
 

Three-Magnon Bound State in the Quasi-One-Dimensional Antiferromagnet α-NaMnO2

Rebecca L. Dally ,1,2,* Alvin J. R. Heng,3,4,* Anna Keselman,3 Mitchell M. Bordelon ,2 Matthew B. Stone,5

Leon Balents,3,† and Stephen D. Wilson 2,‡
1NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

2Materials Department, University of California, Santa Barbara, California 93106, USA
3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA

4Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore 637371, Singapore

5Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 6 December 2019; accepted 29 April 2020; published 14 May 2020)

Here we report on the formation of a three-magnon bound state in the quasi-one-dimensional
antiferromagnet α-NaMnO2, where the single-ion, uniaxial anisotropy inherent to the Mn3þ ions in this
material provides a binding mechanism capable of stabilizing higher order magnon bound states. While
such states have long remained elusive in studies of antiferromagnetic chains, neutron scattering data
presented here demonstrate that higher order n > 2 composite magnons exist, and, specifically, that a weak
three-magnon bound state is detected below the antiferromagnetic ordering transition of NaMnO2.
We corroborate our findings with exact numerical simulations of a one-dimensional Heisenberg chain with
easy-axis anisotropy using matrix-product state techniques, finding a good quantitative agreement with the
experiment. These results establish α-NaMnO2 as a unique platform for exploring the dynamics of
composite magnon states inherent to a classical antiferromagnetic spin chain with Ising-like single ion
anisotropy.
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One dimensional systems are renown for their ability to
host ground states and phases markedly different from their
higher dimensional counterparts. In the realm ofmagnetism,
the prototypical S ¼ 1=2 Heisenberg antiferromagnetic
(AF) chain realizes a phase without order and power-law
correlations, described at low energies by conformal field
theory [1,2]. The corresponding S ¼ 1 chain also avoids
order, and hosts instead a topologically nontrivial Haldane-
gapped state with protected S ¼ 1=2 boundary spins [3,4].
While such quantum paramagnetic (i.e., not ordered) states
in principle persist for any S in one dimension in the ideal
case, they become increasingly fragile to perturbations as S
increases and the semiclassical limit is achieved. In this
regime, described by the nonlinear sigma model (NLSM)
with aweak coupling of order 1=S [5], quantum fluctuations
are confined to very low energies. A small anisotropy
restricts those fluctuations to the “easy” directions, and
for an Ising-like situation, this is sufficient to induce order.
Thus, large spin (e.g., S ≥ 2) quantum spin chains seem

an unlikely place to observe strongly quantum phenomena.
Indeed this is true for their ground states; however, their
excitations can still be highly quantum and realize inter-
esting and paradigmatic few-body problems. Recent inter-
est in few-body problems—i.e., the quantum mechanics of
a finite number n > 2 of interacting particles [6]—stems
largely from ultracold atoms, where examples include
the formation of “droplets” of attractive bosons [7], and

the Efimov states (three or more body bound states) in the
unitary limit near a Feshbach resonance [8]. Generally this
bound state formation is strongest in one dimension, and
the multiple particle case is also known to be possible in
spin chains from the study of field-induced multipolar
orders in J1-J2 models [9]. In the latter case, the particles
binding are magnons above a trivial field-induced polarized
state [10], and lattice-scale competing interactions play an
important role.
The cleanest, arguably most beautiful example of a few-

body problem is the droplet mentioned above, which is a
collection of one-dimensional bosons with attractive zero-
range delta-function interactions. The fundamental physics
of this problem is that increasing numbers of bosons bind
more strongly, due to Bose statistics. Moreover, the ground
state is, in this case, exactly soluble analytically via a
simple application of the Bethe ansatz. In prior work, we
uncovered a surprising connection of this canonical model
problem to the large S nearest-neighbor antiferromagnetic
chain with weak easy-axis Ising anisotropy [11]. The
theory developed there predicts an approximate mapping
of the quantum mechanics of magnons to the droplet
problem of bosons. This mapping is nontrivial because
the unperturbed NLSM is a gapless theory and, in it,
binding would mean instability. Binding occurs as a subtle
balance between fluctuations, weak anisotropy, and the
intrinsic interactions of the NLSM.
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In Ref. [11], the two-body bound state predicted by
this theory was observed in the material α-NaMnO2.
Fundamentally, the crystal lattice of α-NaMnO2 is built
from two-dimensional sheets of triangular-lattice planes of
Mn3þ moments, yet the Jahn-Teller effect inherent to the
Mn-cations drives a coherent distortion of the triangular
lattice into coupled isosceles triangles comprised of two
long Mn-Mn distances and one short Mn-Mn exchange
pathway [12]. This breaks the frustration of the triangular
lattice and defines a strong AF nearest neighbor exchange
energy (J1) along the short bond length that defines the AF
chain direction. Coupling between these chains is frustrated
by equivalent AF next nearest neighbor couplings (J2) via
the two longer legs of the triangular lattice. The result is a
highly one-dimensional spin system [13,14] with effective
J1=J2 ¼ 8 [11] that also possesses a weak Ising-like
single-ion anisotropy, D, which we will estimate to be
D=J1 ¼ 0.086. Magnon binding beyond two, however, has
yet to be reported in this material or any other unperturbed
antiferromagnet.
In this Letter, we present an acid test of the mapping of

the spin lattice of α-NaMnO2 to the droplet problem by
uncovering a three-body bound state in α-NaMnO2. Both
n ¼ 2 and n ¼ 3 magnon bound states are observed in
inelastic neutron scattering measurements with binding
energies consistent with a minimal model of AF spin chains
possessing an easy-axis uniaxial, single-ion anisotropy.
To obtain the most accurate theoretical values for the bound
state energies, we carry out numerically exact density
matrix renormalization group and time evolution calcula-
tions, and comparewith experiment. Our modeling suggests
α-NaMnO2 and other weakly anisotropic, large S chains can
be excellent test platforms for few-body physics.
A single crystal of α-NaMnO2 was grown via the floating

zone method [15], and neutron scattering measurements
were performed on the time-of-flight neutron spectrometer
SEQUOIA [16] at the Spallation Neutron Source at Oak
Ridge National Laboratory. The crystal was sealed in a
cryostat with He exchange gas, and the (0,1,0) and (1,0,1)
crystallographic directions were aligned in the horizontal
scattering plane. Data were collected with incident
neutron energies of Ei ¼ 30 and 60 meV with the Fermi
chopper in high-resolution mode, and the sample was
rotated about the ½−1; 0; 1� axis in 1° increments over a
range of 180°. Data were reduced and analyzed using
the software package HORACE [17] and uncertainties
where indicated represent plus and minus one standard
deviation. Data are plotted as IðQ; E) corrected by k0=k.
Throughout the paper, positions in momentum space,Q, are
reported in reciprocal lattice units (r.l.u.), whereH,K, andL
reflect Q½Å−1� ¼ ½ð2π=a sin βÞH; ð2π=bÞK; ð2π=c sin βÞL�
witha¼5.63Å,b ¼ 2.86 Å, c ¼ 5.77 Å, andα ¼ γ ¼ 90°;
β ¼ 113°.
Figure 1 shows inelastic neutron scattering data collected

about the 1D AF zone center, (0, 0.5, 0), in the AF ordered

state (T ¼ 4 K). As the spin dynamics in this system are
quasi-1D, data are integrated across the entire zone in H
(the interchain) and L (the interplane) directions. The
resulting color map of intensities plotted in Fig. 1(a) shows
three branches of excitations dispersing along K (the
intrachain direction), each of which are centered at the
AF zone center K ¼ 0.5 position. The first two branches
are the previously identified single-magnon (n ¼ 1) and
two-magnon (n ¼ 2) modes, and the third, highest energy
branch suggests a higher order (n > 2) magnon bound
state, which is the focus of this Letter.
To illustrate further, Fig. 1(b) shows an energy cut

through the AF zone center. The lowest energy n ¼ 1
mode appears at the expected zone center magnon gap near
E1 ¼ 6.15 meV and is comprised of four, nearly degener-
ate modes superimposed from the two crystallographic and
two magnetic twins inherent to this material. The second
mode in Fig. 1, which is quasi-1D, is seen centered at E2 ¼
10.9 meV and matches the energy of the previously
reported, longitudinally polarized n ¼ 2 bound state.
Strikingly however, a third quasi-1D mode also appears
at E3 ¼ 15.5 meV and, as we will show, corresponds to the
formation of a native (zero field) three-magnon (n ¼ 3)
bound state.
We note here that because there is slight dispersion along

the interchain direction, the full-width at half-maximum of
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FIG. 1. Neutron scattering data collected with Ei ¼ 30 meV at
T ¼ 4 K. The data were integrated throughout the entire zone in
bothH andL. (a) Intensity of the data on a logarithmic scale, where
gray regions indicate no detector coverage. The dashed, white line
shows the direction of the energy cut plotted in (b). (b) Energy cut
through the intensity map centered at the AF zone center,K ¼ 0.5,
with the n ¼ 1, n ¼ 2, and n ¼ 3 magnon modes.
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then ¼ 1mode appears broader than the energy resolution of
the instrument (≈0.7 meV) due to the overlapping twins and
momentum integration [11,18]. This twinning and integra-
tion, however, does not effect the n ¼ 2 and n ¼ 3 modes,
which are inherently 1D and have nearly resolution limited
fullwidths at halfmaxima in energyof1.00� 0.01 meVand
0.74� 0.06 meV, respectively. Comparatively, the instru-
mental energy resolution at 10.9 meV is 0.64 meV and at
15.5 meV it is 0.58 meV. We provide additional evidence of
their 1D nature in the Supplemental Material [19].
The dispersions of the n ¼ 2 and n ¼ 3 bound states are

illustrated about the AF zone center via constant K cuts
plotted in Figs. 2(a) and 2(c) (offset from one another for
clarity). Fits parametrizing the energies of each mode as a
function of K were performed using Gaussian peaks on a
sloping background with the resulting mode dispersions
shown in Figs. 2(b) and 2(d). Dispersion relations were
then empirically quantified via a fit to the form EðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2 þ c2sin22πK
p

with Δ reflective of the gap energy and
c an empirical spin stiffness parameter.
For the n ¼ 2 branch of excitations, Δ and c were

found to be 10.900� 0.006 meV and 16.7� 0.4 meV,

respectively. The dispersion of the higher energy n ¼ 3
branch shown in Fig. 2(d) yields Δ ¼ 15.51� 0.03 meV
and c ¼ 16� 2 meV. While clear dispersion is evident in
the data, parametrizing the effective spin-stiffness param-
eter for the n ¼ 3 branch is coupled to the K bin size
chosen. This is due to the weak nature of the n ¼ 3 mode
(which is nearly 2 orders of magnitude weaker than the
n ¼ 1 peak). Using the parametrization for the n ¼ 3mode
shown in Fig. 2(d), the effective masses of the modes mi ∝
Δ=c2 have ratios of m1∶m2∶m3 ¼ 1∶3.5∶5.4.
The temperature dependence of the bound state modes is

shown in Fig. 3. Energy cuts are plotted at three different
temperatures: T ¼ 4 K (in the AF ordered state), 30 K (in
the incommensurate short-range ordered state), and 50 K
(in the high temperature regime of quasi-one-dimensional
correlations) [18]. True long-range order along the chains
(divergent K-axis correlation lengths) occurs only below
T ¼ 22 K [18], and both n ¼ 2 and n ¼ 3 modes vanish
above this temperature. The n ¼ 1 single-magnon peak
persists to high temperature as it becomes increasingly
damped and broadens into the single-ion anisotropy gap
with increasing temperature.
We now proceed to interpret the above results theoreti-

cally. Prior work on this compound developed a semi-
classical theory to leading order in 1=S in the quasi-1D
limit [11]. In that theory, 1=S corrections induce an
attractive delta-function-like interaction between magnons,
which creates the n ¼ 2 two-magnon bound state. Within
the same theory higher bound states are expected, as
described in the Supplementary Material [19]. Here to
obtain a more quantitative comparison with the experi-
mental data that does not rely on the 1=S expansion, we
carried out numerically exact matrix product state-based
[21] calculations in the one-dimensional limit using the
ITensor library [22].
Given the quasi-1D nature of α-NaMnO2, in our numeri-

cal simulation we consider a S ¼ 2 antiferromagnetic
Heisenberg chain with single-ion anisotropy

H ¼ J1
X

j

S⃗j · S⃗jþ1 −D
X

j

ðSzjÞ2 ð1Þ

where the sum over j indicates a sum over spins on a 1D
lattice. We calculate the spectral function, which at zero
temperature is given by

Sðk;ωÞ ¼
Z

∞

−∞
dteiωt

X

∞

j¼−∞
e−ikjhS⃗jðtÞ · S⃗0ð0Þi; ð2Þ

where the expectation value is taken in the ground state of
the system. We consider a finite chain with N ¼ 500 sites
and start by obtaining the ground state of the system using
density matrix renormalization group (DMRG) [23]. We
then perform time evolution up to times tmax ¼ 20J−11 using
time evolving block decimation [19,24,25]. We note that
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FIG. 2. Constant K cuts parametrizing the dispersions of the
n ¼ 2 and n ¼ 3 modes. The data were integrated throughout the
entire zone in both H and L and represent cuts through the color
plot in Fig. 1. (a) Individual K cuts parametrizing the dispersion
of the n ¼ 2mode. (b) Fit energies of the n ¼ 2mode plotted as a
function of K. (c) Individual K cuts parametrizing the dispersion
of the n ¼ 3 mode. (d) Energies of the n ¼ 3 mode as a function
of K. The K cuts in panels (a) and (c) are offset from one another
for clarity, and the solid black lines are fits parametrizing the
modes’ dispersions as described in the text. The solid orange lines
in (b) and (d) are fits to the 1D dispersion described in the text.
Error bars represent plus and minus one standard deviation.
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the spectral function intensities obtained from the numeri-
cal calculations are somewhat arbitrary because the mag-
nitudes are related to how long in time they are simulated.
Using this model, we obtain an independent estimate for

the couplings J1 and D from a least squares fit of the
dispersion of the n ¼ 1 mode, obtained from the time-of-
flight neutron experiment. The single-magnon mode
momentum slice along the ðH;H; 0Þ direction (correspond-
ing to a high-symmetry direction in the 3D reciprocal
space) was modeled via the spectral function calculated
numerically. This fit yields J1 ¼ 5.34� 0.08 meV and
D ¼ 0.46� 0.02 meV, roughly consistent with earlier esti-
mates obtained from a fit to linear spin wave theory [19].
The spectral function obtained numerically for these

values of J1 and D is shown in Fig. 4, with the exper-
imentally measured dispersions for the three modes plotted
on top of it as blue dashed lines. The n ¼ 1, n ¼ 2, and
n ¼ 3 magnon modes are clearly visible in the spectral
function in the vicinity ofK ¼ 0.5. The corresponding gaps
are given by E1 ¼ 6.4� 0.4 meV, E2 ¼ 10.7� 0.4 meV,
and E3 ¼ 14.5� 0.5 meV.
We thus find a very good quantitative agreement with

the aforementioned experimental values for the gaps of the
n ¼ 2 and n ¼ 3 modes without further fitting parameters.
The success of this purely 1D theory is also consistent with
the observation that these higher order modes are disper-
sionless along both the interchain and interplane directions.
We note here that the unbound multimagnon continuum
typically present in quasi-1D systems is strongly sup-
pressed due to spectral weight transfer into the n ¼ 2
and n ¼ 3 bound states. A weak continuum is resolved in
our spectral function calculation [19]; however, its intensity
is well outside of the resolution of the experimental data.

A physical interpretation of the bound states is as
follows. The elementary excitations of the system (which
comprise the E1 mode) are magnons, which behave as
massive relativistic particles. These come in two “flavors,”
with spin Sz ¼ �1 along the Ising axis. The E2 mode arises
as a bound state of two unlike particles, and hence carries
Sz ¼ 0, which is why it is longitudinal. The third E3 mode
corresponds to a bound state of two like and one unlike
particles, e.g., two Sz ¼ þ1 and one Sz ¼ −1 magnons (or
vice versa), which gives it a total Sz ¼ �1 implying it is
transverse. Our data indeed show this to be the case, and
by tracking the intensity of the mode as a function of
momentum about the zone center, the geometric factor
contribution is qualitatively consistent with a transversely
polarized mode [19]. The analytic treatment in the strict
1=S expansion discussed in the Supplemental Material
further confirms the presence of these bound states,[19]
though the DMRG calculations are more quantitative.
Multiple magnon binding in NaMnO2 is therefore a
remarkable and unexpected manifestation of new physics
accessible in higher spin one-dimensional chains.
In summary, we have shown that the quasi-1D spin

dynamics endemic to the anisotropic triangular lattice of
NaMnO2 manifest a series of long-lived, high order magnon
bound states, providing for the seminal observation of a
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ence of spin excitations determined via an energy cut at the quasi-
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region of the data, highlighting the temperature dependence of the
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FIG. 4. Spectral function SðK;EÞ obtained numerically
using the 1D model, for J1 ¼ 5.34 meV and D ¼ 0.46 meV.
The intensity is normalized to a log scale. Three modes are clearly
seen in the vicinity of K ¼ 0.5. Blue dashed lines plotted on top
correspond to dispersions obtained from experiment. The n ¼ 1
data is obtained from a ðH;H; 0Þ cut, with integration in the L
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and n ¼ 3 data were obtained via cuts about the AF zone center
from Fig. 1(b) and Fig. 2(c), respectively.
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native n ¼ 3 three-magnon bound state in an antiferromag-
net. This result is captured by a semiclassical theory of
interacting magnons within a 1D chain weakly bound by
uniaxial single-ion anisotropy, which effectively maps to
few-body droplet models of interacting bosons bound via
weak delta function potentials. Therefore NaMnO2, and we
propose likely other anisotropic triangular antiferromagnets
with weak, Ising-like single ion anisotropy, are appealing
platforms for exploring few-body interactions in a con-
densed matter setting.
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