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In the quest to realize a quantum spin liquid (QSL), magnetic long-range order is hardly welcome. Yet it can
offer deep insights into a complex world of strong correlations and fluctuations. Much hope was placed in the
cubic pyrochlore Yb2Ti2O7 as a putative U(1) QSL but a new class of ultrapure single crystals make it abundantly
clear that the stoichiometric compound is a ferromagnet. Here we present a detailed experimental and theoretical
study of the corresponding field-temperature phase diagram. We find it to be richly anisotropic with a critical
endpoint for B ‖ 〈100〉, while a field parallel to 〈110〉 or 〈111〉 enhances the critical temperature by up to a factor
of two and shifts the onset of the field-polarized state to finite fields. Landau theory shows that Yb2Ti2O7 in some
ways is remarkably similar to pure iron. However, it also pinpoints anomalies that cannot be accounted for at the
classical mean-field level including a dramatic enhancement of TC and a reentrant phase boundary under applied
magnetic fields with a component transverse to the easy axes, as well as the anisotropy of the upper critical field
in the quantum limit.

DOI: 10.1103/PhysRevB.101.174434

I. INTRODUCTION

Frustrating magnetism by affixing spins to lattices that
are inconsistent with conventional magnetic order is a well-
established route towards novel collective properties [1,2].
When the interactions support quantum fluctuations, one may
hope to indefinitely suppress magnetic phase transitions, re-
placing conventional forms of order and symmetry breaking
with a quantum spin liquid and its emergent fractionalized
quasiparticles [3,4]. Many frustrated magnets however, show
fragile forms of magnetic order at low temperatures as well as
extreme sensitivity to sample purity. To realize and document
a QSL and to learn from proximate ordered phases require
ultrapure single crystalline samples and an array of compre-
hensive high-quality measurements in close coordination with
theory.

Here we report such a study of the quantum magnetism
of Yb2Ti2O7, a prototypical pyrochlore magnet [5–13], in
which we find despite geometric frustration and quantum
fluctuations anisotropic ferromagnetism at low temperatures
that appears to be deceptively simple at first sight. Early
studies of Yb2Ti2O7 included a diffuse zero-field neutron
spectrum [14–17], as well as unconventional quasiparticles
in the paramagnetic phase [18–20] which may be preserved
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to low temperatures in oxygen-deficient samples [13]. More
recently, an unusual reentrant field-dependent phase diagram
was reported [21] which has not yet been understood.

For many years, it was thought that these unusual fea-
tures of Yb2Ti2O7 signalled a quantum spin liquid (QSL)
[19,20,22–25] with long-range entanglement and fractional-
ized excitations [26–30]. However, in recent years, the QSL
hypothesis has lost favor because of the evidence of ferro-
magnetic order in Yb2Ti2O7 [13,21,31,32], putative evidence
for a structural instability [33], and refined Hamiltonians
that are inconsistent with a QSL [15,34]. Instead, it has
been proposed that the unusual features of Yb2Ti2O7 arise
from a competition between ferromagnetism and antiferro-
magnetism [35,36]. Short-range correlations and exotic exci-
tations above the magnetic ordering temperature indicate that
this phase competition produces nontrivial effects, including
a possible intermediate-temperature QSL phase [13,37,38].
Perhaps most intriguing, small angle neutron scattering and
conventional neutron spectroscopy recently revealed evidence
for a peculiar combination of splayed ferromagnetism with
antiferromagnetic mesoscale textures as well as ferro- and
antiferromagnetic spin waves [39]. While this appears to
suggest a near degeneracy of ferro- and antiferromagnetism,
it raises as a key question, if and to what degree at least
some component of these correlations may be captured with
conventional concepts.

Here we focus on the uniform, static magnetization com-
plemented by susceptibility, specific heat measurements, and
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magnetic neutron diffraction. We explore the anisotropic field-
temperature phase diagram of Yb2Ti2O7 as compared with the
predictions of various standard models. We have examined
the phase diagram for fields along each of the three main
symmetry directions, 〈111〉, 〈110〉, and 〈100〉. For fields along
〈111〉, previously reported in Ref. [21], and 〈110〉 we find
reentrant behavior, wherein an applied field initially increases
the ordering temperature. For fields along 〈100〉, the high-
field phase boundary collapses and the system enters a field
polarized state for vanishingly small applied fields. All field
directions show extremely small coercive fields, indicating
essentially freely moving domain walls consistent with the
high sample purity.

We compare our data with the predictions of a coarse-
grained theoretical model that accounts qualitatively for our
observations including the field-dependent magnetic structure
that we infer from magnetic neutron diffraction. However, we
also show significant discrepancies with classical mean-field
calculations in the form of the orientation and temperature
dependence of the upper critical field and of the large field-
driven enhancement of the critical temperature (reentrance)
for fields along 〈111〉 and 〈110〉. We speculate that these
features are caused by the quantum fluctuations and/or collec-
tive physics of the underlying frustrated magnet beyond the
mean-field approach.

II. EXPERIMENTAL METHODS

In the following, we present basic information on the
experimental methods used in our study to determine the
orientation dependence of the magnetic phase diagram of
Yb2Ti2O7 in Fig. 1. Further details may be found in the
Appendix.

A. Magnetization

The magnetization of Yb2Ti2O7 was measured by means of
a bespoke vibrating coil magnetometer (VCM) combined with
a TL400 Oxford Instruments top-loading dilution refrigerator
[40], as described in Refs. [41–43]. Data were recorded at
temperatures down to 0.028 K under magnetic fields up to
5 T at a low excitation frequency of 19 Hz and a small ex-
citation amplitude of ∼0.5 mm (the measurement protocols
are described in the supplementary online information). The
sample temperature was measured with a ruthenium oxide
sensor mounted next to the sample and additionally moni-
tored with a calibrated Lakeshore ruthenium oxide tempera-
ture sensor attached to the mixing chamber in the zero-field
region.

For our magnetization measurements a single crystal was
cut from an ingot and carefully ground and polished into a
spherical shape with a diameter of ∼4.7 mm. The high-quality
stoichiometric single crystal of Yb2Ti2O7 was grown with the
traveling solvent floating zone method as described by Arpino
et al. [8]. Samples from the same crystal were previously used
in the study of Scheie et al. [21]. A spherical sample shape was
chosen to minimize inhomogeneities of the demagnetizing
fields, permitting straightforward computation of the internal
field values. To suspend the sample in the VCM it was glued
with GE varnish into an oxygen-free copper sample holder

composed of two matching sections accurately fitting the size
of the sphere (further information on sample mounting are in
the Appendix).

B. Heat capacity

The heat capacity of Yb2Ti2O7 was measured using a
Quantum Design PPMS [40] using LongHCPulse [44]. Over
four days, the temperature-dependent specific heat was mea-
sured at 18 magnetic fields between 0 and 1 T with the long
pulse method, and at one magnetic field using the short pulse
method. This measurement was performed on a 1.04 mg,
1.1 mm × 0.6 mm × 0.2 mm prism of Yb2Ti2O7 with a de-
magnetization factor of 0.59 for fields along the shortest
dimension which was the 〈110〉 axis. This sample was cut
from the same crystal as the heat capacity sample in Ref. [21].

C. AC Susceptibility

The AC susceptibility of Yb2Ti2O7 was measured using
a Quantum Design PPMS with an AC susceptibility dilution
refrigerator insert [40]. The measurement was performed on a
59 mg, 2.5 mm × 2.0 mm × 1.6 mm cuboid with a demagne-
tization factor of 0.406 for fields along the shortest dimension
which was the 〈110〉 axis. The sample was glued to a sapphire
rod with GE varnish to ensure good thermal connection. This
sample was cut from a different Yb2Ti2O7 crystal than the
heat capacity and magnetization samples, still grown by the
same method as described in Ref. [8]. We measured the real
(χ ′) and imaginary (χ ′′) susceptibility as a function of field at
different temperatures, sweeping the 〈110〉 magnetic field at
60 mT/min from 0 → +1 T → −1 T → 0 and measuring
susceptibility with 1 kHz and an AC field amplitude of 1 Oe.
Tests with different frequencies and sweep rates revealed that
the anomalies at the upper critical field are not frequency or
sweep-rate-dependent within the ranges applied here.

D. Neutron scattering

The elastic neutron scattering from Yb2Ti2O7 was mea-
sured using the SPINS triple axis spectrometer at the NCNR.
We used a spherical sample (the same sphere as in Ref. [21])
with the [11̄0] direction along a vertical magnetic field and
mounted in a dilution refrigerator. We collected field and
temperature-dependent elastic scattering on the (111), (002),
(220), (113), (222), and (004) Bragg peaks using 4.5 meV
neutrons. The collimations were guide - 80′ - 80′ - open, and
Be filters were used before and after the sample. Unfortu-
nately, significant field-dependent extinction precluded the
field-dependent intensities from being compared to theory
(see the Appendix for details) with the exception of the (002)
peak—the only magnetic peak with zero nuclear intensity. The
data from other peaks are shown in the Appendix. The phase
transition is clearly visible as a kink in the data, and can be
tracked as a function of magnetic field. The scattering data
were acquired after centering the detector on the Bragg peak
using rocking and θ -2θ scans, but there is some imprecision
in doing this so that some scans have slightly attenuated
intensities compared to others (e.g., the 80 mK field scan
should have higher intensity).
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FIG. 1. Magnetic phase diagram of Yb2Ti2O7 for applied fields
along (a) 〈111〉, (b) 〈110〉, and (c) 〈100〉 as inferred from field
and temperature-dependent magnetization, specific heat, AC sus-
ceptibility, and neutron scattering. (B) and (T ) indicate field and
temperature scans, respectively. Hysteretic effects observed under
field and temperature sweeps are indicated by means of blue and
red shading, respectively. Tsf denotes a feature seen in the temper-
ature dependence of the magnetization reminiscent of spin freezing,
cf. Figs. 2(a)–2(c).

III. EXPERIMENTAL RESULTS

Qualitatively, the orientation dependence of the magnetic
phase diagram of Yb2Ti2O7, shown in Fig. 1 for low tem-
peratures, is consistent with the behavior of a cubic ferro-
magnet, i.e., where cubic magnetocrystalline anisotropy se-
lects six ground states with magnetization along 〈100〉 [45].
In 〈111〉 and 〈110〉 fields, however, the phase diagram ex-
hibits a highly unusual field dependence, wherein an applied
magnetic field initially increases the ordering temperature
and then suppresses it at higher fields, which results in a
reentrant phase diagram [Figs. 1(a) and 1(b)]. For fields
along 〈100〉, the high-field phase boundary collapses and the
system enters a field polarized state for small applied fields,
which is qualitatively distinct from the other field directions
[Fig. 1(c)]. This orientation dependence of the magnetic phase
diagram was determined by measurements of the temperature
and field-dependent magnetization (Fig. 2), heat capacity
[Fig. 3(a)], susceptibility [Fig. 3(b)], and neutron diffraction
(Fig. 4). Hysteretic effects observed under field and tempera-
ture sweeps are indicated by means of blue and red shading,
respectively. While the 〈111〉 data were reported in a previous
study [21], the two other directions, which are essential for the
conclusions of our study, are reported here for the first time.

The 〈111〉 and 〈110〉 phase diagrams have nearly the same
upper critical field (0.63 T and 0.57 T), but the reentrance
for fields along 〈110〉 is even more dramatic: the highest
〈110〉 TC at Bint = 0.30 T is 540 mK, which is a 100% increase

FIG. 2. [(a)–(c)] Temperature dependence of the magnetization
of Yb2Ti2O7 in high [(a1)–(c1)], intermediate [(a2)–(c2) and (a3)–
(c3)], and small [(a3)–(c3)] applied fields. In small applied fields
and below 100 mK, a distinct difference between data recorded
under zero-field cooling (zfc) and field cooling (fc) emerges (Tsf ),
which has been attributed to spin freezing in related rare-earth
pyrochlore systems [42,43]. This feature vanishes for finite inter-
nal fields. [(d)–(f)] Magnetization and differential susceptibility of
Yb2Ti2O7 as a function of internal magnetic field after correction
of demagnetization fields for the 〈111〉 (d), 〈110〉 (e), and 〈100〉
(f) directions, respectively. The differential susceptibility data are
shifted with respect to each other for clarity.

above zero field TC = 270 mK. (〈111〉, meanwhile, has a
55% increase.) This can be seen in the temperature and field
dependence of the magnetization shown in Figs. 2(a) and 2(d)
for field along 〈111〉 and Figs. 2(b) and 2(e) for field along
〈110〉.

Applying the field along 〈100〉 polarizes the system already
for small applied field [as can be seen in the temperature
dependence of the magnetization in Fig. 2(c)], so there is no
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FIG. 3. (a) Specific heat of Yb2Ti2O7 as a function of temper-
ature at different 〈110〉 oriented magnetic fields. Note the sharp
first-order-like anomaly at zero field which broadens and becomes a
second-order lambdalike anomaly at finite field. [(b) and (c)] Real
and imaginary components of the AC susceptibility as a function
of 〈110〉 field at different temperatures. The negative field sweeps
show invariance of field sweep direction for nonzero internal fields.
Solid lines indicate increasing magnetic field and dashed lines show
decreasing magnetic field.

high-field phase boundary [as shown by the field dependence
of the magnetization in Fig. 2(f)]. In the absence of magnetic
field, the ground state of Yb2Ti2O7 is ferromagnetic with
magnetization spontaneously breaking the sixfold degenerate
〈100〉 directions. For a field applied along 〈100〉, there is no
spontaneous symmetry breaking, hence no phase transition
[15]. For a first-order zero-field transition like in Yb2Ti2O7,
however, the transition should survive for small, but finite
fields [15], which also is fully consistent with the data.

Going from the 〈111〉 via 〈110〉 to the 〈100〉 direction, the
magnetization shows an increase in the spontaneous magnetic
moment [Figs. 2(d)–2(f)] consistent with the behavior of a
cubic ferromagnet. The coercive field in the ferromagnetic
regime of Yb2Ti2O7 is vanishingly small, which indicates
extremely weak domain wall pinning [Figs. 2(d)–2(e) and 8].

We previously argued, through comparison to classical
simulations, that the reentrant nature of the 〈111〉 phase
boundary is due to quantum fluctuations suppressing the
ferromagnetic order [21]. Exact diagonalization calculations,

FIG. 4. Neutron scattering of the (002) peak in Yb2Ti2O7 for
magnetic fields applied along the 〈110〉 direction. (a) Field depen-
dence of (002) at different temperatures, showing a quadratic depen-
dence at low fields and a clear upper critical field. (b) Theoretical
(002) scattering calculated with mean-field theory using the Ross,
Robert, and Thompson Hamiltonians [15,22,34]. (c) Temperature-
dependent scattering at different applied fields. No hysteresis is
visible. Error bars represent one standard deviation.

using ground state and finite temperature methods, support
this hypothesis [46]. We anticipate the same explanation holds
for the even more extreme reentrance observed for fields along
the 〈110〉 direction.

While previous 〈111〉 measurements indicated a first order
phase boundary [21], the 〈110〉 data provide evidence of a
second-order (continuous) phase boundary—at least for the
upper critical field—in three ways. First, the heat capacity
[Fig. 3(a)] shows a lambda-like anomaly (in contrast to the
symmetric peaks seen in the 〈111〉 direction [21]), and this is
a signature of a second-order phase transition [47]. Second,
the susceptibility [Fig. 3(b)] has a steplike feature, which—
because susceptibility is related to the second field deriva-
tive of free energy—indicates a discontinuity in the second
derivative of free energy and thus a second-order phase tran-
sition. Third, magnetization (Fig. 2) and neutron scattering
(Fig. 4) field and temperature sweeps detect no hysteresis at
the high-field phase boundary, even for faster magnetization
field sweep rates of 60 mT/min, which suggests a continuous
phase transition.

There are three caveats to this second-order boundary
hypothesis, all centered on observing hysteresis: (i) there is
noticeable hysteresis in the high-field phase boundary of the
〈110〉 susceptibility measurements [Fig. 3(b)], (ii) substantial
hysteresis is observed at the lower phase boundary in 〈110〉
magnetization data [Fig. 2(e)], and (iii) hysteresis is observed
in the temperature sweeps of 〈110〉 magnetization [Figs. 2(b3)
and 2(b4)]. Typically, hysteresis is a signature of a first-order
transition via nucleation and domain growth. That very much
seems to be the case for the lower field part of the phase
boundary (where TC increases with field), especially from (iii):
the hysteresis in M versus T [Fig. 2(b)].

The magnetocaloric effect, however, offers an alternative
explanation for the hysteresis observed at the high-field phase
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boundary. Examining the susceptibility data in Fig. 3(b)
closely, the sweep under increasing field (solid lines) dis-
plays phase transitions at lower fields than the sweep under
decreasing field (dashed lines). This is the opposite of what
may be expected for a first-order phase transition. In this case,
there should be a delay in the onset of the phase transition,
not a speeding-up. Instead, what seems to occur is that the
sample, when it crosses the lower phase boundary into the
ordered phase, experiences a large magnetocaloric effect due
to the release of entropy. This causes the sample to heat such
that it crosses the high-field phase boundary at a slightly
higher temperature than it does when cooling down again—
leading to an apparent hysteresis in susceptibility proportional
to the slope of the phase boundary. This interpretation was
confirmed by fast field-sweep measuring magnetization with
reduced thermal coupling to the refrigerator: at 400 mK, no
transition was observed on increasing field but a transition was
observed while decreasing field (the sample heated so much
as to avoid the phase boundary entirely). The magnetocaloric
effect at a second-order phase transition is consistent with all
of these observations.

It is difficult to prove a transition to be first or second-
order based on our experiments alone. However, our data are
entirely consistent with a second-order transition for the 〈110〉
phase boundary while there would be inconsistencies for a
first-order transition.

IV. DISCUSSION

We now discuss the theoretical framework needed for a
full account of our observations. To illustrate the underlying
symmetries of the phenomenology we observe, it is instructive
to consider a state in which all spins point along a 〈001〉 direc-
tion. As the local anisotropy favors the 〈111〉 directions, the
spins cant away from 〈001〉 towards a local 〈111〉 direction.
This canting may be described in terms of a single parameter,
namely the angle � between a spin and the 〈001〉 direction,
cf. Eq. (35) in Ref. [35]. Put differently, the magnetic order
we consider is a member of the triplet of the irreducible
representation T 1 while all others vanish [35]. Thus the local
anisotropy cannot change the symmetry of the initial T 1
state, and the spin configuration is part of the T 1 triplet
regardless of the value of �, because the local anisotropy fully
respects the cubic symmetry of the crystal. This permits to
focus the theoretical account of our data on the irreducible
representation T 1, where the uniform magnetization is the
corresponding order parameter.

The associated coarse-grained theoretical calculations, pre-
sented in the following, confirm the order of the phase tran-
sitions observed in the low-temperature magnetization, and
show that Yb2Ti2O7 behaves qualitatively like a cubic ferro-
magnet such as iron. We also show that classical mean-field
theory cannot account for the high-field phase boundaries,
which indicates that the high-field phase boundary is subject
to collective or quantum effects.

A. Coarse-grained model

We consider a coarse-grained model to describe the mag-
netization for magnetic fields applied in the three main

TABLE I. Spontaneous magnetic moment from Yb2Ti2O7 as ex-
trapolated for zero field from the initial field dependence along 〈100〉,
〈110〉, and 〈111〉. The ratios between the spontaneous moments are
in excellent agreement with theoretical predictions.

Hext || M0 (μBYb−1) M0/M0,100 ratio theory

〈100〉 1.197(14) 1 1
〈110〉 0.828(3) 0.692(13) 1/

√
2 ≈ 0.707

〈111〉 0.678(6) 0.566(12) 1/
√

3 ≈ 0.577

symmetry directions. A coarse-grained picture is based on
the uniform magnetization associated with the sum of the
four adjacent spins on a tetrahedron. The six ground states
with a canted ferromagnetic order thus yield the uniform
magnetization pointing along one of the six 〈100〉 directions.
When the sample is magnetized by domain selection only (at
the largest applied field where the internal magnetic field is
zero), the projection of the magnetization to 〈100〉, 〈110〉, and
〈111〉 directions has a ratio of 1 : 1/

√
2 : 1/

√
3, indicating

〈100〉 as the easy axis. The experimentally obtained ratios of
spontaneous moment and fields match the theoretical predic-
tion well as summarized in Table I.

The cubic anisotropy is minimized with a sixfold de-
generacy for magnetization along {±ei}, i.e., ei = x̂, ŷ, ẑ in
the global frame. Ignoring higher-order terms, the potential
energy for the magnetization represented by a unit vector m is

U = −K1

∑
i

(m · ei )
4 − K2

∏
i

(m · ei )
2 − h · m. (1)

Both K1 and K2 are cubic anisotropy terms: a positive K1

makes the minimum energy direction along 〈100〉, and pos-
itive K2 makes the minimum energy along 〈111〉, but with
a different angular dependence than for negative K1. The
minimization of the cubic anisotropy is reported in Appendix.

From the experimental measurement h〈110〉
c = 0.57 and

h〈111〉
c = 0.63, we derive the parameters in the anisotropy

model to be K1 = 0.14 and K2 = −0.55. Minimizing
the potential energy [see Eq. (A1)] under the constraint
m2 = 1 gives the magnetization response to magnetic fields
[Fig. 5(c)].

As a comparison, we set K2 = 0 and look at the lower-
order cubic anisotropy with K1 = 0.21 to reproduce the
measured transition field in 〈111〉 direction h〈111〉

c = 0.63.
The obtained magnetization curve [Fig. 5(e)] appears to be
closer to the result from the classical mean-field calculations
[Figs. 5(g), 5(i), and 5(k)] than the actual measurements
[Fig. 5(a)].

The effect of the two anisotropy terms can be seen in a
simple evaluation of the potential energy in zero field for m =
(1, 0, 0), (1, 1, 0)/

√
2, and (1, 1, 1)/

√
3, respectively, yield-

ing −K1, −K1/2, and −K1/3 − K2/27. For easy axis along
〈100〉, K1 > 0, a negative K2 makes 〈111〉 an even harder
axis. Even more interesting is that applying Landau theory
[48] to this simple coarse-grained model predicts a second-
order phase boundary for a 〈110〉 field and a first-order phase
boundary for a 〈111〉 field (see Appendix), consistent with our
experimental observations. This exercise in coarse-grained
modeling shows that the base temperature magnetization
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FIG. 5. Experimental data [(a) and (b)] and calculated magnetization via the coarse-grained model [(c)–(f)] and mean-field theory
[(g)–(l)] for Yb2Ti2O7. (a) Magnetic field dependence of the magnetization of Yb2Ti2O7 at 0.1 K for the 〈111〉, 〈110〉, and 〈100〉 direction.
(b) Differential susceptibility dM/dH calculated from the magnetization data. [(c)–(f)] Magnetization versus field as obtained from the
coarse-grained model and differential susceptibility. [(g)–(l)] Mean-field calculation at T = 0, taking into account a cubic anisotropy and
the Zeeman field. Calculations were performed for the exchange parameters from Ross et al. [22] [(g) and (h)], Thompson et al. [15] [(i) and
(j)], and Robert et al. [34] [(k) and (l)]. [(h), (j), and (l)] Susceptibility calculated from the theoretical model of the magnetization shown in (g),
(i), and (k).

and the order of the phase boundaries can be understood as
the effects of cubic anisotropy.

B. Classical mean-field theory

To better understand the behavior of individual spins, we
apply classical mean-field calculations to the Hamiltonian

H = 1

2

∑
i j

Jμν
i j Sμ

i Sν
j − μBHμ

∑
i

gμν
i Sν

i , (2)

where Jμν
i j is the matrix of exchange couplings and gμν

i the
g tensor (see Ref. [22] for notation), using experimentally
determined exchange parameters from literature [15,22,34] to
describe the magnetization [Figs. 5(g)–5(l)]. For each param-
eter set we find the classical Q = 0 state that minimizes the
Hamiltonian in Eq. (2) and extract the field dependence of the
magnetization projected along the field direction. This model
accurately describes the field-dependent neutron scattering
(Fig. 4). However, it predicts a lower critical field for field
along 〈111〉 than for field along 〈110〉, which is opposite to
the experimental result.

The field-dependent spin configurations from mean-field
calculations allows us to calculate the neutron scattered
intensity, which agrees well with our experimental results
[Figs. 4(a) and 4(b)] and shows a noncollinear spin struc-
ture in Yb2Ti2O7. In general, with field-dependent magnetic
Bragg intensities it should be possible to track the magnetic
structure as a function of magnetic field. Unfortunately, the
majority of peaks exhibit field-dependent extinction which is
typical for ferromagnets [49] (see Appendix) and complicates
interpretation of the experimental data. Magnetic scattering
with minimal extinction is only observed on the weakest
Bragg peak, (002), which still affords a view into the spin
correlations as a function of magnetic field. The magnetic
neutron structure factor for (002) on the pyrochlore lattice is

given by

S(Q = (002)) = 6
[
S2

1 + S2
2 + S2

3 + S2
4

+ 2(S1 · S2 − S2 · S3 − S1 · S3

− S1 · S4 − S2 · S4 + S3 · S4)
]
, (3)

where spins S1, S2, S3, and S4 are the four spins on a tetrahe-
dron. As is evident from this equation, a fully polarized spin
state (S1 = S2 = S3 = S4) has zero neutron intensity. Thus,
(002) intensity is a direct measure of the noncollinearity of
the spin structure.

This means that the increase in (002) intensity with 〈110〉
field up to an external field of 1 T signifies that the region
above the upper critical field is not uniformly polarized.
This behavior is reproduced by the mean-field simulations

FIG. 6. Field-dependent magnetic structure of Yb2Ti2O7 for ap-
plied fields along 〈111〉, 〈110〉, and 〈100〉. In small fields, out of
the six domains the system selects three and two domains for field
along 〈111〉 and 〈110〉, respectively. In higher fields, the spins enter a
polarized state where the spins either lie in or are canted towards
their easy-plane defined by the local 〈111〉 axis. For field along
〈100〉, application of a magnetic field immediately stabilizes the
configuration shown in blue shading.
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[Fig. 4(b)] and shows spins which either lie in or are canted
towards their easy-planes defined by the local 〈111〉 axis [50],
as depicted in Fig. 6.

Despite the success of classical mean-field theory in qual-
itatively describing the field evolution of the spin structure, it
incorrectly predicts that the boundary of the high-field phase
for fields along 〈111〉 is lower than for fields along 〈110〉.
Experimentally, the opposite is observed [Figs. 5(g)–5(l)].
The origin of this discrepancy is beyond the analysis presented
so far and must be left for the future.

V. CONCLUSIONS

Our observations clarify several important issues surround-
ing Yb2Ti2O7 and highlight its exceptional properties. We
demonstrate that the magnetization in Yb2Ti2O7 is character-
istic of a cubic ferromagnet where the low-field behavior is
governed by simple magnetic domain selection. We also find
that the order of the phase boundary for 〈110〉 and 〈111〉 as
well as the lack of phase boundary for 〈100〉 are consistent
with the predictions of Landau theory for a cubic ferromagnet.
However, the ratio of upper critical fields for 〈110〉 and
〈111〉 is inconsistent with mean-field theory, suggesting the
presence of strong correlations. Inferred from elastic neutron
scattering, the field-dependent magnetic structure shows that
the field-polarized phase is not collinear but has the spins
canted towards the easy-plane orthogonal to the local 〈111〉
pyrochlore axes. We also reveal a dramatic reentrant phase
diagram for field along 〈110〉 as previously reported for 〈111〉,
suggesting that the low-field finite temperature regime is a
state where highly unconventional correlations dominate [46].

While Yb2Ti2O7 appears to be a deceptively simple cubic
ferromagnet at low temperatures, the reentrant phase diagram
and the reversed anisotropy of the upper critical fields are
clear experimental findings that cannot be accounted for by
classical microscopic theory. Instead they indicate that the
paramagnetic state near the phase boundary for T = 0 and
B = 0 are theoretically challenging regimes where strong
correlations prevail. The importance of this ferromagnetic
state as a point of reference in the exploration of unconven-
tional correlations is underscored by the recent observation
of mesoscale antiferromagnetic textures as well as ferro- and
antiferromagnetic spin waves [39].
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APPENDIX

1. Magnetization

The sample, sample holder, and cold finger for the magne-
tization measurements are shown in Fig. 7. The sample holder
with the sample mounted was firmly bolted into a Cu tail at-
tached to the mixing chamber of the dilution refrigerator. This
provided excellent thermal anchoring of the sample across
the entire surface of the sphere during all measurements,
while keeping its position rigidly fixed mechanically without
exerting significant stress.

The magnetization data were recorded following well-
defined field and temperature histories. Concerning the tem-
perature dependence three procedures were used: (i) after
cooling at zero magnetic field from ∼1 K, the magnetic
field was applied at base temperature and data collected
while heating continuously at a rate of 5 mT/min. This is
referred to as zero-field-cooled / field-heated (zfc-fh). (ii) Data
were recorded while cooling in the same unchanged applied
magnetic field. This is referred to as field-cooled (fc): (iii)
after initially cooling in the applied magnetic field, data were

FIG. 7. (a) Stoichiometric, pure, and colourless Yb2Ti2O7 single
crystal grown by the traveling solvent floating zone (TSFZ) tech-
nique (image taken from Ref. [8]). (b) spherical sample ground from
the stoichiometric single crystal and the oxygen-free Cu sample
holder composed of two matching sections fitting accurately the size
of the sphere. (c) sample holder mounted on the cold finger which
is then bolted to the Cu tail attached to the mixing chamber of the
dilution refrigerator.
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FIG. 8. Magnetic hysteresis in Yb2Ti2O7 for temperatures
T �TC (0.06 K, 0.10 K, 0.15 K, 0.20 K, and 0.27 K) and for
T = 0.9 K in the paramagnetic regime. The coercive field Hcoerc.

in the paramagnetic regime is finite due to instrumental resolution
around H = 0. The coercive field in the ferromagnetic regime of
Yb2Ti2O7 is vanishingly small, suggesting that magnetic domain
walls in the ordered state move freely in response to an applied
magnetic field.

recorded while heating continuously at a rate of 5 mT/min in
the same unchanged magnetic field. These data are referred to
as field-cooled / field-heated (fc-fh). Similarly, isotherms were
collected in one of the following three different field sweeps:
(iv) after zero-field-cooling a sweep from 0 → +1 T, denoted
(A1). (v) A field sweep starting at a high field, notably from
+1 T → −1 T, denoted (A2). (vi) A related field sweep from
−1 T → +1 T, denoted (A3). For temperatures above 0.05 K,
all data were recorded while sweeping the field continuously
at 15 mT/min, whereas the measurement at 0.022 K, the low-
est temperature accessible, was carried out at a continuous
sweep rate of 1.5 mT/min to minimize eddy current heating
of the Cu tail.

To isolate the signal from the sample, data were also
acquired for the empty sample holder and subtracted from
the data acquired with the sample in place. The signal of the
empty sample holder was found to be small with a highly
reproducible field dependence and negligible temperature de-
pendence. The sample signal was calibrated quantitatively at
2 K and 3 K against the magnetization measured in a Quantum
Design physical properties measurement system determined
also at 2 K and 3 K, as well as a Ni standard measured
separately in the VCM [41].

Figure 8 shows the magnetic hysteresis in Yb2Ti2O7. The
coercive field in the ferromagnetic regime of Yb2Ti2O7 is
vanishingly small, suggesting that magnetic domain walls in
the ordered state can move almost freely upon applying a
magnetic field.

2. Neutron scattering

The field-dependent elastic neutron scattering data are
compared to mean-field simulations based on the Ross [22],
Robert [34], and Thompson [15] Hamiltonians in Fig. 9. The
diffraction data were acquired at 0.1 K (within the ordered
phase) and at 5 K to show the paramagnetic background. The
low-temperature data were taken before the high-temperature
data for cryogenic convenience, so the peaks had to be
reacquired via rocking scans. This unfortunately means that
some of the data were taken slightly off-peak such that the
high-temperature data do not precisely match the intensities of
the low-temperature data—(004) in particular. Nevertheless,
all the paramagnetic background scans (green data in Fig. 9)
show a flat field dependence as expected, so the field depen-
dence of the low-temperature scattering is due to magnetic
changes in the sample itself.

The calculated magnetic scattering is based on the spin
structures arrived at via mean-field theory described in the
text. To compute scattered intensity, we also included domain

FIG. 9. Field-dependent neutron scattering from Yb2Ti2O7 at 0.1 K and 5 K compared to theoretical calculated intensity from mean-field
simulations. For strong Bragg peaks, the data do not match the simulations because of field-dependent extinction, but for the weak Bragg peaks
(002) and (220), the theory does match. Error bars represent one standard deviation.
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FIG. 10. High-field and high-temperature scattering from the
(002) Yb2Ti2O7 peak. The high-field scattering at 100 mK in
(a) shows that an applied field of 8 T does not produce a collinear
spin structure. The high-temperature scattering in (b) shows that
an increase in temperature reduces the sublattice magnetization as
expected. Error bars represent one standard deviation.

selection effects: between 0 and 0.1 K (where the internal
demagnetizing field is zero), we interpolated between a zero-
field state of equal domain population with net ferromagnetic
order along [100], [010], and [001], to a 0.1 K state including
only [100] and [01̄0]. (This is justified by the comparison to
the Potts model—see the main text.) This resulted in some
fairly dramatic predicted low-field dependence on the (11̄3)
and (004) peaks, shown in Figs. 9(h) and 9(l). From 0.1 K and
above, we assumed equal population of domains along [100]
and [01̄0].

Given that the (002) intensity indicates a noncollinear spin
structure, it is worth asking how high of a magnetic field
would produce a collinear polarized spin structure. Scattering
in a 〈110〉 field up to 8 T is shown in Fig. 10(a), and shows
only a modest decrease in intensity from the maximum value
around 1 T. This indicates that the spin structure remains
noncollinear up to applied magnetic fields in excess of 8 T, as
one would expect given that the lowest energy excited crystal
field level is at ∼60 meV [50]. When we increase temperature
on the (002) peak, we see a steady decrease in intensity as
the thermal fluctuations diminish the sublattice magnetization.
This is shown in Fig. 10(b).

Qualitatively, all the theoretical calculated intensities are
the same. They only differ in relative intensity and the upper
critical field. Given that the upper critical field is renormalized
by quantum effects [51], comparisons of critical field are not
a good way to adjudicate between the proposed Hamiltonians.
However, for the (111), (222), (113), and (004) peaks, the
theoretical calculated intensity does not even resemble the ex-
perimental data. In each of these cases, there is a sudden drop
in intensity at low magnetic fields which is either not expected
or the opposite of what is expected for domain selection. A
possible explanation for this is magnetic extinction. Extinc-
tion in ferromagnets is reduced when there are many domain
walls, but then enhanced when a field reduces the number
of domain walls. This causes a sudden drop in scattered
intensity when a magnetic field is applied, as seen in yttrium
iron garnet [49]. This precisely matches what we observe
in Yb2Ti2O7. Thus, only the weaker Bragg peaks (002) and
(220) have scattering intensity which resembles the data. As
explained in the text, these data indicate a noncollinear 〈110〉
field-polarized phase due to easy-axis single ion anisotropy.

3. Coarse-grained model

The cubic anisotropy is minimized with a sixfold degen-
eracy for magnetization along {±ei}, i.e., ei = x̂, ŷ, ẑ in the
global frame. Ignoring further high-order terms, the potential
energy for the magnetization represented by a unit vector m is

U = −K1

∑
i

(m · ei )
4 − K2

∏
i

(m · ei )
2 − h · m. (A1)

In the limit of a strong magnetic field, the spin is fully
polarized along the direction of the field a3. Near and be-
low the transition field, m develops a small deviation ρ in
the two transverse directions a1 and a2. In the local frame,
m = ρ(a1 cos φ + a2 sin φ) + a3

√
1 − ρ2.

For a magnetic field of magnitude h applied along
〈110〉, the local frame is defined by a1 = (0, 0, 1), a2 =
(1,−1, 0)/

√
2, and a3 = (1, 1, 0)/

√
2. Expanding the poten-

tial energy gives, up to addition by a constant,

U 〈110〉 =
[(

h

2
− K1

2
− K2

8

)

+
(

3K1

2
− K2

8

)
cos 2φ

]
ρ2 + O(ρ4). (A2)

For the range of values of K1 and K2, we are working with,
the minimization with respect to φ gives cos 2φ = −1 and
the coefficient for ρ4 is positive definite. At h〈110〉

c = 4K1, the
minimum at ρ = 0 becomes unstable, giving a second-order
phase transition.

Approaching the transition field from below with h =
h〈110〉

c − δh,

U 〈110〉 = −δh

2
ρ2 +

(
5K1

2
− δh

8

)
ρ4 + O(ρ6). (A3)

Thus the magnetization along the field scales with δh lin-
early, m = m · a3 ≈ 1 − δh/(20K1), until the slope suddenly
jumps to 0 for h � h〈110〉

c .
For the field h along 〈111〉, the local frame is given

by b1 = (1,−1, 0)/
√

2, b2 = , (1, 1,−2)/
√

6, and b3 =
(1, 1, 1)/

√
3. Similarly, up to a constant term, the potential

energy is

U 〈111〉 =
(

h

2
− 4K1

3
+ 2K2

9

)
ρ2

−
(

2
√

2K1

3
+

√
2K2

27

)
ρ3 sin 3φ

+
(

h

8
+ 7K1

6
− 5K2

12

)
ρ4 + O(ρ5), (A4)

which we denote as U 〈111〉 = c2ρ
2/2 − c3ρ

3/3 + c4ρ
4/4 +

O(ρ5).
Approaching the transition field from above, we expect

a first-order phase transition at h〈111〉
c that satisfies 2c2

3 =
9c2c4, where ρ suddenly develops a finite value 2c3/3c4,
accompanied by sin 3φ = 1, giving a divergent slope in the
magnetization m = m · b3.
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