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Abstract—We investigate the performance of a recently 

developed algorithm that evaluates the uncertainty of nonlinear 

multivariate microwave calibration models using regression 

residuals. We apply the algorithm to synthetic data consisting of 

both random and systematic errors and show that the algorithm 

can account for both types of errors even in the absence of accurate 

models for the random errors. We also verify the algorithm with 

measured data. 

 
Index Terms—Calibration, measurement, microwave, 

uncertainty, vector network analyzer. 

I. INTRODUCTION 

E proposed a Monte-Carlo bootstrap algorithm in [1] for 

evaluating the uncertainty of nonlinear multivariate 

microwave calibration models from regression residuals. 

Regression residuals are extremely important in the microwave 

measurement and other fields for estimating errors in 

incomplete models, which often are associated with either 

incompletely characterized calibration artifacts or incompletely 

understood sources of error in an experiment or a data set. 

The algorithm of [1] was based on an extension of the 

statistical approaches in [2] and [3] developed for evaluating 

the uncertainty of the mean of multivariate results. The 

algorithms of [1-3] were designed to fill a gap in the two current 

supplements to The Guide to the Expression of Uncertainty in 

Measurement [4], which treat Monte-Carlo techniques [5] and 

multivariate data sets [6], but do not discuss the use of 

regression residuals to evaluate uncertainty. The algorithms of 

[1-3] allow for inputs with associated Monte-Carlo samples that 

approximate their uncertainty, and thus are suitable for use in 

the NIST Microwave Uncertainty Framework [7] and other 

similar software packages [8-10].  

Monte-Carlo bootstrap algorithms are often used to evaluate 

the uncertainty of models because they can account for the 

propagation of uncertainty through nonlinear models. In [11], 

Wu presents an excellent summary of jackknife and 

bootstrapping algorithms for univariate regression problems, 

and discusses contributions made by Efron [12], Freedman 

[13], and others. While Wu primarily focused on algorithms for 
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linear problems, he also briefly discussed extensions to 

nonlinear problems. Freedman [13, 14] also extended some of 

his univariate results to multivariate regression problems. 

Building on the contributions of Wu [11] and Freedman [13, 

14], Eck [15] formalized Freedman’s extensions of bootstrap 

procedures to multivariate linear regression problems and 

offered detailed proofs of their validity. 

Finding the sample mean and evaluating the uncertainty in 

this value as an estimate of the population mean can be 

considered a special case of a linear regression problem with a 

single variable in the model (i.e., the mean of the inputs). Yet 

even [2] and [3], of which the Monte-Carlo bootstrap algorithm 

of [1] is an extension, showed some unavoidable bias when 

mean results were later used in nonlinear problems.1 For this 

reason, we investigate the ability of the Monte-Carlo bootstrap 

algorithm of [1] to evaluate uncertainty from regression 

residuals when applied to a nonlinear microwave vector-

network-analyzer (VNA) calibration problem in rectangular 

waveguide (RWG).  

In this paper, we first apply the Monte-Carlo bootstrap 

algorithm of [1] to synthetic data for VNA calibrations 

containing both random and systematic calibration errors. This 

allows us to investigate the ability of the algorithm of [1] to 

accurately evaluate the uncertainty of the VNA calibration 

models in an automated fashion in the presence of both types of 

errors and in the absence of models for the random errors. The 

simulations allow for both qualitative comparisons of single 

results and quantitative comparisons of averaged results from 

the Monte-Carlo bootstrap algorithm and the conventional 

algorithm. 

We then apply the Monte-Carlo bootstrap algorithm of [1] to 

analogous measurements with deliberately introduced errors to 

verify the simulations and demonstrate the algorithm’s 

suitability for use in actual measurement situations.  

In this paper, we use random vertical E-plane offsets at the 

interfaces between test ports in rectangular-waveguide 

calibrations to demonstrate the ability of the Monte-Carlo 

bootstrap algorithm of [1] to estimate uncertainty in the VNA 

calibration. We chose to study vertical E-plane offsets as error 

mechanisms both because the errors are nonlinear in the offset 

measurement errors can be nonlinear even when the electrical circuit is linear. 

This is because electrical linearity between the input and output of the circuit is 
not enough to ensure that the response of the circuit is linear in each of the error 

mechanisms included in the error analysis, which is the criterion for linearity in 

the statistical sense, not just linearity in the electrical input to the circuit. 
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variable, but also because we have well-understood closed-

form models in the NIST Microwave Uncertainty Framework 

[7] for those errors to simplify the analysis. 

However, while we make use of closed-form models to 

evaluate the uncertainty introduced into VNA calibrations due 

to deliberately introduced vertical offsets at the interfaces 

between the VNA test ports and the VNA calibration artifacts, 

we want to emphasize that the algorithm of [1] we test does not 

make use of these error models. This allows us to illustrate the 

utility of the Monte-Carlo bootstrap algorithm of [1], which can 

estimate uncertainty even in the absence of models for the errors 

in the problem. This might arise when the user, for example, 

does not have access to the dimensional measurement 

equipment required to evaluate the size of the E-plane offsets 

giving rise to the uncertainty in the calibration. 

However, the Monte-Carlo bootstrap algorithm of [1] can be 

useful in other situations as well. For example, the bootstrap 

algorithm of [1] could also be used to evaluate the uncertainty 

of a rectangular-waveguide calibration due to uneven surfaces 

at the interfaces between the VNA test ports and the VNA 

calibration artifacts, where models for the resultant 

discontinuities may be very difficult to come by. Other 

examples include evaluating for uncertainty due to difficult-to-

characterize dimensional variations deep in the interior of 

rectangular-waveguide artifacts where it is difficult to reach 

them with coordinate-measurement machines and air gauges 

are unable to accurately determine the details of the geometric 

discontinuities. 

II. CALIBRATION ALGORITHM 

 Here we use the NIST Microwave Uncertainty 

Framework’s Levenberg-Marquardt two-port VNA Calibration 

Algorithm to investigate the accuracy of the uncertainties 

evaluated by the Monte-Carlo bootstrap algorithm of [1] from 

regression residuals. We used the algorithm with 1000 Monte-

Carlo replicates in all the simulations discussed in Sections II 

and IV, as well as the measurement verification discussed in 

Section V. 

 We based the calibration artifacts on perfect shorts and up 

to 33 sections of RWG line with simulated or actual vertical E-

plane offset errors between the VNA test ports and the lines, 

depending on whether we were performing quantitative 

simulations or more qualitative measurement verification. The 

vertical E-plane offsets lead to statistical bias because, while 

there is no capacitance at a junction with a zero vertical E-plane 

offset, both positive and negative offsets at the junction 

between two RWG sections result in a positive and 

parabolically increasing excess capacitance at the junction. This 

is illustrated nicely in Fig. 4 of [16] and Figs. 1 and 2 of [17]. 

 The variable excess capacitance at the junctions, which is 

always positive, introduces both statistical bias and random 

variation into the parameters of the VNA calibration model. 

Here we focus on the imaginary part of the transmission term 

S13 in the port-one calibration error box, which is impacted 

directly by changes in the excess capacitance at the junctions 

between the test ports and the RWG lines. Results for the other 

elements of the two calibration error boxes impacted by the 

junction capacitance displayed similar behavior. 

III. RANDOM RWG LINE OFFSETS 

We first simulated a WR-10 calibration with perfect test ports 

having no systematic offset between the test-ports’ rectangular 

2.54 mm horizontal H-plane by 1.27 mm vertical E-plane 

apertures and their alignment pins. We also assigned a uniform 

probability distribution function (PDF) with a range of ±0.1 mm 

to the offset in the vertical E-plane direction between the test-

port pins and the rectangular aperture of each calibration 

artifact. We chose the range ±0.1 mm to exaggerate the vertical 

E-plane offsets and make them comparable to those sometimes 

encountered at submillimeter frequencies. This made the errors 
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Results
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Step 2: Use Regression Residuals to Capture RWG Errors

 
 

Fig. 1.  Simulation approach for RWG calibration line 

offset errors. 1000 trials of the Monte-Carlo bootstrap 

algorithm of [1] shown in the lower-right are compared to 

the conventional Monte-Carlo algorithm illustrated in step 

one in the upper-left. 
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Fig. 2.  Histograms of the imaginary part of S13 of the 

calibration model as a function of the number of RWG 

lines used in the calibration with random RWG line errors 

only. The histograms in red are evaluated by the 

conventional approach. The blue dashed curves with solid 

dots correspond to values of the histograms evaluated 

during the first of the 1000 trials of the algorithm of [1] 

based on the measurement residuals.  
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easier to analyze while not exceeding the region of validity of 

the analytic expressions from Hunter in [17], used in the NIST 

Microwave Uncertainty Framework to model the impact of 

these offsets. We will present measurement-verification results 

for this problem performed in a lower-frequency WR-90 RWG 

in Section V. 

The analysis proceeded in two steps, as illustrated in Fig. 1. 

In the first step, we solved the RWG VNA calibration problem 

in the conventional way, as shown in the upper-left of Fig. 1. In 

the second step, we ran 1000 trials of the Monte-Carlo bootstrap 

algorithm of [1], and compared the results to the results from 

the conventional algorithm, which was based on straight-

forward Monte-Carlo simulations using the analytic models for 

vertical RWG offsets implemented in the NIST Microwave 

Uncertainty Framework [7]. We expect the conventional results 

to be accurate, given the straight-forward algorithm employed 

and the 1000 Monte-Carlo simulations employed in the 

evaluation. 

A. Representative results 

Fig. 2 compares histograms of the imaginary part of S13 

evaluated by the conventional approach (the red histogram in 

the figure) to the first histogram based on the measurement 

residuals, which was representative of other histograms 

evaluated during the 1000 trials of the algorithm of [1]. The 

conventional approach is based on straightforward Monte-

Carlo uncertainty propagation through the models for the 

calibration artifacts and serves as our baseline result. While Fig. 

2 only shows one result from the 1000 trials we ran, and thus is 

necessarily qualitative in nature, it does illustrate the ability of 

the algorithm of [1] to reasonably evaluate the mean and 

standard uncertainty obtained from the conventional algorithm. 

Nevertheless, the results in Fig. 2, while necessarily 

qualitative in nature due to the single trial on which the figure 

is based, do indicate a systematic offset in the probability 

distribution function evaluated by the algorithm of [1] when 

compared to the conventional algorithm. Next, we quantify this 

and other differences between the algorithm of [1] and the 

conventional algorithm by summarizing the statistics we 

gathered over the full 1000 trials we ran. 

B. Complete Analysis 

Table I presents a quantitative summary of the key statistics 

related to the performance of the algorithm of [1] in this portion 

of the study over all 1000 trials as a function of the number of 

RWG lines included in the calibration. The second column of 

the table lists the normalized standard deviation of the Monte-

Carlo means 𝜇e of the imaginary part of S13 over the 1000 trials 

as a function of the number of RWG lines used in the calibration 

listed in the first column of the table. The standard deviation 

SD(𝜇e) was evaluated around the actual mean 𝜇a evaluated by 

the conventional Monte-Carlo method and then normalized by 

the actual mean 𝜇a to obtain the normalized standard deviation 

of the mean SD(𝜇e) 𝜇a⁄ . Here we defined the standard deviation 

of the mean 𝜇e evaluated by the algorithm of [1] around the 

conventional mean 𝜇a with the formula SD(𝜇e) =

√(1/𝑛) ∑ (𝜇e,𝑖 − 𝜇a)
2𝑛

𝑖=1  , where the mean 𝜇e,𝑖 of the imaginary 

part of the transmission coefficients S13 of the calibration model 

was evaluated in the ith trial of the n=1000 trials. 

The table shows that the normalized standard deviation of the 

mean SD(𝜇e) 𝜇a⁄  decreases as the number of RWG calibration 

lines increases. This indicates that the algorithm of [1] does a 

better job of evaluating the Monte-Carlo mean 𝜇e  as the 

 

TABLE I 
SUMMARY STATISTICS FOR MONTE-CARLO 

RESIDUAL LINE ERRORS 

 
Total 

Number 

Normalized 

Std. Dev. 

Actual 

Model 

Statistical 

Bias of Eval. 

Normalized 

Std. Dev. 

RWG MC Mean Variance Variance Variance 
Lines SD(𝜇e) 𝜇a⁄  𝑣a (x10-6) (%) SD(𝑣e) 𝑣a⁄  

5 0.433 7.6 83 1.603 

9 0.311 3.8 43 0.976 
17 0.227 2.0 18 0.412 

33 0.163 1.0 8 0.259 
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Fig. 3.  Simulation approach for RWG test-port and 

calibration line offset errors. 1000 trials of the Monte-

Carlo bootstrap algorithm of [1] shown in the lower-right 

are compared to the conventional Monte-Carlo algorithm 

illustrated in step one in the upper-left. 
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Fig. 4.  Histograms of the imaginary part of S13 of the 

calibration model as a function of the number of RWG 

lines used in the calibration with both systematic test-port 

and random RWG line errors.  
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number of RWG calibration lines is increased, as we would 

expect to happen due to the increased averaging when the 

number of calibration artifacts are increased. 

The third column of the table lists the actual variances of the 

of the imaginary part of the transmission coefficients S13. Here 

we see that the actual variance in the calibration model drops as 

the number of RWG calibration lines is increased. Again, we 

see the overall benefits of using more calibration artifacts to 

reduce uncertainty levels.  

The last two columns of Table I are more indicative of the 

ability of the algorithm of [1] to correctly evaluate uncertainty 

as a function of the number of calibration artifacts. The fourth 

column lists the statistical bias of the variances evaluated by the 

algorithm of [1], which decreases as the number of RWG 

calibration lines is increased. This shows that the accuracy of 

the uncertainties evaluated by the algorithm of [1] improves 

with the number calibration artifacts. Thus, not only are the 

uncertainties lowered by increasing the number of artifacts, but 

the relative accuracy with which that uncertainty can be 

evaluated from the residuals improves as well. 

Finally, the table lists the normalized standard deviation of 

the evaluated variances of the imaginary part of S13 in its fifth 

column. These variances are evaluated around the actual 

variance 𝑣a evaluated by the conventional method and 

normalized by the actual variance 𝑣a to obtain SD(𝑣e) 𝑣a⁄ , 

where SD(𝑣e) = √(1/𝑛) ∑ (𝑣e,𝑖 − 𝑣a)
2𝑛

𝑖=1    and the variances 

𝑣e,𝑖 are the variances evaluated by the algorithm of [1] in the ith 

trial. Again, while not perfect, Table I shows that the ability of 

the algorithm of [1] to evaluate uncertainty improves as the 

number of calibration artifacts is increased. 

IV. SYSTEMATIC TEST-PORT AND RANDOM RWG LINE 

OFFSETS 

Now we consider the same WR-10 calibration with random 

offsets and with imperfect test ports having a systematic offset 

with a range of roughly ±0.1 mm in the vertical E-plane 

direction between each of the test-ports’ rectangular apertures 

and their alignment pins, which were not considered in Section 

III.  

Here, the range of variation of the E-plane offsets in the test 

ports were chosen to be consistent with those in Section III. In 

each trial these two test-port offsets were fixed and added 

systematic error to the overall result. However, the Monte-

Carlo bootstrap algorithm of [1] is provided with a set of 

Monte-Carlo replicates characterizing the PDFs of these test-

port offsets, as shown in Fig. 2. We then assessed the ability of 

the algorithm of [1] to evaluate, in each trial, the uncertainty 

evaluated from the regression residuals when both the 

systematic test-port offsets and random RWG calibration line 

offsets vary (see Fig. 2). We performed the evaluation by 

comparing the uncertainties evaluated from the regression 

residuals to the uncertainties evaluated by the conventional 

approach. 

Fig. 4 compares histograms of the imaginary part of S13 

evaluated by the conventional approach (red histogram in the 

figure) to the first histogram when both systematic test-port and 

random RWG line offsets were included in the simulation. Here 

the uncertainty due to the systematic test-port offsets tends to 

dominate that due to the line offsets, which tend to average out 

when the number of RWG lines in the calibration is large. 

The agreement between the histograms in Fig. 4 indicates 

that the algorithm of [1] does an excellent job overall of 

leveraging the Monte-Carlo replicates associated with the 

systematic test-port offsets and correctly evaluating the PDF of 

the imaginary part of S13. Furthermore, as the number of lines 

is increased, the PDFs of the imaginary part of S13 more and 

more closely resemble the PDF of the underlying systematic 

component of the PDF due to the single test-port offset, which 

has a peak at 0 and decays in a fashion similar to a Rayleigh 

distribution. However, the systematic component of the 

distribution is also broadened by the Gaussian-like PDF of the 

random line offsets and translated to somewhat lower values of 

Im(S13) by the additional statistical bias in the random 

component of the PDF. This illustrates nicely the way in which 

the Monte-Carlo bootstrap algorithm of [1] preserves variation 

due to systematic error associated with its input quantities as it 

combines that systematic variation with variation and additional 

statistical bias originating from to the random error it captures 

with the regression residuals.  

Table II summarizes the key statistics we collected over the 

1000 trials. Here we see that, while not perfect, the accuracy of 

the algorithm of [1] is quite high and continues to improve in 

every aspect as the number of calibration lines is increased. 

 
TABLE II 

SUMMARY STATISTICS FOR MONTE-CARLO 

SYSTEMATIC TEST-PORT ERRORS AND RESIDUAL LINE ERRORS 
 

Total 

Number 

Normalized 

Std. Dev. 

Actual 

Model 

Statistical 

Bias of Eval. 

Normalized 

Std. Dev. 
RWG MC Mean Variance Variance Variance 

Lines SD(𝜇e) 𝜇a⁄  𝑣a (x10-5) (%) SD(𝑣e) 𝑣a⁄  

5 0.241 5.7 -27 0.324 

9 0.180 3.9 -14 0.161 

17 0.144 3.1 -2.4 0.049 
33 0.112 2.8 3.3 0.050 
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V. MEASUREMENT VERIFICATION 

 We used measurements of WR 90 RWG transmission lines 

to verify the simulations we performed in Section III using the 

Monte-Carlo bootstrap algorithm of [1]. We followed the 

procedure shown in Fig. 1, except that we used real measured 

data with deliberately introduced E-plane offsets. We chose 

WR-90 because it increased all the mechanical waveguide 

dimensions in the experiment by roughly a factor of 10, 

simplifying the introduction of the physical E-plane offsets 

before performing each measurement.  We also chose the ratio 

of these offsets to the height of the WR 90 line to be comparable 

to the ratio of the simulated offsets to the height of the WR 10 

lines used in Sections III and IV to amplify the impact of the E-

plane offsets over other errors in the experiment and make them 

dominant while not exceeding the range of offsets supported by 

the Microwave Uncertainty Framework, as before. Finally, we 

chose to use a 3.18 cm long and a 5 cm long section of WR 90 

in the calibration instead of a line and a thru. We did this 

because the E-plane offsets we introduced in the lines were 

easier to control in our experimental setup with these longer 

lines than the offsets between the test ports. 

Due to experimental limitations, we were only able to 

perform the equivalent of one trial of the simulation study 

performed in Section III. Thus, this verification study, being 

based on a single experiment, is necessarily much more 

qualitative than the rigorous 1000-trial simulation studies in the 

previous sections and in [1]. In addition, also due to 

experimental limitations, we were only able to introduce 

vertical offset at the second port of each line. 

We began the measurements by performing a first-tier thru-

reflect-line (TRL) calibration performed with a pair of shorts, a 

straight thru connection, the 3.18 cm long WR 90 line and the 

 
2 We chose to look at S24 because this is the transmission coefficient in the 

error box on port 2 where we introduced the vertical E-plane offsets. However, 

all the calibration coefficients show similar behavior. 

5 cm long WR 90 line. This calibration simplified the analysis 

by setting the calibration coefficients determined by subsequent 

calibrations to values close to those of an ideal “transparent” 

calibration.  

Next, we measured each of the two WR 90 lines 14 times 

with deliberately introduced vertical E-plane offsets of up to 2.4 

mm in port 2 of the line. We calculated the standard deviation 

of these E-plane offsets to be 1.29 mm around 0. Finally, we 

built models of the two lines from their lengths and dimensions 

and used these models to construct two second-tier Levenberg-

Marquardt calibrations using the same models in the NIST 

Microwave Uncertainty Framework [7]. 

As in Section III, the first of the two second-tier calibrations 

we applied was a conventional algorithm based on the models 

of the two lines. Fig. 5 indicates the nominal solution of the 

imaginary part of the calibration coefficient S24 with a blue 

arrow, which had a value of 0.0049.2 This non-zero nominal 

solution was primarily due to small inconsistencies in the 

calibrated measurements of the lines derived from the first-tier 

TRL calibration and calibration models we developed for the 

two lines based on their lengths. 

The uncertainties evaluated by this conventional calibration 

were based on propagating the uncertainty of the offsets directly 

through the calibration models and algorithm using the 

Microwave Uncertainty Framework. Fig. 5. shows a 1000-

 

TABLE III 

COMPARISON OF CONVENTIONAL SIMULATION TO MEASURED RESULTS 
 

Total 

Number 

Normalized 

Difference of 

Normalized 

Difference of 
Measured MC Means MC Variances 

RWG Lines (𝜇e − 𝜇a) |𝜇a − 𝜇n|⁄  (𝑣e − 𝑣a) 𝑣a⁄  

28 0.220 0.491 
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Fig. 5.  Typical histograms of the imaginary part of S24 of 

the calibration model due to random RWG line errors 

evaluated by the conventional algorithm (red bars) and the 

Monte-Carlo bootstrap algorithm using regression 

residuals (blue dots). 
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Fig. 6.  The Monte-Carlo averages and standard deviations 

of the imaginary part of S24 of the calibration model due to 

random RWG line errors evaluated by the conventional 

algorithm (red curves) and the Monte-Carlo bootstrap 

algorithm using regression residuals (blue curves). 
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sample histogram of the Monte-Carlo calculations from this 

conventional algorithm in red. The histogram is clearly shifted 

towards negative values by the E-plane offsets, which always 

introduce a positive parasitic capacitance at the junction 

between the lines and the second test port. 

The second second-tier calibration was based on the same 

line models and measurements used in the conventional 

calibration, but used the Monte-Carlo bootstrap algorithm of 

[1], as implemented in the Microwave Uncertainty Framework, 

to evaluate the uncertainty in the imaginary part of S24 from the 

regression residuals. The resulting histogram evaluated from 

the regression residuals is marked with blue dots in Fig. 5. 

While based on a single calibration and thus necessarily 

qualitative, the two histograms in Fig. 5 are indeed comparable. 

Fig. 6 compares the Monte-Carlo averages and standard 

uncertainties evaluated by the two calibrations as a function of 

frequency. Here again the results are in comparable agreement. 

Finally, Table III lists the normalized difference of the 

Monte-Carlo mean 𝜇e evaluated by the algorithm of [1] from 

the regression residuals to the Monte-Carlo mean 𝜇a evaluated 

by the conventional algorithm normalized by the total statistical 

bias 𝜇a − 𝜇n, where 𝜇n is the nominal solution determined by 

the conventional algorithm in the second column. Table III also 

lists the normalized difference of the Monte-Carlo variance 𝜐e 

evaluated by the algorithm of [1] from the regression residuals 

to the Monte-Carlo variance 𝜐a evaluated by the conventional 

algorithm normalized by the variance 𝜐a evaluated by the 

conventional algorithm in the third column. The table shows 

that, while the statistical bias evaluated by the conventional 

algorithm and the algorithm of [1] based on the regression 

residuals are comparable, the differences of the variances are 

somewhat higher. However, variations like this are not 

unexpected given that we only were able to perform a single 

verification experiment and illustrate the utility of the more 

quantitative 1000-trial simulation studies we performed.   

VI. CONCLUSION 

We investigated the ability of the Monte-Carlo bootstrap 

algorithm of [1] to evaluate uncertainty of nonlinear microwave 

calibration models from regression residuals both quantitatively 

with simulated data and qualitatively with measured data. We 

quantified the ability of the algorithm to estimate the random 

uncertainty in the calibration and showed that the performance 

of the algorithm improves as the calibration becomes more 

overdetermined, even in the presence of significant nonlinearity 

in the calibrations. This illustrates that, even when models for 

calibration errors are not available, which often occurs when it 

is not possible to completely characterized calibration artifacts 

or understand all of the sources of error in an experiment or a 

data set, regression residuals to be used to evaluate the 

uncertainty in the calibration models. Furthermore, we showed 

that increasing the number of calibration artifacts not only 

reduces the overall level of uncertainty, but is also improves the 

relative accuracy of the estimates of that uncertainty provided 

by the algorithm of [1]. 

We also demonstrated the ability of the algorithm of [1] to 

combine random uncertainties evaluated from measurement 

residuals with systematic errors associated with the input 

quantities, even in the presence of nonlinear interactions 

between the random and systematic error mechanisms. Thus, 

we demonstrated that the algorithm of [1] can be used to 

automate the evaluation of uncertainty even when both random 

errors of unknown origin coexist with better-understood 

systematic errors in the problem. This greatly simplifies the use 

of regression residuals when they are needed. 

Finally, the application of the algorithm to measured data 

showed that the method produces realistic estimates and that the 

evaluated uncertainties from the algorithm qualitatively 

matched those of the conventional approach. 

REFERENCES 

[1] D. Williams, B. F. Jamroz, J. Rezac, and R. Jones, "Evaluating 

Uncertainty of Microwave Calibrations with Regression Residuals," 
IEEE Transactions on Microwave Theory and Techniques, accepted 

for publication. 

[2] M. J. Frey, B. F. Jamroz, A. A. Koepke, J. D. Rezac, and D. 
Williams, "Monte-Carlo Sampling Bias in the Microwave 

Uncertainty Framework," Metrologia, vol. 56, no. 5, p. 13, 2019, 

doi: 10.1088/1681-7575/ab2c18. 
[3]  B. F. Jamroz, D. F. Williams, J. D. Rezac, M. Frey, and A. A. 

Koepke, "Accurate Monte Carlo Uncertainty Analysis for Multiple 

Measurements of Microwave Systems," in International Microwave 
Symposium, Boston, MA, June 2-7 2019.  

[4] BIPM, "Evaluation of measurement data-Guide to the expression of 

uncertainty in measurement," International Organization for 
Standardization, vol. JCGM 100, 2008. [Online]. Available: 

http://www.bipm.org/en/publications/guides/gum.html. 

[5] BIPM, "Evaluation of measurement data-Supplement 1 to the 'Guide 
to the expression of uncertinay in measurement'-Propagation of 

distributions using a Monte Carlo method," International 

Organization for Standardization, vol. JCGM 101, 2008. [Online]. 
Available: http://www.bipm.org/en/publications/guides/gum.html. 

[6] BIPM, "Evaluation of measurement data – Supplement 2 to the 

“Guide to the expression of uncertainty in measurement” – 
Extension to any number of output quantities," International 

Organization for Standardization, vol. JCGM 102, 2011. [Online]. 

Available: http://www.bipm.org/en/publications/guides/gum.html. 
[7] NIST Microwave Uncertainty Framework. (2011). National 

Institute of Standards and Technology, http://www.nist.gov/ctl/rf-

technology/related-software.cfm. [Online]. Available: 
http://www.nist.gov/ctl/rf-technology/related-software.cfm 

[8] "VNA Tools II." Federal Institute of Metrology METAS. 

https://www.metas.ch/metas/en/home/fabe/hochfrequenz/vna-
tools.html (accessed 2018). 

[9] M. Garelli and A. Ferrero, "A Unified Theory for S-Parameter 

Uncertainty Evaluation," IEEE Transactions on Microwave Theory 
and Techniques, vol. 60, no. 12, pp. 3844-3855, 2012, doi: 

10.1109/TMTT.2012.2221733. 
[10]  G. Avolio et al., "Software tools for uncertainty evaluation in VNA 

measurements: A comparative study," in 2017 89th ARFTG 

Microwave Measurement Conference (ARFTG), 9 June 2017, pp. 1-
7, doi: 10.1109/ARFTG.2017.8000820.  

[11] C. F. J. Wu, "Jackknife, Bootstrap and Other Resampling Methods 

in Regression Analysis," The Annals of Statistics, vol. 14, no. 4, pp. 
1261-1295, 1986. [Online]. Available: 

http://www.jstor.org/stable/2241454. 

[12] B. Efron, "Bootstrap methods: another look at the jackknife," The 
Annals of Statistics, vol. 7, pp. 1-26, 1979. 

[13] D. A. Freedman and S. C. Peters, "Bootstrapping a Regression 

Equation: Some Empirical Results," Journal of the American 
Statistical Association, vol. 79, no. 385, pp. 97-106, 1984, doi: 

10.1080/01621459.1984.10477069. 

[14] D. A. Freedman, "Bootstrapping Regression Models," The Annals 
of Statistics, vol. 9, no. 6, pp. 1218-1228, 1981. 

[15] D. J. Eck, "Bootstrapping for multivariate linear regression models," 

Statistics & Probability Letters, vol. 134, pp. 141-149, 2018, doi: 
10.1016/j.spl.2017.11.001. 

[16] D. F. Williams, "500 GHz – 750 GHz rectangular-waveguide 

vector-network-analyzer calibrations," IEEE Trans.Terahertz 
Sci.Technol., vol. 1, no. 2, pp. 364-377, November 2011. 

http://www.bipm.org/en/publications/guides/gum.html
http://www.bipm.org/en/publications/guides/gum.html
http://www.bipm.org/en/publications/guides/gum.html
http://www.nist.gov/ctl/rf-technology/related-software.cfm
http://www.nist.gov/ctl/rf-technology/related-software.cfm
http://www.nist.gov/ctl/rf-technology/related-software.cfm
https://www.metas.ch/metas/en/home/fabe/hochfrequenz/vna-tools.html
https://www.metas.ch/metas/en/home/fabe/hochfrequenz/vna-tools.html
http://www.jstor.org/stable/2241454


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

[17] J. D. Hunter, "The displaced rectangular waveguide junction and its 
use as an adjustable reference reflection," IEEE 

Trans.Microw.Theory Techn., vol. 32, no. 4, pp. 387-394, 4/1984 

1984. 

 


