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Realization of a stroboscopic optical lattice for cold atoms with subwavelength spacing
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Optical lattices are typically created via the ac Stark shift and are limited by diffraction to periodicities � λ/2,
where λ is the wavelength of light used to create them. Lattices with smaller periodicities may be useful for
many-body physics with cold atoms and can be generated by stroboscopic application of a phase-shifted lattice
with subwavelength features. Here we demonstrate a λ/4-spaced lattice by stroboscopically applying optical
Kronig-Penney-like potentials which are generated using spatially dependent dark states. We directly probe the
periodicity of the λ/4-spaced lattice by measuring the average probability density of the atoms loaded into the
ground band of the lattice. We measure lifetimes of atoms in this lattice and discuss the mechanisms that limit
the applicability of this stroboscopic approach.
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I. INTRODUCTION

Ultracold atoms trapped in periodic optical potentials pro-
vide wide-ranging opportunities to study many-body physics
in highly controllable systems [1,2]. In all cases, the charac-
teristic single-particle energy scale is set by the recoil energy,
ER = h2/(8md2), where m is the mass of the atom and d is
the spatial period of the lattice. Although temperatures in such
systems can be quite low, it is still challenging to reach tem-
peratures well below the relevant many-body physics energy
scales, which can be exceedingly small. Increasing the recoil
energy can potentially increase both single-particle and many-
body energy scales through tighter confinement, which may
aid in creating systems well into the regime where many-body
ground-state physics is observable. An inherent obstacle to
smaller lattice spacing is the optical diffraction limit, which
prevents lattice periodicities below d = λ/2, where λ is the
wavelength of the light forming the lattice. Several approaches
to move beyond the diffraction limit have been proposed and
some realized based on multiphoton effects [3–5], rf-dressed
adiabatic potentials [6–8], and trapping in near-field guided
modes with nanophotonic systems [9–12].

Here we report the realization of a recently proposed
Floquet-based approach [13–15] to create small-period lat-
tices, specifically λ/4-spaced lattices, by time-averaging
a modulated lattice potential that has subwavelength fea-
tures. We load atoms into the ground band of this time-
dependent lattice and measure their average probability den-
sity |ψavg(x)|2 with nanoscale resolution [16–18], to confirm
the subwavelength nature of the lattice. We study the lifetime
of atoms in the lattices over a range of modulation (Floquet)
frequencies ωF = 2π/T , where T is the period of a complete
cycle, to determine the frequency range over which the time-
averaged approach works.
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Creating an effective time-averaged potential requires that
the time dependence of the lattice be motionally diabatic
[19–21], namely, that T be much smaller than the motional
timescale of the atoms. Time-averaging a dynamically applied
lattice potential cannot create an effective potential landscape
with higher spatial Fourier components than the underly-
ing progenitor lattice. This implies that in order to create
landscapes with subwavelength periodicity, one must time-
average a potential that itself has subwavelength features [13].
In this work, we make use of the Kronig-Penney-like (KP-
like) potential to generate the desired potential landscapes
[14,15]. Such a KP potential is implemented via the dark
state associated with a three-level � system [22–24]. The spin
adiabaticity required to maintain the dark state during the stro-
boscopic cycle imposes additional constraints, as discussed
below.

There are multiple ways to implement time-averaging with
a KP lattice [14,15]. The particular approach that we adopt,
optimized for our experimental conditions, is shown in Fig. 1.
Periodic potentials with λ/2 spacing but subwavelength struc-
ture are stroboscopically applied to the atoms to create the
desired potential landscape. Specifically, atoms are subjected
to a KP potential for half of the Floquet cycle T/2; the
potential is then ramped down to zero and its position is
shifted by half of the lattice spacing λ/4; the shifted potential
is ramped on again and held for another half cycle, before
being ramped off and its position is restored.

Two factors must be considered to ensure that time-
averaging is an effective description of the system. First,
motional diabaticity sets a lower bound on the Floquet fre-
quency ωF , beyond which the band structure becomes un-
stable and severe heating limits the lifetime. Second, the
dark-state nature of the KP lattice sets an upper bound to
ωF . As the KP potential is a scalar gauge potential arising
from a spatially varying dark state [22–24], switching on and
off such a potential requires atoms to adiabatically follow
the spatiotemporal dark state at all times. We ensure this
adiabatic following by carefully designing the pulse shapes
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FIG. 1. The stroboscopic approach to creating a time-averaged
effective potential with a lattice spacing of λ/4 by dynamically
pulsing KP potentials with λ/2 spacing.

of our light fields (Appendix C), implementing stimulated
Raman adiabatic passage (STIRAP) [25]. Losses occur at
high ωF , as the atom’s dark-state spin composition fails to
adiabatically follow the rapid changes in the light fields. In
the following sections, we show that a frequency window
that simultaneously satisfies both requirements exists and that
there are momentum-dependent loss channels arising from
the Floquet-induced coupling with higher excited bands for
particular momenta.

II. EXPERIMENT

We work with fermionic 171Yb atoms that have a well-
isolated � system (Appendix A), consisting of two ground
states |g1〉, |g2〉 and an excited state |e〉 coupled by laser
light with λ = 556 nm. We use the methods outlined in
Refs. [24,26–29] to generate and optically control this well-
isolated � system. A control field �c(x, t ) = �c1eikx +
�c2(t )e−i[kx+φ(t )], where k = 2π/λ and φ(t ) is the relative
phase difference between the two fields, which couples |g2〉
and |e〉, is composed of two counterpropagating lattice beams.
The maximum value of �c2(t ) is constrained to be equal
to �c1 = �c0/2, in which case it gives rise to a standing
wave �c0 e−iφ(t )/2 cos [kx + φ(t )/2]. We control the strength
and the position of the KP potential using �c2(t ) and φ(t )
(Appendix C). A homogeneous probe field �peiky, coupling
|g1〉 and |e〉, travels perpendicular to the control beams. The
resulting spatially dependent dark state gives rise to a KP
lattice of narrow subwavelength barriers [22–24], plus an
additional sinusoidal potential due to the light shifts caused by
states outside the three-level system (Appendix A) as shown
in Fig. 2(a).

Stroboscopically applying the lattice with different
strengths and positions requires accurate and high bandwidth
control of the amplitude and phase of the lasers coupling

FIG. 2. (a) The stroboscopically applied potential, shown here
for �c0 = 500	 and �p = 50	, is composed of KP barriers on top of
a sinusoidal potential. The dotted line represents the potential shifted
by λ/4. (b) The time-averaged effective potential Veff(x). (c) The
black points are the measured |ψavg(x)|2 of atoms in Veff(x). Number
fluctuations between realizations result in number uncertainties of
5%. The black line is the calculation based on independently mea-
sured lattice parameters. The gray line is the calculated |ψavg(x)|2
in the lattice before the relaxation during the measurement. (d) The
micromotion dynamics at different times within a Floquet period.
The blue (red) shaded areas represent regions in which |ψ (x, t )|2 is
higher (lower) than |ψavg(x)|2, which is shown as a solid black line.

the three states, which we implement using dynamic control
over the rf fields driving acousto-optic modulators (AOMs)
[16]. We note that the spin adiabaticity condition depends
significantly on the pulse shape [14] in addition to the Floquet
frequency, and control of the pulse shape within a Floquet
period is critical [16]. We use arbitrary waveform generators
that can control the rf amplitude and phase with a resolution
of 8 ns and 4 ns, respectively. However, we are limited by the
bandwidth of the AOMs, which we measure to be 50 ns. This
is a factor of 8 times smaller than the smallest half-period of
400 ns that we have used in this study.

For typical experimental values of �c0 = 500	 and �p =
50	, where 	 = 2π × 182 kHz is the inverse lifetime of |e〉,
the KP barrier has a minimum width of 0.02 λ and a maximum
height ≈ 100ER, where ER/h = h/(2mYbλ

2) = 3.7 kHz, mYb

is the mass of a 171Yb atom, and the sinusoidal potential has a
depth ≈ 145ER, Fig. 2(a). Time-averaging this lattice applied
at two positions results in an effective potential Veff(x) shown
in Fig. 2(b), which includes the effect of the pulse shapes, with
an effective barrier height ≈ 7ER. (The sinusoidal component
of the potential averages to a spatially invariant offset.)
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III. MEASUREMENT

We apply this lattice to ≈ 2 × 105 Yb atoms at an initial
temperature of 0.3 μK that has been optically pumped into
|g1〉. To load the atoms into the ground band of Veff(x),
we adiabatically increase the depth of the stroboscopically
applied lattices in 200 μs (typically ∼80 Floquet cycles)
described in detail in Appendix B. After the loading stage, we
measure the ensemble-averaged probability density |ψ (x, t )|2
of atoms in the ground band of Veff(x) using a nanoresolution
microscopy technique [16] with FWHM resolution of 25 nm.
We also measure the momentum distribution of the atoms via
absorption imaging after time of flight (TOF).

A. Probing wave function density in the stroboscopic lattice

Figure 2(c) shows |ψ (x, t )|2 averaged over a Floquet pe-
riod T = 2.4 μs (ωF = 2π × 410 kHz) for atoms in Veff(x)
with a λ/4 lattice spacing, and Fig. 2(d) shows |ψ (x, t )|2
at different times within a Floquet cycle. By averaging the
data over a Floquet period, we eliminate the effect of mi-
cromotion and obtain the averaged wave function density
|ψavg(x)|2 [dotted trace in Fig. 2(c)] in the ground band of
the effective potential. The black curve represents the ground-
band probability density calculated from the time-averaged
potential including the quasimomentum averaging, the effect
of finite resolution of the microscope, and the relaxation of the
wave function during the measurement. The good agreement
between the data and calculation shows that time-averaging is
a good description of the effective potential. The calculated
wave function in the lattice before the relaxation during the
measurement is plotted in gray. We resolve the micromotion
in real space within a Floquet period by comparing |ψ (x, t )|2
with |ψavg(x)|2 [Fig. 2(d)]. The blue (red) shaded areas rep-
resents regions in which |ψ (x, t )|2 is higher (lower) than
|ψavg(x)|2. We observe that micromotion has the same time
periodicity as the Floquet drive, as expected.

B. Momentum-dependent loss channels

A characteristic feature of a Bloch-Floquet band structure
is the existence of avoided crossings at particular lattice
momenta arising from coupling with high-lying states [30],
which for large Floquet frequency are approximately plane
waves with high momenta. We measure the momentum dis-
tribution of the atoms in Veff(x) at different ωF by taking an
absorption image after ramping down the lattice in 100 μs
followed by a TOF of 3 ms. The atomic populations at high
momenta in Fig. 3(a) indicate the mixing of low-momentum
and high-momentum states due to the presence of avoided
crossings in our system. We use a Gaussian fit to determine
the center momentum of the populations with respect to the
ground band. The Floquet frequency ωF is plotted against the
center momentum [Fig. 3(b)] for the three most prominent
peaks (L1: green, L2: red, R1: blue). To first order, the avoided
crossings can be understood as arising from the crossing of
Floquet-dressed high-lying bands, which are shifted in energy
by integral multiples of ωF , and the low-lying occupied bands
of Veff(x), which are relatively flat. To determine the integral
multiple of ωF for the band coupling, we fit the peak positions
with a quadratic function h̄ωF = (p − p0)2/N + h̄ω0, where

FIG. 3. (a) Integrated TOF column density at different Floquet
frequencies ωF . The atomic populations at high momenta indicate
the presence of avoided crossings. The widths of the populations at
avoided crossings are primarily due to the physical dimensions of
the atomic cloud. (b) The Floquet frequency ωF is plotted versus
the center momentum of the populations in (a) determined using
Gaussian fits. Different series of avoided crossings are labeled and
colored (L1: green, L2: red, R1: blue) and their fitted quadratic
functions are drawn in solid lines respectively. The error bars are
one standard deviation of the Gaussian fits.

p is the momentum, N is an integer, p0 and ω0 are fitting
parameters, and the momentum and energy are in units of
h̄k and ER. For the L1 series, a good agreement with the
data is found for N = 1, indicating this series is due to
coupling between bands with an energy difference of h̄ωF .
For the L2 and R1 series, N = 2 gives the best fit, indicating
second-order coupling between bands that differ in energy
by 2h̄ωF . (The other visible peaks do not extend over a
sufficient range to accurately determine their curvatures.) The
fraction of atoms in the high-momentum states decreases
at higher Floquet frequency, suggesting weaker coupling to
higher bands. The asymmetry in the avoided crossings with
respect to p = 0 is due to the fact that we are driving just
the �c2 control beam, which gives rise to a vector gauge
potential [14].
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FIG. 4. Lifetimes of atoms at different ωF under different Rabi
frequency configurations. Green squares: �c0 = 500	 and �p = 0,
where the spin degree of freedom is decoupled and the loss is due
solely to failure of motional diabaticity at low ωF . Red triangles:
�c1 = 0, �c2 = 250	, and �p = 80	, where the spatial potential
is homogeneous and the loss is due solely to the failure of spin
adiabaticity at high ωF . Blue circles: �c0 = 500	 and �p = 80	,
where we show the lifetimes of atoms in the λ/4-spaced lattice,
Veff(x). The error bars are one standard deviation of the exponential
fits.

The 171Yb atoms are nearly noninteracting (s-wave scatter-
ing length is −3a0, where a0 is the Bohr radius), so they are
not likely to thermalize during the short loading and unloading
sequence. However, the observed low-momentum component
of the TOF distribution is consistent with the width of the
ground-band Brillouin zone for the λ/4-spaced stroboscopic
lattice, which is twice as large as the ground bandwidth of
the progenitor λ/2 lattice. Given that the Fermi momentum at
our density is of order the recoil momentum of the progenitor
lattice, the filled ground band in the λ/4 lattice indicates that
the effective temperature is higher than the ground bandwidth
but not a significant fraction of the band spacing.

C. Lifetime study

In order to determine the range of usable Floquet frequen-
cies for the stroboscopic scheme, we study the lifetime at
different ωF under different Rabi frequency configurations as
shown in Fig. 4. We determine the lower bound on ωF by
studying the motional diabaticity of atoms in just a strobo-
scopically applied ac Stark shift lattice. This is done by setting
�p = 0, which decouples the spin degree of freedom from
the dynamics with �c1 = 250	, while �c2(t ) is pulsed to a
maximum value of 250	(Appendix C). At low ωF , the atoms
are affected by the turning on and off, and phase shifting of
the sinusoidal ac Stark shift potential, which causes heating
and loss (green squares in Fig. 4). We determine the upper
bound on ωF by studying the reduction in the fidelity of
STIRAP as a function of ωF for a spatially homogeneous
dark state. This is done by setting �c1 = 0, �p = 80	, while
�c2(t ) is pulsed to a maximum value of 250	. The reduction
in STIRAP fidelity manifests as heating and loss due to the
decreasing spin adiabaticity at larger ωF . Most importantly,
we also measure the frequency-dependent lifetime of atoms

loaded into Veff(x) for different ωF (blue circles in Fig. 4).
The reduction in spin adiabaticity accounts for the decrease in
lifetime of atoms in Veff(x) at high ωF .

The short lifetimes in the stroboscopically applied KP
lattices are expected due to a few factors. First, couplings to
the spatially and temporally dependent bright states reduce
lifetimes in subwavelength-spaced lattices even for a perfect
three-level system, through couplings with higher Floquet
bands (as shown in Fig. 3) and off-resonant couplings with
bright states [14]. In principle, these couplings can be reduced
by using larger Rabi frequencies. However, lifetimes are also
limited by the breakdown of the three-level approximation at
large Rabi frequencies due to admixing of states outside the
three-level system (Appendix A). This manifests as a dynam-
ically varying and spatially dependent two-photon detuning
(arising from �c(x, t )), which reduces the fidelity of STIRAP
[25]. This competing requirement prevents us from benefiting
from larger Rabi frequencies.

IV. CONCLUSION

In conclusion, we demonstrate the creation of a time-
averaged λ/4-spaced lattice using a recently proposed strobo-
scopic technique [13] based on dynamically modulated dark
states in a three-level system [14,15]. The subwavelength
structure of the lattice is confirmed by measuring the prob-
ability density of the atoms averaged over the ground band of
the lattice. We measure the loss rate of atoms in the lattice and
observe high-momentum excitation due to Floquet-induced
coupling to higher bands. We measure the lifetime of the
atoms in the λ/4-spaced lattice to be 2 ms, which is not
long enough compared to the tunneling time to allow for
many-body studies in the current realization.

Further improvement of the λ/4-spaced lattice would re-
quire compensation of the two-photon detuning or the iden-
tification of other atomic systems with a more favorable
(isolated) three-level system [31]. The lattice demonstrated
here is limited by the off-resonant coupling to |(6s6p)3P1,

FIG. 5. Level structure of the 1S0 and 3P1 manifolds in 171Yb: 


is the single-photon detuning, and 
HFS ≈ 6 GHz is the 3P1 hyperfine
splitting.
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FIG. 6. Rabi frequencies of different light fields and the relative
phase φ between �c1 and �c2 during three stages. The Floquet period
is not shown to scale; the minimum number of Floquet cycles during
the ramp-on of �c2 is 40.

F = 3/2, mF = −3/2〉, which is only detuned by the hyper-
fine splitting from the three-level system being used. Better
candidates may make use of isolated electronic levels, which
are detuned by much larger optical separations. For example,
in 174Yb, the (6s6p)3P0 state and one of the states in the
(6s6p)3P2 level could be used as the ground states, while
one of the (6s7s)3S1 states could be used as the excited state,
with appropriate choice of polarization to select the three
states. In a more isolated three-level system the main limi-
tation would be the available laser power needed to meet the
Rabi frequency requirements. In addition to longer lifetimes,
higher Rabi frequencies would allow for lattices with smaller
spacings [14]. Our work can be extended to 2D, and additional
dynamic control over the two-photon detuning—which makes
subwavelength traps possible [31]—allows for construction
of arbitrary time-averaged potential landscapes not limited by
diffraction.
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APPENDIX A: 171Yb ATOM LEVEL STRUCTURE

Figure 5 shows the level structure of the 1S0 and 3P1

manifolds in 171Yb. The three hyperfine states |g1〉, |g2〉, and
|e〉 constitute the � system. We use a magnetic field of 36 mT
to yield a frequency separation of 1 GHz between |e〉 and |4〉.
The hyperfine splitting is 
HFS ≈ 6 GHz.

The ac Stark shifts on the ground states |g1〉 and |g2〉
arise due to off-resonant couplings to states outside the �

system. The �c(x, t ) light field off-resonantly couples |g1〉
with |5〉, and |g2〉 with |6〉. The �p light field off-resonantly
couples |g2〉 with |4〉, |g2〉 with |7〉, and |g1〉 with |6〉. The

spatiotemporally dependent ac Stark shifts due to �c(x, t )
give rise to the dynamic sinusoidal potential mentioned in the
main text.

APPENDIX B: EXPERIMENTAL SEQUENCE

Figure 6 shows the experimental sequence that we use to
load atoms into the ground band of the stroboscopic lattice.

(I) We start with atoms optically pumped into |g1〉. We
then ramp on �c1 (red trace in Fig. 6) followed by �p (blue
trace in Fig. 6), transferring atoms into a spatially homoge-
neous dark state. Then, we turn on �c2(t ) (green trace in
Fig. 6) in 200 μs (minimum number of Floquet cycles used
during the ramp ≈ 40) to adiabatically load atoms into the
ground band of the stroboscopic lattice.

(II) We pulse the stroboscopic lattice for a variable num-
ber of Floquet cycles.

(III) We measure the average probability density of the
atoms in the ground band of the stroboscopic lattice using the
nanoresolution microscopy technique described in Ref. [16].

The phase φ(t ) of the �c2 light field, which controls the
position of the stroboscopic lattice, is only changed when the
dark-state spin composition is spatially homogeneous [14].
The experimental techniques used to generate the pulses are
detailed in Ref. [16].

APPENDIX C: PULSE SCHEME

The functional form of �c2(t ) that we use to create the
stroboscopic lattice is [14]

�c2(t ) = �c0

2
− �p sin2(ωFt )

√
1 + 4ε2 − sin4(ωFt )

,

ωF = �pr0

√
1 + 4ε2,

where ε = �p/�c0. In Fig. 4, changes in ωF are parametrized
using r0. Smaller r0 implies slower, more spin-adiabatic
pulses. In our experiment, we typically use 0.02 � r0 � 0.2.

APPENDIX D: DETAIL OF LIFETIME STUDY

When studying lifetime for the STIRAP-only case and
for the stroboscopic lattice case, we observe that ∼20% of
the atoms have a lifetime of ∼20 ms and are insensitive to
change in ωF . We speculate that these atoms populate Floquet
states that are immune to STIRAP due to the large dynamic
two-photon detunings arising from the spatially dependent ac
Stark shifts due to couplings to states outside the � system
(Appendix A). The decay rates shown in the main text pertain
to the major fraction of the atoms which show frequency-
dependent loss rates both in the stroboscopic lattice and in
the stroboscopic STIRAP case.
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