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Abstract—Machine learning (ML) approaches have been exten-
sively exploited to model and to improve wireless communication
networks in the past few years. Nonetheless, the estimation of
key performance indicators (KPIs) and their uncertainties in
Long Term Evolution License Assisted Access (LTE-LAA) based
coexistence systems is not adequately addressed. For example, it
is not clear if an ML method can accurately predict achievable
KPIs (e.g. throughput) and the probability of coexistence (PoC) of
LTE-LAA coexistence systems based on partial or no information
of MAC and physical layer protocols and parameters. In this
paper, we develop a novel ML method by combining a neural
network with a logistic regression algorithm to track and estimate
KPIs and PoC of coexisting LTE-LAA and wireless local area
network (WLAN) links. This ML method can be applied when
KPI samples at the base stations (BSs) and access points (APs) are
available, without using knowledge of MAC and physical layer
parameters. Comparison between the ML and simulation results
indicate that the proposed ML method can track the system KPIs
and predict the system PoC with good accuracy.

Index Terms—Artificial neural network, LTE-LAA, logistic
regression, MAC layer, machine learning, PHY layer, wireless
coexistence, WLAN.

I. INTRODUCTION

Wireless communications are tightly integrated in our daily
lives. Laptops, tablets, smartphones, and online social net-
working applications make a level of connectivity to the
world available that we have never experienced in the past.
This trend continues to dramatically increase wireless network
dimensions in terms of subscribers and data throughput [1],
especially in the realm of the Internet of Things (IoT). As
a consequence, wireless device protocols are beginning to
transition from an exclusively-licensed spectrum environment
to a shared one, and utilizing the unlicensed spectrum bands
seems to be inescapable.

Long Term Evolution (LTE) operating in unlicensed bands,
such as license assisted access (LAA), was introduced to
improve the spectral efficiency and to help the cellular industry
deal with the shortage of the spectrum [2]. However, there are
many challenges to overcome in order for multiple networks
to constructively share a spectrum. Hence there is a need
to accurately evaluate spectrum sharing performance among
operators; ensuring the effectiveness of coexistence requires
careful consideration.
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Recently, artificial intelligence (AI) and machine learning
(ML) are having a transformative effect in almost every indus-
try. ML is an important tool for the support of next-generation
of wireless device networks. Future 5G and beyond mobile ter-
minals are expected to access the spectral bands using highly
developed spectrum learning and inference. However, owing
to the involved network topologies, coordination schemes,
and the various end-user applications, future networks will
be immensely more intricate. Hence, obtaining many optimal
key performance indicators (KPIs) might be computationally
infeasible or undesirable. Moreover, due to nonlinearity in un-
derlying wireless channels, modeling the end-to-end system’s
behavior analytically is not easily achieved. It gets even more
difficult when it comes to managing networks efficiently in a
coexistence scenario where different types of networks need to
share a given section of spectrum. ML algorithms can mitigate
the underlying unknown non-linearities and can reduce the
network complexity so as to be tractable and useful while
keeping up ambitious performance goals.

In line with standardization efforts on the evaluation of
wireless coexistence [3], [4], in this paper, we develop an ML
method to track and estimate the probability of coexistence
(PoC) of WLAN and LTE systems in an intelligent and adap-
tive way. Accurately quantifying the PoC in a given shared
spectrum is principal to the evaluation of wireless coexistence,
as discussed in the ANSI C63.27 standard [3]. Our proposed
method builds up an effective sharing of spectrum, provides
an accurate coexistence performance evaluation, and helps
to design future radio technologies (e.g., 5G new radio in
unlicensed spectrum (5G NR-U) [5]).

The main contribution of this study is to check whether or
not ML algorithms can track and provide reliable estimates of
KPIs and PoC of coexisting networks. We aim to develop an
ML model which provides reliable PoC estimates of various
MAC and physical layer parameters, and apply this model to
coexistence systems where analytical KPI formulas are not
available. These results can support future versions of the
ANSI C63.27 standard, and provide insight on developing
new ML methods to support KPI uncertainty evaluation in
5G coexistence systems.

We propose a novel PoC estimator to provide an im-
proved assessment of concurrent operation of WLAN and LTE
networks in the unlicensed band. Specifically, we take the



operations of both networks in the MAC and physical layers
into account, and employ a novel machine learning algorithm
by leveraging neural network with a logistic regression method
that utilizes all MAC and physical layers’ parameters as
inputs (such as contention window size, maximum back-off
stage, slot durations, and link signal-to-noise ratio (SNR))
and generates PoC as an output. To do this, we use a neural
network to estimate KPIs from input MAC and physical
layer parameters. A logistic regression model is then used to
estimate PoC from estimated KPIs. The proposed algorithm
enables both networks to evaluate wireless coexistence and
guarantees a constructive coexistence among operators in an
intelligent and a well-planned course of action. It is worth
noting that the proposed technique we develop here could be
incorporated into many other spectrum sharing systems and
we use LTE simply as an example.

The remainder of this paper is organized as follows: Section
II describes the system model and assumptions required for
our analysis. Section III presents the problem formulation and
introduces our proposed intelligent PoC estimator. The impacts
of the MAC and physical layer parameters in evaluating a
coexistence scenario is also explained in Section III. Simula-
tion results are shown and discussed in Section IV. Finally,
in Section V, an overview of the results and some concluding
remarks are presented.

II. SYSTEM MODEL

Consider a downlink coexistence scenario where two mobile
network operators (MNOs) share the same unlicensed bands
for operation in an industrial, scientific, and medical (ISM)
radio band. Note that we are primarily interested in the
operation of cellular base stations in an unlicensed band.
However, the LTE base stations may have permission to utilize
a licensed band as well. We assume each unlicensed band can
be shared between the MNOs in a time sharing fashion. The
LAA network consists of L eNodeBs indexed by the set L ,
{nℓ|ℓ = 1, 2, . . . , L} while the Wi-Fi network is composed of
W APs indexed by the set W , {nw|w = 1, 2, . . . ,W} APs.
Each transmission node i ∈ {L,W} serves one single antenna
user. The eNodeBs and APs are randomly distributed over a
particular area while LAA user equipment (UEs) and Wi-Fi
clients are respectively distributed around each eNodeB and
AP independently and uniformly. We assume the transmission
node i transmits with power pi and the user association is
based on the received power. We also assume (i) both Wi-
Fi and LAA are in the saturated traffic condition, (ii) there
is no hidden node problem in the network, i.e., every trans-
mission node i is able to hear one another, (iii) a successful
transmission happens if only one link transmits at a time, i.e.,
exclusive channel access (ECA) model is considered, (iv) the
channel knowledge is ideal (perfect channel sensing among
the links), i.e., the only source of packet failure (unsuccessful
transmission) is collision, and (v) each link is subject to
Rayleigh fading and Log-normal shadowing.

Wi-Fi networks utilize a contention-based medium access
with a random back-off process, also known as carrier sense

multiple access with collision avoidance (CSMA/CA) [6]. In
order to discover whether the channel is idle or busy, the
station that accesses the medium should sense the channel by
performing a clear channel assessment (CCA). The distributed
coordination function (DCF) operation progresses if the chan-
nel is found out to be idle. Otherwise, the transmitting station
refrains from transmitting data until it senses the channel
is available. Similarly, LTE uses a listen before talk (LBT)
channel access mechanism to maintain fair coexistence with
Wi-Fi. Among different LAA-LBT schemes, Category 4 LBT
is based on the same Wi-Fi CSMA/CA scheme and is well-
suited in a coexistence scenario [2]. Although LTE and Wi-
Fi technologies follow the same channel access procedure,
they select different carrier sense mechanisms and threshold
levels for sensing a channel, and they use different channel
contention parameters leading to different unlicensed channel
access probabilities which can result in different throughputs.

Our aim is to investigate the feasibility of machine learning
algorithms to learn and track system measurement equations
(when there is only partial knowledge of MAC/PHY parame-
ters available), or even a system model for which the system
equations are not available. To be specific, our goal is to
develop a method to map PHY and MAC layers’ parameters to
PoCs, as depicted in Fig. 1. The PoC here is assessed in terms
of the normalized network throughput. Here, we will briefly
derive the normalized network throughput of both systems,
a quantity that will be used in calculating the PoC later.
Conforming with the analytical model in [7], the probability of
transmitting a packet by a transmitting node i in a randomly-
chosen time slot on an unlicensed channel can be written as

p
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where CWmin,i and mi are the minimum contention window
size and the maximum back-off stage of the transmitting
node i, respectively, and pc,i is the probability of collision
experienced by the i-th transmitting node. The probability of
collision experienced by the nw AP and the nℓ eNodeB can
be expressed as
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)
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respectively, where ẃ = 1, . . . ,W and ℓ́ = 1, . . . , L [8]–[10].
The probability of collision can be split into three parts: the

Fig. 1. System Model



probability of collision due to the collision among the Wi-Fi
transmissions, among the LAA transmissions, and between the
Wi-Fi and the LAA transmissions, respectively given by

pc,W = (1− ptr,L)
[
ptr,W −

∑
w
ptr,nw
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)
]
,
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and pc,W,L = ptr,L ·ptr,W . Here ptr,L = 1−
∏
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) and

ptr,W = 1−
∏W

w=1(1− ptr,nw) denote the LAA’s and Wi-Fi’s
probability of transmission [8], [9], respectively. Moreover, the
probability of a successful transmission by the nw AP and the
nℓ eNodeB can be respectively written as [8]–[10]
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Hence, the average length of a time slot can be calculated as

Tavg = (1− ptr)E{Tidle}+ ps,WE{Ts,W}+ ps,LE{Ts,L}
+ pc,WE{Tc,W}+ pc,LE{Tc,L}+ pc,W,LE{Tc,W,L}

where ptr is the probability of occupation of the unlicensed
channel, and ps,W and ps,L denote the successful transmission
probability of the entire Wi-Fi and LAA network, respectively.
Moreover, Ts,L, Ts,W , Tc,W , Tc,L, and Tc,W,L indicate the
time that the channel is being occupied by an LAA successful
transmission, a Wi-Fi successful transmission, a collision
among the Wi-Fi transmissions, a collision among the LAA
transmissions, and a collision between the Wi-Fi and the LAA
transmissions, respectively [10]. The network throughput of
LAA and Wi-Fi systems as a function of both MAC and
physical layers’ parameters can be expressed as

SL = ps,LTP,LRL/Tavg,L,

SW = ps,WTP,WRW/Tavg,W , (4)

where Tavg,W (Tavg,L) denotes the average time duration to
assist a successful transmission in the Wi-Fi (LAA) network,
TP,W (TP,L) indicates the Wi-Fi (LAA) payload duration, and
RW (RL) refers to the Wi-Fi’s (LAA’s) physical data rate.

Here, we modify the PoC metric described in [11] and
define coexistence in terms of the ability to maintain through-
put above a certain threshold. Based on the throughput of
both LAA and WLAN systems, the PoC metrics that quantify
the coexistence performance of these two systems can be
calculated as follows

PoC(ηLAA, ηWiFi) = P(SL > ηLAA,SW > ηWiFi) (5)

where equation (5) shows how the joint throughput of Wi-Fi
and LAA networks can be mapped to the PoC.

III. PREDICTING POC USING ML APPROACHES

As mentioned above, an evaluation of the wireless coex-
istence performance can be determined by the probability of
coexistence metric, defined in [11]. This metric will identify
the ability of both wireless networks to successfully perform
their desired functionality in a given shared spectrum band.

As we discussed earlier, if the physical and MAC layers’
parameters are appropriately selected, the throughput of both
systems, given by (4), increases, leading to a higher PoC. To be
specific, if transmitter i selects the unlicensed spectrum when
it is not utilized by the other transmission nodes, then the prob-
ability of successful transmission by the i-th node increases,
according to (3), leading to a higher throughput. Moreover,
if each unlicensed band is selected such that interference is
avoided (or at least minimized) among the transmission nodes
then there will be a higher SNR, leading to a higher physical
data rate (i.e., RL and RW ) and thus higher throughput.

In order to estimate the PoC of Wi-Fi and LAA networks
in the unlicensed band, we now develop a machine learning
algorithm by leveraging a neural network with a logistic
regression method, as depicted in Fig. 2. The proposed model
aims to track and estimate KPIs of coexisting LTE-LAA and
WLAN links, and evaluate the PoC of these networks. To
be specific, the neural network maps the physical and MAC
layers input parameters to the KPIs, such as throughput, and
the low-cost training logistic regression algorithm conducts a
regression analysis to map KPIs to PoC.

A neural network can be thought of as a tracking sys-
tem used to predict a quantity. It approximates a mapping
function from input variables to output variables. In this
context, we will use it to track (approximate) the mapping
function, i.e., Eq. (4), and determine the LAA and Wi-Fi
KPIs based on MAC layer parameters (e.g., contention window
size, maximum back-off stages, slot duration) and physical
layer characteristics (such as link SNR, link distances, fading
parameters). We aim to develop a model which provides
reliable approximation of this mapping function of various
MAC and physical layer parameters, so we can apply this
model to more complex coexistence systems where analytical
KPI formulas are not available. The neural network consists
of processing nodes organized into three layers, input layer,
hidden layer(s), and output layer. These nodes are densely
interconnected. In the model that we consider in this paper,
known as feed-forward, data moves through the layers in one
direction. Each node in a hidden/output layer is connected
to several nodes and receives data from them. Moreover, each
node in a hidden layer is connected to several nodes and sends
data to them. Each connection between nodes is assigned a
number named a coefficient or weight. At the training phase,
training data is fed to the input layer, it passes through the
hidden layer(s), and arrives at the output layer. The data get
multiplied by the weights, added together, and go through the
activation function of each node. During the training phase,
the weights are adjusted until a predefined goal is achieved,
such as the mean squared error (MSE) of the training data
falling below a pre-set threshold. After this goal is achieved,
the trained neural network is applied to test (unseen) data.

Logistic regression can be thought of as a classification al-
gorithm used to assign observations to a discrete set of classes.
In this context, we will use it to determine the probability
that both LAA and WiFi KPIs are above a user-provided
threshold, based on the outputs of the neural network. Logistic



regression, when given a set of features, attempts to estimate
the probability of success for some function of those features.
We use it to estimate the probability of successful coexistence
given LAA and Wi-Fi KPIs. In order to solve this prediction
problem, we use the gradient descent optimization technique.
Let us assume xk is the n-dimensional feature vector (the
above-mentioned physical and MAC layers’ parameters) and
yk is the outcome (PoC of LAA and WLAN networks) of
a given test-run k ∈ {1, . . . ,m}, where m denotes the total
number of observations in the dataset. The feature matrix X
and the outcome vector y can be written as

Xn×m =


x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m

...
...

. . .
...

xn,1 xn,2 · · · xn,m

 ,

and y1×m =
(
y1 y2 · · · ym

)
. The primary assumption

leading to logistic regression is that outcome yk is Bernoulli-
distributed with the success probability πk. Logistic regres-
sion proceeds by estimating the probability of a construc-
tive/destructive coexistence (indicated by the variable γ = 1
or γ = 0, respectively) given the training set xk, i.e.,
ŷk = P(yk = γ|xk) = πγ

k (1− πk)
1−γ .

In order to estimate this probability using the logistic regres-
sion method, we need to find a hypothesis hθk

(xk) = ŷk. The
goal is to learn the optimum value of the regression coefficients
θk in the sense that ŷk is approximately equal to the test target
yk. θk is the set of weights corresponding to n features and
the bias. In order to learn these weights, we need to define a
cost function. A cost function is an estimator of how well our
model predicts the known output. This cost function will be
used to train the logistic regression model (prediction function)
that could predict the PoC in unlicensed band. The logistic
regression model can be given as

ŷ = S(diag(ΘTX)), (6)

where ŷ1×m ,
(
ŷ1 · · · ŷm

)
, diag(A) returns a vector

of the main diagonal elements of A, Θn×m is the weight
matrix, subscript T is the transpose operator, and S(z) =
exp(z)/(1 + exp(z)) is the so-called sigmoid (logistic) func-
tion. The sigmoid function S(z) introduces non-linearity to the
model and maps predicted values to probabilities. Then, the
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hypothesis of logistic regression for the training pair (xk, yk)
can be written as

ŷk(xk) = hθk
(xk) =

1

1 + e−θT
k xk

. (7)

In order to calculate the weight matrix Θ, a cost function is
needed for optimization. Cost functions are usually defined as
MSE functions. However, it is known that when using this cost
function, the optimization problem turns out to be non-convex
and has many local minimums [12, Chapter 3]. Hence, in
this paper we use a cost function called “cross-entropy”, also
known as log loss function, for each pair of training samples,
i.e., (xk, yk), as follows [13, Chapter 5]

L(yk, ŷk) = −yk log(hθk(xk))− (1− yk) log(1− hθk(xk)),

which plays the same role as the MSE function, but now the
optimization problem becomes convex in θ. This cost function
turns the optimization problem into a convex one which is
much easier to solve using standard computational techniques.
L(yk, ŷk) shows how well the prediction is in a single training
example. The cost function of all training samples used in the
logistic regression algorithm can be expressed as

J (Θ) =
1

m

m∑
k=1

L(yk, ŷk)

=
1

m
(−yT log ŷ − (1− y)T log(1− ŷ)). (8)

By minimizing this cost function with respect to θk, the
optimum value of the weight matrix Θ can be found using
following optimization

min
Θ

J (Θ). (9)

In order to minimize the cost function J (Θ) we apply the
gradient descent method, which is the most popular approach
to iteratively minimize the cost function. The update equation
for the k-th observation in the data set can be written as

θk = θk − α∇θk
J (Θ)

= θk + α(yk − hθk
(xk))xk, (10)

where ∇J denotes the gradient of the function J , and 0 ≤
α ≤ 1 is the step size, also known as the learning rate, and
determines how fast the learning happens. As is typically the
case in learning algorithms, selecting α requires some care.
A small value of α results in a long learning process (which
could be detrimental in practice), while a large value of α
could cause bouncing around the optimum point.

After calculating the optimal weight matrix Θ, the new label
of an unseen sample can be estimated by using (7). To map
the estimated label to a discrete class (constructive/destructive
coexistence), the predefined threshold value ηPoC is selected
above which we will classify values as constructive coex-
istence (high PoC) and below which we classify values as
destructive coexistence (low PoC).
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TABLE I
MAC LAYER PARAMETERS

Parameter value
LAA’s packet payload duration 2 ms
Wi-Fi’s packet payload duration 1 ms
MAC header 272 bits
PHY header 128 bits
ACK 112 bits + PHY header
SIFS 16 µs
DIFS 34 µs
Idle slot time 9 µs
Wi-Fi contention window size 16
LAA contention window size 16
Wi-Fi maximum backoff stage 6
LAA maximum backoff stage 3

IV. SIMULATION RESULTS AND DISCUSSIONS

We evaluate the performance of the proposed algorithm
in a coexistence scenario. We simulate a scenario in which
6 eNodeBs compete for an unlicensed channel with 6 APs.
All transmitters are randomly distributed over an area of size
120×80 m2 with a minimum distance of 20 meters, as shown
in Fig. 3. All UEs and Wi-Fi clients are independently and uni-
formly distributed around each eNodeB and AP, respectively.
We consider one UE (Wi-Fi client) per eNodeB (AP). Each UE
(Wi-Fi client) is assigned to the eNodeB (AP) that provides
it with the highest received power. The antenna height of the
transmission nodes and users are 6 meters and 1.5 meters,
respectively. The carrier frequency is 5 GHz and the bandwidth
of each channel is 20 MHz. The path-loss and shadowing
between transmission nodes and users are generated following
[14] for the indoor scenario. The transmit power at each
transmission node is fixed to 23 dBm while the noise figure
and the thermal noise level at each user is set to 9 dB and
−174 dBm/Hz, respectively [14]. Moreover, we assume the
omni-directional antenna pattern with a 0 dBi antenna gain.

According to this geometry and propagation model, we
compute the SNR of each link. Given the MAC layer param-
eters in Table I, we select a sample set of input parameters,
and train the neural network to generate output KPIs of both
LAA and WLAN networks. The data used for this simulation
consists of 1000 feature vectors. Only 30% of the data are
used for training and the rest are considered for test. Here,
we consider a feedforward neural network consisting of one
input layer with 16 nodes (Wi-Fi and LAA contention window
sizes, Wi-Fi and LAA backoff stages, and 12 link SNRs), o-
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ne hidden layer with 16 neurons, and one output layer with
two nodes (LAA’s and Wi-Fi’s throughput). The network is
trained and converges quickly, as shown in Fig. 4. After
training the network, we applied the trained neural network on
unseen (test) data. In order to evaluate the trained network, we
calculated the MSE as an average of the squared error (y−ŷ)2,
where y is the KPI values calculated using equation (4) and
ŷ is the output of the trained neural network. Comparing the
neural network’s outputs with the analytical results, the MSE
of the test data is equal to 0.0043. The small value of MSE on
test data indicates that the neural network tracks the mapping
function (system equations) well. We also plot the normalized
MSE of both Wi-Fi and LAA KPIs in Fig. 5.

Having the LAA and WLAN throughput pairs as the outputs
of neural network, now we map the KPI pair to PoC using the
trained logistic regression model and then compare the results
with the theoretical one found by Eq. (5). In order to train
the logistic regression model, given the predefined thresholds
ηLAA and ηWiFi, we first plot the probability of satisfactory
quality of service (QoS) of LAA and Wi-Fi networks, i.e.,
P(SL > ηLAA) and P(SW > ηWiFi), in Fig. 6 and Fig. 7,
respectively. It is observed that the analytical and neural net-
work results follow the same trend. As expected, by increasing
the thresholds, the probability of satisfactory QoS of each
system decreases. Moreover, the probability of coexistence
versus the Wi-Fi’s and LAA’s throughput threshold is plotted
in Fig. 8. The goal is to train the logistic regression model
to accurately estimate PoC from estimated throughput and
enable both networks to evaluate the wireless coexistence. We
pass the test data to the trained logistic regression network.
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The logistic regression network labeled the unseen data as
they can/cannot coexist with each other. Fig. 9 shows that by
knowing the throughput of two networks we are able to decide
whether or not these two networks can coexist with each
other. Moreover, we compare the PoC calculated by equation
(5) with the PoC output of the trained logistic regression
network and compute the MSE. The MSE on the unseen test
data is 0.0658. Furthermore, the logistic regression accuracy,
which is defined as percentage of correct predictions, on the
training and test data is calculated and given as 84.466%
and 84.046%, respectively. In future work we develop further
enhanced classification schemes to improve the accuracy.

V. CONCLUSION

In this paper, we have proposed a machine learning method
to accurately track and estimate coexistence performance and
its uncertainty between LTE-LAA and WLAN networks in
unlicensed bands. The proposed method can work without
knowledge of MAC and physical layer protocols and parame-
ters of the system (except the KPI samples). We have also
developed a system equation and simulation-based scheme
to train and validate the performance of our method. Com-
parison of the proposed ML method and simulation results
has demonstrated that our method can achieve a perfect
KPI (i.e., throughput) tracking and a good PoC estimation
performance. The proposed method can be extended to the
cases where analytical results are not available. In future work,
we will develop further enhanced ML methods for KPI and an
uncertainty estimation, and generalize our proposed approach
to more challenging coexistence scenarios.

Fig. 8. PoC versus different Wi-Fi’s and LAA’s throughput threshold
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