover, we numerically optimize around the
analytically predicted solution to compensate for errors such
as a difference in the dipoles of the two transitions. Below
we describe each of the protocols and provide results from
numerical simulations quantifying their performance.

A. CPHASE gate via off-resonant 2π-pulse OQSS

Our strategy here is to find conditions on the bandwidth and
pulse frequency of a hyperbolic secant pulse that performs a
generalized CPHASE gate on the two subspaces defined above.

054508-3



GEORGE S. BARRON et al. PHYSICAL REVIEW B 101, 054508 (2020)

To this end, we use the local invariants (Appendix B) of the
analytical evolution operator for the two-qubit system driven
by sech pulses (Appendix A).

First, we recall that the definition of the generalized
CPHASE gate is CPHASE′ = diag(eiφ00 , eiφ01 , eiφ10 , eiφ11 ), where
the phase imparted is θ = φ00 − φ01 − φ10 + φ11. If we con-
sider the two block-diagonal portions of the Hamiltonian HQSS

(3), then we can define two detunings between the pulse and
the desired transitions, 	1 = ωp − ωO,1 and 	2 = ωp − ωO,2.

Now for the OQSS protocol the block-diagonal form
of the Hamiltonian as well as the analytical solution for
the unitary operator of a two-level system discussed in
Appendix A allows us to write the evolution operator as
U = diag(1, f1, 1, f2). Here f j = 2F1(−a,+a,

−i	 j+σ

2σ
, 1) is

the Gaussian hypergeometric function with a ≡ �
σ

∈ Z. Using
Eq. (B3) We can compute the local invariants of the two-qubit
evolution operator U , yielding

G1(U ) = 1
8 (4 + γ + γ ∗),

G2(U ) = 0,

G3(U ) = 2 + γ

2
, (4)

where

γ = �2
(

σ−i	1
2σ

)
�

( − a + 1
2 − i	2

2σ

)
�

(
a + 1

2 − i	2
2σ

)
�2

(
σ−i	2

2σ

)
�

( − a + 1
2 − i	1

2σ

)
�

(
a + 1

2 − i	1
2σ

)
+ �2

(
σ−i	2

2σ

)
�

( − a + 1
2 − i	1

2σ

)
�

(
a + 1

2 − i	1
2σ

)
�2

(
σ−i	1

2σ

)
�

( − a + 1
2 − i	2

2σ

)
�

(
a + 1

2 − i	2
2σ

) . (5)

We also compute the local invariants for the target CPHASE

gate, yielding

G[diag(1, 1, 1, eiθ )] = [cos(θ/2)2, 0, 2 + cos(θ )], (6)

where G(U ) = (G1(U ), G2(U ), G3(U )).
In order to find the conditions on the pulse parameters, we

demand that the local invariants of U [Eq. (4)] be equal to
those of the CPHASE gate, and thus we arrive at (assuming for
simplicity that a = 1)

cos θ = cos [φ1(	1) − φ1(	2)], (7)

where eiφ1(	 j ) = σ−i	 j

σ+i	 j
.

For the IQSS protocol, we follow the same procedure,
except that in that case the IQSS evolution operator is
U = diag( f1, f ∗

1 , f2, f ∗
2 ) After imposing that the respective

local invariants of U and the CPHASE gate be equal, for a 2π

pulse we arrive at

cos θ = cos {2[φ1(	1) − φ1(	2)]}. (8)

In our parameter regime, the IQSS protocol has similar or
lower performance than the OQSS protocol, and thus in the
remainder of this section we focus on the OQSS protocol only.

In the SWIPHT protocol, there is a notion of a “harmful”
and “target” transition. The difference between these two
transitions is that we select the “harmful” transition to be
the transition that we want to drive to obtain a trivial phase.
The “target” transition then corresponds to the transition that
looks like the target portion of a controlled unitary operation.
So here we see that there is some freedom in defining which

of the two blocks (1 or 2) involves the target and which the
harmful transition. We define the following choice of sign:

λ =
{+1 Target is block 1
−1 Target is block 2

. (9)

We also define 	t and 	h based on this choice. Then noting
that ωp = 	h + ωh = 	t + ωt and defining δωO = ωt − ωh,
we can use the definitions for θ , φ1 as well as trigonometric
identities to find δωO/σ = cot [φ1(	h)/2] − cot [φ1(	t )/2].

Now if we specify an angle for the two-qubit gate, then
all of the restrictions up until now allow us to find a pulse
frequency and bandwidth that perform two different rota-
tions on each block, but together they combine to form a
CPHASE operation. We define θ1 = φ00 − φ01, θ2 = φ10 − φ11

as well as θ = θ1 + θ2, δθ = θ1 − θ2. These can be written in
terms of the harmful/target detunings and λ as follows: θ =
λ[φ1(	t ) − φ1(	h)] and δθ = φ1(	t ) + φ1(	h). With these
expressions we can then find an expression for the bandwidth
in terms of the desired angle,

σ =λδωO
cos(θ/2) − cos(δθ/2)

2 sin(θ/2)
. (10)

To successfully generate an arbitrary CPHASE gate we also
need to express the control pulse frequency ωp in terms of the
desired θ angle. In this line, using previous definitions for ωp,
we can write ωp = ωt +ωh

2 + 1
2 (	t + 	h), which can be easily

rewritten in terms of θ and δθ :

ωp = ωt + ωh

2
+ 1

2
(	t + 	h)

= ωt + ωh

2
+ σ

sin(δθ/2)

cos(θ/2) − cos(δθ/2)
.

Using Eq. (10) to further simplify the previous equation, we
find that the pulse frequency in terms of the desired angle θ is

ωp = ωO,t + ωO,h

2

+ λ
δωO

2 sin(θ/2)

√
1 − [cos(θ/2) − 2 sin(θ/2)σ/δωO]2,

(11)

where, in order to ensure that the resulting pulse has finite
frequency, we require that the angle of the CPHASE gate is
within the range θ ∈ (0, π ]. Moreover, to make the pulse
frequency real, this expression also provides a maximum al-
lowable bandwidth for a given angle θ , σmax = |δωO|

2 cot (θ/4).
Using this protocol, we find fidelities in excess of 0.999

and gate times as low as 60 ns. The numerical evaluations of
the fidelity in the simulation for this protocol are shown in
Fig. 4. From the figure we see that the fidelity is consistently
above 0.992 for all angles and gate times. By choosing smaller
bandwidths, one is able to increase the fidelity. The infidelity
at small gate times is due to leakage outside the qubit sub-
space.

B. CPHASE gate via resonant pulses

The construction of the protocols presented in this section
is similar to that of the off-resonant protocols in Sec. III A,
with the difference that now we require the pulses to be
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FIG. 4. Fidelity of numerical simulations for the CPHASE gate
with the OQSS protocol. For every angle, there is a maximum
allowable bandwidth and hence a minimum allowable gate time.

resonant with one of the two transitions in the system. In
this family of protocols, we will first restrict the value a =
�/σ ∈ Z so that each subspace sees a rotation about the Z
axis, independent of the detuning with the frequency of each
transition.

For the IQSS case, this means that the evolution operator
is diagonal and has the form U = diag( f1, f ∗

1 , f2, f ∗
2 ), where

f j = 2F1(−a,+a,
−i	 j+σ

2σ
, 1). Because we are constructing

resonant protocols, without loss of generality, we let the pulse
be resonant with the first transition so that 	1 = 0 and 	2 =
δωI . We may then compute the local invariants, yielding

G(U ) =
[

Re(α)2

|α|2 , 0, 2 + 1

2

(
α

α∗ + α∗

α

)]
, (12)

where α = 2F1(−a,+a, −iδωI +σ
2σ

, 1) is the Gaussian hyperge-
ometric function. Then, demanding that the local invariants of
the CPHASE gate [Eq. (6)] be equal to the evolution operator for
the pulsed system yields a single equation for this protocol:

cos θ = α2 + α∗2

2|α|2 . (13)

As an example, for a 2π pulse we let a = 1. Then this equation
reduces to

δω4
I − 6δω2

I σ
2 + σ 4(

δω2
I + σ 2

)2 = cos θ. (14)

Solving this equation for the bandwidth yields four solutions,
and because the bandwidth must be positive, only two are
physical based on the sign of δωI . For the a = 1 case, the final
bandwidths are

σ1 =|δωI | cot(θ/4), (15)

σ2 =|δωI | tan(θ/4). (16)

This procedure may be repeated for pulses with a ∈ N,
though the resulting equations are more complicated and

may be treated numerically. Additionally, one may repeat this
protocol while using the OQSS transitions. The setup is
essentially the same, except the OQSS evolution operator will
be

U = diag(1, f1, 1, f2). (17)

In this case, the analogous single equation for these protocols
will be

cos θ = (−1)a 1 + α2

2α
, (18)

where now α = 2F1(−a,+a, +iδωO+σ
2σ

, 1) For OQSS transi-
tions, where the control sech pulse is resonant with a tran-
sition partially out of the qubit space, the derivation of the
protocols rely on solving Eq. (18) for the bandwidth of the
pulse. In particular, for a sech 2π pulse (a = 1) we find that
the associated bandwidth that produces a CPHASE gate for a
given angle is σ = |δωO| cot (θ/2), where again we require
that θ ∈ (0, π ]. On the other hand, if we instead use a 4π

pulse, then the solution to the evolution operator has different
properties compared to the resonant 2π case, and we find that
the bandwidth for a specific angle θ ∈ (0, π ) is given by

σ = |δωO| tan(θ/2)√
4 + 3 tan(θ/2)2 ± 2

. (19)

In this case, the choice of sign is arbitrary and the bandwidth
does not depend on which transition is designated as the
harmful or target. However, the choice of sign determines
the range of the bandwidth. We find that if the sign choice
is positive, then 0 < σ

|δωO| < 1/
√

3 and if the choice of sign

is negative, then 1/
√

3 < σ
|δωO| . In some protocols derived

here, there are multiple ranges of allowed bandwidths. These
ranges result from the fact that multiple bandwidths satisfy
Eq. (18) for a given angle and δω. In our parameter regime,
this protocol has comparable or lower performance from the
others simulated here, so we do not show numerical results in
this case.

If we repeat this procedure but now choosing transitions
corresponding to the IQSS case, then the different bandwidths
are obtained by solving Eq. (13). For example, in the case
of a 2π pulse (a = 1), the bandwidth for this CPHASE gate
of angle θ ∈ (0, π ] is σ = |δωI | cot(θ/4). Here we find gates
with fidelities as high as 0.999999 and gate times as low as
24 ns for angles in the range of π/16 to π/2. To construct
this protocol, the pulse is driven on resonance with one of
the transitions inside the qubit subspace. We evaluate the
performance of this protocol in simulation by calculating the
gate fidelity, shown in Fig. 5. The two curves correspond to the
two different choices of resonant transitions. The upper (blue)
curve corresponds to the lower right block being the target,
and the bottom (red) curve corresponds to the upper left block
being the target. We find that the fidelity using subspace 2
as the target is above 0.9998 for angles from π/8 to π/2, and
using the other transition as the target produces lower fidelities
of ∼0.9995. In either case, we find reasonable gate times for
this range of angles. The infidelity at smaller angles is due to
leakage as a result of larger pulse amplitudes. In contrast with
the other numerical results, in this protocol the desired angle
of the gate fixes the bandwidth and hence the gate time.
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FIG. 5. Performance of CPHASE gate from simulation using the
resonant IQSS 2π protocol. The upper curve corresponds to using
subspace 2 as the target, ωI,2 = ωt , and the bottom curve corresponds
to using subspace 1 as the target, ωI,1 = ωt .

When we repeat this procedure for a 4π pulse, the
CPHASE gate of angle θ ∈ (0, π ), has bandwidth σ =
|δωI | tan(θ/4)√

4+3 tan(θ/4)2±2
. Again, the pulse is driven on resonance

with one of the transitions inside the qubit subspace. We also
find that the range on the bandwidth in the case when the
choice of sign is positive becomes 0 < σ

|δωI | < 1
2+√

7
and when

the choice of sign is negative, we have 1√
7−2

< σ
|δωI | .

So far we have fixed the coupling to g = 130 MHz.
Now we focus on the IQSS 2π protocol and evaluate its
performance as a function of the coupling strength. We
determine two primary features as we vary the coupling
strength. First, weakly coupled systems produce gate times
that increase rapidly as a function of the desired angle, as
shown in Fig. 6. Second, increasing the coupling strength
decreases the fidelity, as shown in Fig. 6. Overall, we find
that for a range of coupling strengths we are able to find high

fidelities exceeding 0.998. In some cases the fidelity is as high
as 0.999999. In all cases, the fidelity drops for smaller angles
due to leakage as a result of larger pulse amplitudes. We
limit these simulations to 200 ns gate durations to compare
the different coupling strengths because this protocol has no
upper bound on the gate time.

C. CPHASE protocols comparison

In Table I we provide a summary of the results of the
various protocols. Overall, we find that there is flexibility in
the way of constructing CPHASE gates. For instance, one does
not necessarily need to drive on resonance with one of the
transitions. Additionally, one may choose various pulse areas
or bandwidths for different implementations. For instance,
one may choose to derive protocols with a = 3, 4, . . . . This
has the potential to reduce the duration of the gate at the
cost of potentially introducing more leakage, which one could
possibly address by incorporating Derivative Removal by
Adiabatic Gate (DRAG) [44–46] into the pulse design, but
this is beyond the scope of this work. In terms of performance,
the two best protocols are the OQSS arbitrary frequency via
2π -pulse and IQSS resonant 2π -pulse protocols. Comparing
the fidelities and gate times for a range of angles, if a small
angle is desired one should choose the IQSS resonant 2π -
pulse protocol because at small angles it provides consistently
higher fidelities (∼0.9999 compared to ∼0.998) at compara-
ble gate times and sometimes fidelities as high as 0.999999.
On the other hand, if a larger angle is desired, then the OQSS
arbitrary frequency via 2π -pulse protocol is preferable due to
its flexibility in the bandwidth, yielding potentially lower gate
times (∼120 ns compared to ∼200 ns). The other protocols
produce fidelities on the order of ∼0.98 generally due to their
higher bandwidths, which result in more leakage. In systems
that do not have higher available states, these protocols may
be more useful as they can produce smaller gate times for a
range of angles.

IV. SINGLE QUBIT GATES

Now we turn our attention to single qubit operations.
Developing single qubit operations in an always-coupled two-
qubit system is inherently challenging. This is because the
interaction between the two qubits dresses the energy eigen-

TABLE I. Summary of results for various CPHASE protocols. These results are derived in Secs. III A and III B. Each row denotes the
analytical results of a particular protocol producing a CPHASE gate by an angle θ . The way to read this column is from left to right. First, choose
a pair of transitions corresponding to the transitions in Fig. 3 and then choose a pulse area. The properties of the selected pulse will then be the
bandwidth for a particular angle and the range on such bandwidths. In some cases, there are two disconnected ranges of allowable bandwidths.
The OQSS 2π protocol has an arbitrary bandwidth in the sense that it is not a function of the desired angle. However, the bandwidth must
satisfy the constraint in the corresponding “Bandwidth range” column.

Transitions Pulse area Frequency Bandwidth Bandwidth range

IQSS 2π ωt σ = |δωI | cot(θ/4) 0 < σ < +∞
IQSS 4π ωt σ± = |δωI | tan(θ/4)√

4+3 tan(θ/4)2±2
0 <

σ+
|δω|

< 1
2+√

7
< 1

−2+√
7

<
σ−

|δωI | < +∞
OQSS 2π ωt σ = |δωO| cot(θ/2) 0 < σ < +∞
OQSS 4π ωt σ± = |δωO| tan(θ/2)√

4+3 tan(θ/2)2±2
0 <

σ+
|δωO | < 1√

3
<

σ−
|δωO | < +∞

OQSS 2π Eq. (11) Arbitrary 0 < σ <
|δωO |

2 cot(θ/4) < +∞
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FIG. 6. Properties and performance of the CPHASE gates using
the IQSS 2π protocol over a range of coupling strengths. The upper
panel shows the gate time for each coupling strength g as a function
of the angle of the CPHASE gate. The middle panel shows the fidelity
at each angle for the various coupling strengths using subspace 1 as
the target, ωI,1 = ωt . The lower panel shows the fidelity at each angle
for the various coupling strengths using subspace 2 as the target,
ωI,2 = ωt . For all panels, gate times between 10 ns and 200 ns are
considered.

states, such that the frequency of the qubit transition in one
qubit depends on the state of the other qubit. As a result,

the problem is to find a pulse which implements the same
operation in two distinct two-level systems. In the following
subsections, we design single-qubit gates by providing two
solutions to this problem. One is based on individual Gaussian
pulses (Sec. IV A) and the other on sequences of square pulses
(Sec. IV B).

A. Gaussian pulse protocol

Here we will design Rẑ(θ ) and Rx̂(π/2) rotations, which
can be combined with rotations about Z to give arbitrary
single-qubit gates. Since rotations about the Z axis may be
produced by shifts in the frequency of the microwave pulse
[40] with zero gate time and no loss in fidelity, we only
consider the development of the rotations about the x axis.

For this protocol, we use a single Gaussian pulse,
�(t ) = �0e−(σ t )2

, that is resonant with the transition
frequency of the target qubit. Since the qubits are strongly
coupled, the |0〉 ↔ |1〉 transition frequency is conditional on
the state of the other qubit. Here we choose the frequency
when the qubit not being driven is in the |0〉 state. This
pulse has two free parameters, the amplitude �0 and the
bandwidth σ . Treating this problem numerically, we will
optimize the final fidelity of the evolution operator with the
desired evolution operator, I ⊗ Rx̂(π/2). Accordingly, the
evolution operator of the whole system (i.e., including higher
levels of the transmons and cavity) is projected into the qubit
subspace before calculating the fidelity. We use a Bayesian
optimization algorithm, which is useful in cases where calls
to the objective function are costly and gradients are not
easily be evaluated. This technique has been used in quantum
control before [47]. The result of this procedure is a Gaussian
pulse with �0 = 60.25 MHz and σ = 67.57 MHz. Plots of
the relevant transition probabilities and the pulse envelope are
shown in Figs. 7(a) and 7(b), respectively. The pulse duration
is 11.75 ns and the gate has a final fidelity of F = 0.99563.
Interleaving two copies of this pulse with five rotations about
the z axis allows us to perform any single qubit rotation.

B. Square pulse protocol

We also develop Rx̂(θ ) rotations via a sequence of square
pulses. In this case, the Hamiltonian is simply the Hamiltonian
in Eq. (3) for piecewise constant �i(t ) and ωp,i(t ). The
evolution operator for the qubit subspace can be written as

U (�τ , �E , �ω) =
[
U1(�τ , �E , �ω) 0

0 U2(�τ , �E , �ω)

]
, (20)

where Uj (�τ , �E , �ω)=∏N
i=1 Uj,i(τi, Ei, ωp,i ) and Uj,i(τi, Ei,

ωp,i ) is the evolution operator for the jth block over the
duration of the ith square pulse. The ith square pulse has
duration τi, pulse amplitude Ei and frequency ωp,i.

Instead of solving exactly for parameters of each pulse
that perform the desired evolution on each subspace,
we define an objective function to optimize which is
fn̂,θ (�τ , �E , �ω) = F (I ⊗ Rn̂(θ ),U (�τ , �E , �ω)), where F (U,V )
is the fidelity between two unitary operators. We do this for
several reasons. Primarily, there is no guarantee that such
solutions exist, and even if they did, they would likely not be
simple. Moreover, even if we solve for a sequence of pulses
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FIG. 7. (a) Plot of the probabilities as a function of time for
various transfers of population to and from elements of the com-
putational basis. Since we are performing the rotation I ⊗ Rx̂ (π/2),
we expect that the final probabilities shown end up at 1/2. The
dashed/solid lines are simply so that the plots do not overlap. (b) Plot
of the pulse envelope �(t ) as a function of time.

that exactly implements the desired evolution, in simulation
and experiment the fidelity will not be exactly 1 due to
decoherence. Here we use global, constrained optimization
algorithms over the 3N parameters to find such sequences of
pulses. The region in which the optimization is performed
is determined by experimental limitations such as ramp-up
times for the microwave pulses on the order of 1 ns and
maximum possible amplitudes of each pulse based on the
microwave pulse generators of about 20 MHz.

The desired evolution operator for the qubit subspace
here is I ⊗ Rx̂(θ ) so that Uj (�τ , �E , �ω) = Rx̂(θ ) for each j =
1, 2. Without loss of generality, we choose a sequence of
pulses resonant with the first subspace so that ωp,i = ωI,1.
Then, with Ei ∈ R, this sequence of square pulses naturally
produces rotations about the x axis for the first subspace,
Rx̂(θ ) = U1(�τ , �E , �ω). This provides the constraint θ/2 =
d1

∑N
i=1 τi|Ei|. Now the optimization is over 2N parameters

with one constraint.
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FIG. 8. Performance of single qubit rotation protocol. The up-
per (orange) curve is the protocol fidelity, determined by global
optimization over the parameters of a sequence of resonant square
pulses for the four-level system. The middle (blue) curve is the purity
as a function of the angle. The bottom (red) curve is the fidelity
found from simulation of the full time dynamics of the system after
using the result from the protocol as an initial condition in a local
optimization.

We evaluate the performance of the single qubit X rotation
protocol. This involves two steps: The first step is to determine
the parameters on some sequence of square pulses by the
optimization of fn̂,θ (�τ , �E , �ω), which yields what we define as
the “protocol fidelity,” see Fig. 8. The second step is to take
the resulting sequence of square pulses and simulate the full
time dynamics of the system, using a local optimization to
improve the results of the protocol in the simulation. This is
done by using the parameters of each pulse sequence from the
protocol as initial conditions to a local optimization algorithm
that improves the fidelity. We refer to this as the “simulation
fidelity” in Fig. 8. We find “simulation fidelities” above 0.992
for all angles 0 < θ � π . All of these gates have durations
from ∼15 ns to ∼25 ns. Because there is a gap between the
“simulation fidelity” and purity in the figure, we see that there
is some coherent error occurring. This is due to coupling to
higher excited states which are not included in the four-level
system and is the primary cause of the infidelity. The dip at
θ = π/2 is due to the fact that we use a local optimizer for
the “simulation Ffidelity” and the curve is not guaranteed to
be smooth.

V. CONCLUSIONS

Using the analytical evolution operator for the hyperbolic
secant pulse acting on a two-level system, we have derived
a collection of CPHASE gates for transmon qubits. We have
demonstrated that these gates produce high fidelities typically
in excess of ∼0.999 and in some cases as high as 0.999999
and typical gate times less than ∼100 ns. Moreover, we
show that one of these protocols is robust in the fidelity
for a range of angles and coupling strengths g. Finally, we
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demonstrate that arbitrary single qubit gates may be achieved
via microwave control in this parameter regime using either
single Gaussian pulses or sequences of square pulses. Our
high-fidelity parameterized entangling gates may be applied
in realistic systems for use in quantum simulation algorithms.
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APPENDIX A: HYPERBOLIC SECANT PULSE SOLUTION

The basis for the CPHASE gate is the analytic solution
for the evolution operator of a two-level system driven by
a hyperbolic secant pulse. The pulse is defined as �(t ) =
�0sech(σ t ), where σ is the pulse bandwidth and �0 is the
pulse strength. One can show that the form of the Hamiltonian
for a given transition in the interaction frame is

H2(t ) =
[

0 �(t )ei	t

�(t )∗e−i	t 0

]
, (A1)

where 	 is the detuning of the pulse with the |0〉 ↔ |1〉
transition, i.e., 	 = ωp − ε1. By following a previous dis-
cussion of this problem [35], we define c = 1

2 (1 + i 	
σ

), a =
�
σ

, ζ = 1
2 [1 + tanh(σ t )], α(a, c, ζ ) = 2F1(a,−a, c∗, ζ ), and

β(a, c, ζ ) = 2F1(a + 1 − c, 1 − a − c, 2 − c, ζ ) where 2F1 is
one of Gauss’s hypergeometric functions. Then the evolution
operator is

U (t,−∞) =
[

α(a, c, ζ ) − ia
c ζ cβ(a, c, ζ )

− ia
c∗ ζ

c∗
β(a, c, ζ )∗ α(a, c, ζ )∗

]
.

(A2)

Here the initial condition is U (−∞,−∞) = I, though in
practice we take the initial time to be some finite value that
is sufficiently large for our results to converge. Since we are
only interested in the end result of the pulse, we consider the
evolution operator at t = +∞,

U = U (+∞,−∞)

=
[

2F1
(−a, a; σ−i	

2σ
; 1

) −isech
(

π	
2σ

)
sin(aπ )

−isech
(

π	
2σ

)
sin(aπ ) 2F1

(−a, a; i	+σ
2σ

; 1
) ]

. (A3)

Then it is clear that for a ∈ Z, the evolution operator is di-
agonal. In this instance, we can express the evolution operator
with U = diag{e−iφa , e+iφa}. If we use a 2π pulse (i.e., a = 1),
then φ1(	) = 2 arctan ( σ

	
). If instead we consider a 4π pulse,

then a = 2 and φ2(	) = 2 arctan [ 4	/σ

(	/σ )2−3 ].

APPENDIX B: LOCAL INVARIANTS

To develop our CPHASE gates, we will use the local in-
variants [38,39] of unitary operations in SU(4), denoted here
as Gi for i ∈ {1, 2, 3}. These are three quantities that may
be computed from any element of SU(4) and are invari-
ant under operations in SU(2). That is, for U ∈ SU(4) and
Vi ∈ SU(2),

Gi(V1 ⊗ V2 U V3 ⊗ V4) = Gi(U ). (B1)

Therefore, the local invariants convey the nonlocal properties
of the operator U and give a unique representation of any class
of two-qubit gates that are equivalent up to local operations.
Note that single-qubit rotations about the Z axis may be
efficiently performed for transmons [40] and that hyperbolic
secant pulses can produce no population transfer, as discussed
in Appendix A and in Ref. [36]. These two facts allow us to
develop protocols for CPHASE operations that only consider
their nonlocal characteristics and have no overhead in terms
of the fidelity or time required to perform the single-qubit
gates associated with their local-equivalence classes. Hence,
the local invariants of the analytical unitary evolution, U ,
for our four-level system driven by a hyperbolic secant pulse
will be the starting place for constructing our protocols for a
CPHASE gate. The quantities Gi are obtained by first placing U
in the magic basis [48] defined by the unitary transformation
[38,39]

Q = 1√
2

⎛⎜⎝1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i

⎞⎟⎠. (B2)

The local invariants are the coefficients of the characteristic
polynomial of the matrix M(U ) = (Q†UQ)T (Q†UQ), and
they are given by the following expressions:

G1 = Re
tr[M(U )]2

16 det U
,

G2 = Im
tr[M(U )]2

16 det U
,

G3 = tr[M(U )]2 − tr[M2(U )]

4 det U
. (B3)
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