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Abstract—As an essential part of vehicle networks, the
Vehicle to Infrastructure (V2I) needs the support of millimeter
wave and massive MIMO technologies to enable high data
rate applications, such as automated driving, real-time high-
quality multimedia services and so on. As the scale of the
antenna array increases, the complexity of the beamform-
ing and channel estimation algorithms under high mobility
conditions also increases significantly. In particular, highly
robust beamforming methods need to cope with fast changing
transmission environments. In this paper, we adopt a biolog-
ical inspired self-adaptive selection algorithm called attractor
selection algorithm (ASA) to support uplink beamforming.
The ASA requires only a little feedback information from
the Road Side Infrastructure (RSI) to perform fast beam
training, hence making the transmission link more stable.
The simulation results indicate that the proposed ASA-assisted
algorithm can significantly reduce the time required to achieve
a timely beam training, which would be essential for V2I high
communications under high mobility conditions.

I. INTRODUCTION

M Illimeter wave (mmWave) communications and mas-
sive multiple input multiple output (massive MIMO)

are two key technologies that are capable of supporting
the extreme performance requirements of the 5th generation
cellular network (5G) systems [1]. Compared to sub-6
GHz transmissions, the use of massive MIMO technology
can effectively overcome the high path loss of mmWave
transmissions [2]. In addition, mmWave with a large number
of antenna arrays, offers significant benefits in terms of
transmission rate and delay [3], which makes it highly
suitable for vehicle networking [4], [5]. However, due to
wide ranging vehicle velocities for V2I communications, the
transmission environment of vehicular communications is
more complex than regular cellular communications [6]. For
instance, to overcome the path loss of mmWave signals, the
beamwidth should be as narrow as possible and this can only
be accomplished with the help of massive MIMO technology
[7]. For V2I uplinks in particular the main challenge is how
to perform fast beamforming, especially at high velocities
[8]. In addition, to achieve very narrow beamforming, large
scale antenna arrays would be essential and this can further
add to the complexity of the precoding method [9]. Thus,

compared with sub-6 GHz based regular uplink beamform-
ing methods, that are used in cellular networks, mmWave
based uplink beamforming requires greater computational
time for beam training or RSI switching.

Beamforming of vehicular communication, based on
mmWave and massive MIMO technology has become a
hot topic in recent years. Most previous works mainly
concentrated on hybrid precoding and developing methods
to reduce hardware complexity [10]–[16]. For instance, the
massive MIMO systems are studied in [17]–[19] to support
high data rate wireless communications. For stationary/low-
velocity mmWave communication systems with large an-
tenna arrays, the authors of [19] show the impact of the
optimal beamforming design in attaining a good perfor-
mance. Beam management and multiple beam training meth-
ods are comprehensively covered in [20]. To analyze the
coverage of urban mmWave microcellular networks, [21]
investigates a stochastic geometry based theoretical model,
which proposes a tractable framework to characterize the
downlink coverage performance of urban mmWave. The
authors in [22] introduce a theoretical model to characterize
the link budget requirements of mmWave networks to pro-
vide downlink connectivity to highway vehicular networks.
They also discuss the relationship between beamwidth and
signal to interference, plus noise ratio (SINR). Due to
narrower beamwidths (compared with sub-6GHz transmis-
sions), mmWave based beamforming technologies have been
frequently investigated with the aid of positioning systems.
For example, applications and challenges of mmWave based
positioning, as well as comparison between different posi-
tioning technologies, have been studied in [23]. Mmwave
based beamforming technology can greatly benefit from
more frequent beam alignment and signal training. A novel
beam alignment method using multipath fingerprints posi-
tioning technology is proposed in [24] where the positioning
information is used to enhance the efficiency of precoding
algorithms. To accelerate information propagation along
the highway, In [25], a virtual-MIMO-enabled information
dissemination scheme was investigated to enable vehicles
to form virtual antenna arrays opportunistically in order to
boost the transmission range.
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All the above beamforming methods require either: a
complex channel estimation or additional data, such as
positioning information. Under high vehicular velocity con-
ditions, however, channel information-based beamforming
methods may not always be practical due to computational
complexity [26]. On the other hand, there are other studies
that focus on less complex codebook-based beamforming
methods. In [27] a Lloyd-type algorithm is proposed to
construct a codebook to assist hybrid beamforming in a
frequency selective mmWave transmission environment. In
order to reduce the complexity of hybrid precoding, the
authors of [28] present a hierarchical search scheme, which
uses a pre-designed analog hierarchical codebook to search
multiple beams. Considering the practical limitations of
phase shifters, [29] proposes a codebook-based RF precoder
to develop joint optimization of RF-baseband precoders in
multiuser mmWave systems. Similarly, in [30] a codebook
for analog beam steering with quantized phase shifters
is designed in order to improve performance in terms of
average achievable spectral efficiency and lower hardware
cost. The optimization of an analog codebook is investigated
in [31], which aims to approximate a fully-digital codebook
by means of a hybrid architecture requiring only 2-bit RF
phase shifters.

By using codebook for the analog beamforming, the
complexity of hybrid beamforming can be significantly
reduced. However, all the aforementioned studies did not
offer a method for beam pattern selection under a high-
ly dynamic communication scenario. While these studies
aim at reducing the complexity of codebook-based hybrid
precoding, there are a few investigations that focus mainly
on selecting the best beam pattern from the codebook
in order to enhance robustness and stability [32]–[34]. In
particular, a bio-inspired algorithm, such as ASA has been
receiving considerable attention due to its self- adaptivity
and robustness in highly dynamic environments. ASA was
initially proposed in [35] to provide a mechanism of cell
selection dominant gene expression in a limited feedback
environment. Subsequently, it was adopted to solve the
routing problem in Ad hoc networks [36]. ASA can also
be used in heterogeneous vehicular networks to deal with
network selection problems [37] [38]. More studies of ASA
applications in wireless networks can be found in [39].

In this paper, we adopt ASA to support uplink beam-
forming in V2I communication scenario to overcome the
instability caused by vehicles moving at series velocities.
The contributions of this paper are summarized as follows;

1) We propose an ASA-assisted uplink beam training
method capable of achieving fast beamforming in V2I
communications. A unique feature of the proposed
beam training method is that it only needs limited
feedback from RSIs, hence significantly reducing the
complexity of beamforming algorithms.

Fig. 1. Uplink beamforming of V2I communications.

2) We develop an ASA-assisted multiresolution code-
book where a transmitter can adaptively adjust its
beamwidth to cope with varying channel conditions
caused by the high-speed mobility of vehicles. The
simulation results indicate that the proposed method
can effectively reduce the time required for beam
training. The simulation results also indicate that the
proposed ASA-assisted beamforming method does not
require densely deployed RSIs to achieve a good
performance.

3) ASA functionality depends on several parameters and
each has a significant influence on the efficiency of
the algorithm. An important aspect of our proposed
method is the proper configurations of these param-
eters that can lead to a considerable performance
improvement of the ASA-assisted beamforming algo-
rithm.

The rest of the paper is organized as follows: The system
model and ASA algorithm are described in section II.
Section III introduces a multiresolution codebook based
mmWave precoding design, including the derivation process
of parameters in ASA. Simulations of the proposed algo-
rithm are carried out in section IV. Conclusions are finally
drawn in section V.

II. SYSTEM MODEL

The system model is based on a scenario where a vehicle
is moving on a road in an urban or suburban area as
shown in Fig.1. In this scenario, we assume that there are
roadside infrastructure (RSI) units situated along the road.
Their number and locations are assumed to be governed
by a one dimensional homogeneous Poisson point process
(PPP) with intensity, λRSI . Without loss of generality, the
movements of vehicles are assumed to be restricted to
one lane (e.g., the vehicles are not able to change lanes).
Furthermore, the velocity of the moving vehicle is assumed
to be governed by a Gauss-Markov mobility model, which
has been widely used for the modelling of one dimensional
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or two dimensional movements. Based on [40], the velocity
of the vehicle can be expressed as,

vm (t+∆t) = δrvm (t) + (1− δr) vm
+
√
1− δ2rNGM ,

(1)

where vm (t) is the moving velocity of a vehicle at time t,
vm represents the average moving velocity of all vehicles
in the same lane, NGM is a Gaussian distributed random
variable with expectation µGM , and 0 ≤ δr ≤ 1 is a
parameter that reflects the degree of randomness, e. g.,
δr = 0 and δr = 1 indicates the lowest and highest
degree of randomness, respectively. Moreover, the Gauss-
Markov mobility model expressed in (1) can be represented
in discrete form as,

vm (kt + 1) = δrvm (kt) + (1− δr) vm
+
√
1− δ2rNGM ,

(2)

where vm (kt) is the vehicle velocity at given time slot kt.
We consider mmWave and massive MIMO using a hybrid

precoding technology for uplink communications between
vehicles and RSIs. According to [20], the initial access phase
should be done before data transmission. For the sake of fur-
ther analysis, we assume that the initial access phase starts at
the beginning of each time interval. More specifically, uplink
transmissions in the initial access phase will be searched in a
sectorized scanning manner using omnidirectional or quasi-
omnidirectional antennas by each RSI. A vehicle will then
establish an association with a specific RSI upon receiving
an uplink transmission request by the vehicle in the initial
access phase. Then, the beamforming pattern of the vehicle
will be adjusted by using feedback information from the RSI
to enhance the performance of the uplink transmission.

A. Attractor selection algorithm

Attractor selection algorithm (ASA) is a biologically
inspired method for self-adaptively selecting one of several
candidates which best reflects the current situation in a
highly dynamic environment. In [35], the authors propose
ASA for capturing the synthetic bi-stability in the situation
where the gene expression is governed by two mutually
inhibitory operons. This original ASA is represented by
a nonlinear stochastic dynamical system consisting of two
ordinary differential equations,{

dm1

dt = S(A)
1+m2

2
−D (A)×m1 + η1

dm2

dt = S(A)
1+m2

1
−D (A)×m2 + η2

, (3)

{
S (A)= 6A

2+A

D (A)=A
. (4)

In the above, m1 and m2 are the concentrations of the
mRNAs or their protein products, transcribed from Operon1
and Operon2, respectively. S (A) and D (A) are the rate
coefficients of synthesis and degradation/dilution due to cell

volume growth, respectively. Importantly, they depend on A,
which represents cellular activity. η1 and η2 corresponds to
independent white noise in gene expression. In this model,
when the cell activity is high, the values of S (A) and D (A)

will be large enough to ignore the effect of the noise term;
η1 and η2. So the values of m1 and m2 will become larger
to fit the high cell activity based on (3). On the other hand,
if the cell activity is low, the noise term η1 and η2 will
strongly affect the value of m1 and m2 and force the cell
to search for a new attractor to rebuild the balance between
cell activity and the transcription of mRNAs.

As the vehicles are moving with a high velocity, the
quality of the links between vehicles and RSIs becomes
highly fluctuant and hard to be predicted, e. g., the quality
of the links may change dramatically and stochastically
due to movements of vehicles. Thus, by denoting the link
quality as the cell activity and the beamforming pattern as
the concentrations of the mRNAs, we can use the ASA
to support the uplink beamforming process to enhance the
robustness and stability of V2I communications. Here, we
map the quality of the uplink to α, which is shown in
(3) as A. When the vehicle is moving, the value of a
will be fluctuant and hard to predict. Based on (3), if
a proper uplink beamforming pattern is selected, i. e., a
correct attractor (m1 or m2) that represents the environment
is selected, the value of α will become larger. Then, the
uplink beamforming process, which is driven by ASA, will
maintain this beamforming pattern until the value of α

becomes smaller again due to the mobility of the vehicle.
Further details about how we map the link performance to
parameters of ASA can be found in section II-B.

B. ASA-assisted limited feedback uplink beamforming

The channel condition is highly fluctuant for uplink
vehicle communication due to the transmitters high velocity.
The ASA can be used to make the link between RSIs and
vehicles more stable for uplink beamforming. Furthermore,
compared with general channel estimation-based uplink
beamforming methods, the ASA-assisted uplink beamform-
ing only requires limited feedback information of the link
performance, which is very easily to achieve at the receiver
side, e. g., the RSI. To achieve this, we first need to address
the following two issues;

1) ASA can only be used to solve selecting issues. Bear
in mind that widely used hybrid beamforming methods
are mostly reliant on the accuracy of highly complex
channel estimations where channel information from
receivers is used to further optimize the performance
of the link. However, since there is no selection
process, the ASA cannot be applied here.

2) The original ASA has only two Operons as candi-
dates. To adapt to varying environmental conditions
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caused by wide ranging velocities, more candidates
beamforming patterns are needed to achieve efficient
beamforming for V2I communications.

Here, we first extend the original ASA to a multi operons
case. To achieve this, we develop a codebook-based uplink
beamforming method where each codeword in the codebook
is assigned to a different operon.

The proposed extended ASA consists of Mco Operons
where each corresponds to a beamforming pattern having
a different direction and beamwidth. To reduce the time
cost on beam training, the ASA can self-adaptively select
the best uplink hybrid beamforming candidate based on the
optimization of the following objective function θobj,

θobj = (βcapca + βstpst) pin , (5)

where pca is the spectral efficiency of the corresponding
beamforming pattern i, pst is the predicted duration that
the associated RSI can stay in the main lobe of the current
beam pattern, βca and βst are the weight coefficients of pca
and pst, respectively. pin is the indicator function, which is
defined as,

pin =

{
1 if ϕas ∈ Acur

0 if ϕas /∈ Acur
, (6)

where, Acur is the coverage area of the currently selected
beamforming pattern and ϕas is the location of the associ-
ated RSI of the corresponding vehicle.

Now, let us consider a set An =

{mi| i = 1, 2, . . . , Mco}, where mi represents a selection
weight of beamforming pattern i. Then, the probability of
selecting pattern i to do the uplink beamforming is defined
as,

Pi = mi/

Mco∑
k=1

mk . (7)

The dynamic behavior of mi is characterized by the
stochastic differential equation system given in (8) for
i ∈ [1, 2, . . . , Mco],

dmi

dt
=

syn (α)

1 +mcur −mi
− deg (α)×mi + ηi , (8)

where mcur is set as the current beamforming pattern before
the beam training phase. The functions syn (α) and deg (α)
are rate coefficients of mRNA synthesis and degradation in
the original biological model, respectively. Both are mono-
tonically increasing functions of α, which represents cell
activity or vigor and ηi corresponds to an independent white
Gaussian noise component inherent in gene expression. Let
us define syn (α) and deg (α) as [38],

syn (α) = υsα
ks + α , (9)

deg (α) = α . (10)

The mechanism of ASA is explained as follows. Let us
first consider a case in which an environmental change caus-
es a notable decrease in α due to the inappropriate (i.e., the
cell is in the non-adaptive attractor) gene expression pattern.
Then, the deterministic metabolic rate in (8) will be so small
that it will approach the same magnitude as that of the noise
term ηi. The dynamics of gene expression will, therefore,
be dominated mostly by random fluctuations. This is true
as long as the network is in a region with a state of low
activity. On the other hand, when the network moves into a
high activity region, α, i.e., to the adaptive attractor, then the
metabolic rate increases and the deterministic part becomes
much larger than the noise term. Consequently, the dynamics
of the system will be governed by the deterministic part of
(8). Thus, regardless of the initial state of gene-expression-
of the network, it will continue to fluctuate until it arrives at
the adaptive attractor, which is more stable against the noise.
This is mainly because of the relatively larger metabolic rate
of the first and second terms in (8).

By considering the case that dmi/dt = 0, and ignoring
the effect of ηi, the differential equation (8) is further derived
as follows,

0 =
syn (α)

1 +mcur −mi
− deg (α)×mi . (11)

Based on (11), we can get the balance solution of (8) as,

mi =

{
Φ(α) if i = Cur

1+Φ(α)−
√

(1−Φ(α))2

2 if i ̸= Cur
, (12)

where Φ(α) = syn (α) /deg (α), Cur means the currently
selected beamforming pattern. Based on (12), we can see
that if Φ(α) ≤ 1 then all mi will converge to Φ (α).
Thus, based on (7), the probability that mi is selected to be
the beamforming pattern after current beam training phase
will be the same and equals 1/Mco for all Mco candidates
beamforming patterns. Otherwise, the mcur will be much
larger than the other mi, i.e., it is more likely for the
vehicle to maintain the current beamforming pattern instead
of starting a new beam training phase and generating extra
beam training cost.

As syn (α), deg (α) and Φ(α) are all monotonically
increasing functions of α, the larger value of α indicates
better link performance and thus higher probability to be
selected as the beamforming pattern. On the other hand, if
the value of Φ (α) is small, then the selecting probability
(Pi) for all candidates is the same, thus the vehicle will
randomly choose a beamforming pattern during the beam
training phase. If α is still very small after the last selection
among all beamforming patterns, the beam training phase
will continue until a suitable beamforming pattern is selected
and α rises to an acceptable level. Bear in mind that the
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activity value α reflects the goodness of the current solution
of ASA. Its desired behavior is summarized as follows:

If we have no information about which beamforming
pattern to choose, selection should be performed uniformly
among all Mco codewords in the codebook as candidates.
Therefore, the vehicle should initialize α = 0 as this
corresponds to the no preference case, and a small value
of α means that the current codeword is not suitable and
a new codeword should be searched. Conversely, a larger
value of α means greater gaps in selecting probability
between different candidates, i.e., the current codeword fits
the communication environment very well and there is no
need to search for a new codeword.

So, the construction of the expression of α is the most
important issue of the ASA-assisted self-adaptive selection
method. With the objective function defined as (5), the α is
further designed as,

α =


γa

1+exp
(
1−

θobj
θmax

) θobj ≥ θthr

1

1+exp
(
1−

θobj
θmax

) 0 ≤ θobj < θthr
, (13)

where θmax is the upper bound of θobj, θthr is a given thresh-
old of θobj and γa is a constant parameter. Consequently,
α is designed as a piecewise function in order to enlarge
the gaps in the value of α between large θobj and small
θobj, i.e., gaps between good and bad performances. Now,
we define the value of the objective function of the current
beamforming pattern as θcurobj. Due to the path loss, θcurobj will
become smaller when the distance between a vehicle and the
associated RSI gets longer due to movement of the vehicle.
So, as soon as θcurobj falls below θthr, the corresponding value
of α will decrease dramatically, hence forcing the vehicle
to find a better beamforming pattern through ASA in order
to increase the value of α, i.e., the performance of the link.

III. MULTI-RESOLUTION CODEBOOK BASED UPLINK

HYBRID PRECODING

A. Construction of multi-resolution codebook

In this section, we will use the method in [41] to construct
a multi-level hybrid beamforming codebook in order to
support the proposed ASA-assisted uplink beamforming. By
denoting NA as the total number of beam patterns in a
codebook, we divide the two dimensional plane into NA

separated angulars with the width of each angular equal to
2π/NA.

We assume that the codebook is constructed with S =

log2NA levels, and each level has a different beamwidth.
The sth level of the codebook contains k = (M)

s−1

subsets, where M is the number of column vectors, i.e.,
codewords for uplink hybrid precoding. We denote F

{s,k,m}
A

and F
{s,k,m}
D as the analog and baseband codewords on

level s (1 ≤ s ≤ S ) , subset k (1 ≤ k ≤ (M)
s−1),
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Fig. 2. The operating process of the ASA-assisted uplink beam-
forming.

and column m (1 ≤ m ≤ M ), respectively Then,
the corresponding hybrid precoding matrix is defined as
F

{s,k,m}
H = F

{s,k,m}
A F

{s,k,m}
D , and the range of angular

of departure (AoD) of each level in the codebook F is
configured as in Fig. 3.

More details of construction process of the codewords can
be found in the Appendix.

B. Codebook based limited feedback uplink hybrid precod-
ing

Based on the analysis in [42], the geometrical channel
model with L propagation paths is given as,

H=
√
NTNR

L∑
l=1

ψlaR (θl)aT (φl) . (14)

Where NT , NR, ψl, aR (θl), and aT (θl) are the number
of transmit antennas, the number of receive antennas, the
channel gain of the lth propagation path, the array response
of receive antenna array with angular of arrival (AOA) as θl,
and the transmit antenna array with AOD as φl, respectively.
Formula (14) can be further expressed in matrix form as,

H=
√
NTNRARψAT , (15)

with,
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Fig. 3. An example of a three levels codebook with NA = 8 and M = 2.

AR = [aR (θ1) . . . . . .aR (θL)]

ψ = diag[ψ1 . . . . . . ψL] .

AT = [aT (φ1) . . . . . .aT (φL)]

(16)

Where diag[·] is a diagonal matrix with lth entry as
ψl. Consider each vehicle is equipped with a uniform
linear array, then the corresponding array response can be
expressed as,

aR (θl) =
1√
NR

[
1, ejθl , . . . . . . , ej(nR−1)θl

]
, (17)

and,

aT (φl) =
1√
NT

[
1, ejφl , . . . . . . , ej(nR−1)φl

]
, (18)

where j is the imaginary unit.
By denoting the analog precoder and digital precoder as

FA ∈ CNT×NRF and FD ∈ CNRF×NS , the signal vector x
after analog and digital precoding is given by,

x = FAFDz , (19)

where z ∈ CNS denotes the information symbols from the
NS data streams and NRF is the number of activated RF
chains. Based on [42], given a certain analog precoder FA ,
the corresponding optimal digital precoder is expressed by,

FD =
(
FH

AFA

)−1/2
V [1, . . . , s]Λ1/2 , (20)

Since the optimal digital precoder is based on the water
filling algorithm, for a large number of antennas (20) can
be further approximated as,

FD =
(
FH

AFA

)−1/2
V , (21)

where V can be obtained by applying singular value de-
composition (SVD) in the following matrix;

∑1/2
VHFA

(
FH

AFA

)−1/2
= U

∑1/2

V
H

, (22)

H = U
∑1/2

VH . (23)

Then the spectral efficiency of the corresponding
mmWave channel can be expressed by,

S (γ)=E
[
log det

(
INR +

HFAFDFH
DFH

AH
H

NRF /γ

)]
, (24)

where INR
is an NR × NR identity matrix, γ denotes the

signal to noise ratio (SNR).
Here we further defining the objective function in (5) as,

θobj = (βcapca + βstpst) pin , (25)

where pca is the spectral efficiency, and pst is the predicted
duration that the beamforming gain of the moving vehicle
can stay beyond a given threshold γst with the current
beamforming pattern. In this paper, the values of pca and
pst are the only feedback information required to operate
ASA.

As the spectral efficiency optimized baseband precoding
method for a given analog precoder is expressed in (20), the
upper bound of, i.e., θmax in (13) is further expressed as,

θmax = (βcap
∗
ca + βstp

∗
st) pin , (26)

where p∗ca is the spectral efficiency with the spectral efficien-
cy optimized hybrid precoding method expressed in (20),
and p∗st is the upper bound of the predicted duration that
beamforming gain of the moving vehicle can stay beyond a
given threshold γst with the current beamforming pattern.
The value of p∗ca is the only information that is needed to do
the ASA-assisted uplink beamforming, and this information
can be achieved easily by the RSI and feedback to the
vehicle. Thus, with this approach, the uplink beamforming
can be done without channel state information which is very
hard to achieve in mmWave based V2I communications.

As the hybrid precoding method in (20) is based on full
perfect knowledge of the channel state information (CSI),
here we assume full channel information can be achieved by
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perfect channel estimation, i. e., the transmitter can achieve
the path gain of each propagation path. Then, based on (24),
if the mrf (mrf ≤ NRF ) RF chains with the strongest
average path gain are chosen to do the hybrid precoding,
the corresponding analog precoder can be constructed as,

F∗
A =

[
aT (φ1) . . . . . .aT

(
φmrf

)]
= AT

[
1, . . . , Nmrf

]
.

(27)

In other words, by configuring the above analog precoder,
uplink analog beamforming can be achieved with the mrf

strongest propagation paths. Under these conditions, the
spectral efficiency corresponding to this precoding method
will be higher compared with the proposed codebook based
hybrid precoding described in section 3, part A, i. e.,
SE∗ ≥ SE with (28) and (29),

SE∗ = E [log det (INR
+

γ
mrf

HF∗
AF

∗
D(F∗

D)
H
(F∗

A)
H
HH

)]
,

(28)

SE = E [log det (INR
+

γ
mrf

HF
{s,k,m}
H

(
F

{s,k,m}
H

)H

HH

)]
,

(29)

where SE∗ = p∗ca is the spectral efficiency with mrf acti-
vated RF chains, which uses RF chains to do beamforming
through the mrf strongest propagation paths. SE = pca
is the spectral efficiency of the proposed codebook based
hybrid precoding method, with the codeword located on
position {s, k,m} of the codebook. Notice that the values
of pca and pst are the only information needed to do the
ASA-assisted uplink beamforming and this information can
be achieved easily by the RSI and feedback to the vehicle.
Thus, with this approach, uplink beamforming can be done
without channel state information, which is very difficult
to achieve in mmWave based V2I communications.The
cause of the performance gap between these two precoding
methods is channel information. For instance, using the full
channel information, the optimized digital precoder can be
constructed as,

F∗
D =

(
(F∗

A)
H
F∗

A

)−1/2

V , (30)

where, V is acquired by singular value decomposition
(SVD) as,

H = UΣ1/2VH , (31)

Σ1/2VHF∗
A

(
(F∗

A)
H
F∗

A

)−1/2

= UΣ
1/2(

V
)H

. (32)

Based on the analysis in [42], when signal to noise ratio
(SNR) is high enough, (28) can be further derived as,

SE∗ = E [log det (INR+
γ
mHF∗

AF
∗
D(F∗

D)
H
(F∗

A)
H
HH

)]
.

(33)

Moreover, (33) can be further approximated as (34) [42],

SE∗ ≈
mrf∑
i=1

exp
(

1
riρ

)
E1

(
1

riρ

)
+

L
4∑

k=1

k∑
e=0

(−1)e+1

k

(
k

e

)
µA
e ,

(34)

Notice that the channel state information-based beam-
forming method is only used to better explain the derivation
process of (34), which is an approximation of (33), based
on stochastic analysis. Also, as can be observed, the compu-
tation of (34) does not need the channel state information.
More specifically, the proposed ASA-assisted uplink beam-
forming method does not require full channel estimation
and therefore, has much lower complexity compared with
the channel estimation-based beamforming method. In fact,
the only feedback information that it needs is the quality
of the current link (i.e., pca and pst). Such information can
be easily transmitted to vehicles, which we refer to as a
“limited feedback” information.

In (34), E1 and other parameters are expressed as,

E1

(
1

riρ

)
=

∫ ∞

1
riρ

t−1 exp (−t) dt , (35)

and,



µA
1 = 1

µA
2 = 1 + L−1

NR

µA
3 = 1− 3

NR
+ 2

N2
R
+(

1− 1
NR

)
3L
NR

+
(

L
NR

)2

µA
4 = 1− 20

3NR
+ 12

N2
R
− 19

3N3
R

+
(

20
3 − 18

NR
+ 34

3N2
R

)(
L
NR

)
+ 6

(
1− 1

NR

)(
L
NR

)2

+
(

L
NR

)3

. (36)

Where L is the number of the propagation paths, ri is the
large scale fading of the corresponding propagation path, and
ρ = NTNR

mrf
γ.

Then, the upper bound of the spectral efficiency of the
proposed codebook-based hybrid precoding method can be
achieved by using(34)(35), and (36) together.

Defining pst as the duration that a moving vehicle can
stay in the main lobe of the beamforming pattern, based
on [43], the shape of the main lobe of a beam can be
considered as a sector. Let us define a function ft (x) as
ft (x) = exp

(
j 2π
λw
kdA sin (x)

)
for further analysis. Thus,

by Θ
{s,k,m}
ML being the width of the main lobe of the beam

pattern: F{s,k,m}
H , in the angular domain, Θ{s,k,m}

ML can be
achieved by solving the following equations;

NT−1∑
k=0

F
{s,k,m}
H ft

(
θ
{s,k,m}
ML

)
NT−1∑
k=0

F
{s,k,m}
H ft

(
2π

Ms−1 (k − 1) +m− 1
) = γang. (37)
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{ }, ,s k m

ML
R

{ }( ) { }( ), , , ,
max min

s k m s k m

ML ML
q q-

mv tD

{ }, ,s k m

ML
R

RSI
h

{ }, ,s k m

ML
R

{ }( ) { }( ), , , ,
max min

s k m s k m

ML ML
q q-

mv tD

{ }, ,s k m

ML
R

RSI
h

Fig. 4. How to achieve the value of p∗st.

Θ
{s,k,m}
ML = max

(
θ
{s,k,m}
ML

)
−min

(
θ
{s,k,m}
ML

)
, (38)

where, γang is a given threshold of the decreasing ratio of
beamforming gain. Let us set the radius of the sector of beam
pattern F

{s,k,m}
H as R{s,k,m}

ML , and define R
{s,k,m}
ML as the

maximum distance between the vehicle and the associated
RSI to keep the value of large scale fading lager than a
given threshold γ

{s,k,m}
pl . Then R

{s,k,m}
ML is expressed as:

R
{s,k,m}
ML = αp

√
1/γ

{s,k,m}
pl , where αp is the path loss

exponent.
Thus, the upper bound of pst among all the beamforming

patterns can be obtained by solving the following problem;

p∗st = max

√
(Rb cos θb −Re cos θe)

2
/vm

subject to hRSI ≤ Rb, Re

Rb, Re ≤ R
{s,k,m}
ML

Rb sin θb = Re sin θe = hRSI

min
(
θ
{s,k,m}
ML

)
≤ θb, θe

θb, θe ≤ max
(
θ
{s,k,m}
ML

)
.

(39)

In (39), p∗st is further expressed as,

p∗st = 2

√(
R

{1, :, :}
ML

)2

− h2RSI . (40)

Thus, the θmax can be computed by using,

θmax =

(
βca

(mrf∑
i=1

exp
(

1
riρ

)
E1

(
1

riρ

)
+ L

4∑
k=1

k∑
e=0

(−1)e+1

k

(
k

e

)
µA
e

)
+

2βst

√(
R

{1, :, :}
ML

)2

− h2RSI

)
pin ,

(41)

with (35) and (36).

IV. SIMULATION RESULTS

The values of the default parameters are set as shown in
Table I.

Fig. 5. Ratio of the time cost in beam training with respect to
different beam training methods and different θthr.

We assume that there is only one vehicle in the lane
and its movement is governed by a Gauss-Markov mobility
model. In each time slot, the uplink beamforming is driven
by ASA while the vehicle is moving. In our experiments,
we get the total time slots; N∆t, which is used for beam
training. By denoting the total time slots of simulation as
Nsim, the ratio of the time cost in beam training can be
expressed as ϖ = N∆t/Nsim. The simulation results of
ASA are compared with the beam training method used in
IEEE 802.11ad [20], which is based on complicated channel
estimation that requires full channel state information. The
IEEE 802.11ad based simulation results will be displayed
with the label BSL in the following figures.

Fig. 5 shows the ratio of the time cost on beam training
ϖ with respect to different θthr and beamforming methods.
As we can see from this figure, ϖ increases as the average
velocity increases. On the other hand, ϖ also increases at
a higher θthr. This is mainly due to the fact that when the
vehicle velocity or θthr is very large, which causes the link
quality to become highly fluctuant, the link can only remain
stable for a short period of time. Thus, the vehicle may spend
more time searching for acceptable beamforming patterns.
When θthr is small, e. g., θthr = 30 or θthr = 40 , the perfor-
mance of ASA can improve substantially compared with the
baseline method (i.e., BSL). This is mainly because when
θthr is small, more beamforming patterns in the codebook
can be used to do uplink beamforming. As the result, ASA
consumes very little time to determine the beamforming
patterns, and once it is selected, the ASA will retain the
beamforming pattern until it becomes unacceptable. Because
when the beamforming pattern is acceptable, the value of α
will be very large so that the Pi (i.e., the probability to be
selected as the beamforming pattern) of current beamform-
ing pattern will be much larger than other candidates. At
the same time, when θthr is large (like average velocity),
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TABLE I
VALUES OF SYMBOLS USED IN SIMULATION

Symbol Definition/explanation Value
λRSI Density of RSIs 0.02
LR Length of the road 2000 m
hRSI Distance between RSIs and the road 20 m
θthr The threshold of the value of the objective function 40
αp Path loss exponent 4.5
NA Maximum resolution of the codebook 128
NRF Number of RF chains 16
NT Number of transmit antennas 64
Ncan Number of candidate analog beamforming codeword 64
NR Number of receive antennas 16
Mco Number of codewords in the codebook 256
γ Signal to noise ratio 100
vs Parameter of ASA 50
ks Parameter of ASA 5
βca Parameter of ASA 0.3
βst Parameter of ASA 0.7

Fig. 6. Ratio of the time cost on beam training with respect to
different beam training methods and different λRSI .

it takes more time for ASA to find a suitable beamforming
pattern from the codebook. Under these conditions, since the
channel condition is not fluctuant when the moving velocity
is small, the performance of baseline method becomes better
than ASA. More specifically, when θthr is large and the
average moving velocity is also large, the performance of
ASA becomes far better than the baseline method, which is
due to deteriorated channel conditions.

Fig. 6 shows the ratio of the time cost on beam training
ϖ with respect to a different RSI density; λRSI , and a
beamforming method. As shown in the figure, ϖ increases
with increasing average velocity. On the other hand, ϖ
decreases at a higher λRSI , but when λRSI is generally
small (e. g., λRSI = 0.01 or λRSI = 0.02). Nonetheless,
when λRSI is as large as λRSI = 0.05, the ϖ becomes
larger compared with λRSI = 0.01 or λRSI = 0.02. Also,
when λRSI is small, the performance of ASA is far better
than that of the baseline method. These results also indicate

Fig. 7. Ratio of the time cost on beam training with respect to
different beam training methods and different NT .

that the beamforming pattern with a narrower beam is better
for uplink beamforming when λRSI is large and the moving
velocity of the vehicle is small.

Fig. 7 shows the ratio of the time cost on beam training ϖ
with respect to different numbers of transmit antennas; NT .
As can be seen, ϖ increases at higher average velocities,
and decreases with a higher number of antennas. This is
because the number of transmit antennas has a strong effect
on channel capacity, hence the time consumed by ASA
to search for an acceptable beamforming pattern becomes
smaller at a higher number of antennas; NT . Also, the
performance of ASA becomes much better than that of the
baseline method when the value of NT is changing.

Fig. 8 shows the spectral efficiency with respect to a
different RSI density; λRSI , and a beamforming method.
As we can see from this figure, the spectral efficiency
decreases with the increase of the average velocity. The
spectral efficiency of ASA is worse than baseline method
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Fig. 8. Spectral efficiency with respect to different beam training
methods and different λRSI .

Fig. 9. Spectral efficiency with respect to different beam training
methods and different λRSI , assuming the vehicles have unlimited
computing ability.

with lower velocity, and better than the baseline method
when the average velocity is high. This is because when
the velocity is low, the baseline method with a narrower
beam and higher transmission rate compared with ASA is
more spectral efficient. On the other hand, when average
velocity is high, the ASA with self-adaptive beamforming
pattern has a better performance than the baseline method.
Moreover, the spectral efficiency of the baseline method
increases with the increase of λRSI . However, the spectral
efficiency of ASA with λRSI = 0.02 is higher than the
spectral efficiency with λRSI = 0.05. This is because the
the ratio of the time cost on beam training; ϖ is higher
when λRSI = 0.05 compared with λRSI = 0.02, as fig.6
shows. This result indicates that the proposed ASA-assisted
beamforming method does not require densely deployed
RSIs to achieve a good performance.

By assuming that vehicles have unlimited computing
ability (i. e., there is no time cost on running training
algorithms), Fig. 9 shows the spectral efficiency with respect
to a different RSI density; λRSI , using different beam-
forming methods. As can be seen, the performance of both
baseline algorithms and ASA decrease with the increasing
velocity. However, compared with baseline algorithms, the
performance of ASA decreases at a much slower pace. On
the other hand, the performance of both baseline algorithms
and ASA increase at higher RSI densities. These results
indicate that for vehicles with more advanced computing
ability, the performance of ASA will be far better.

V. CONCLUSIONS

This paper mainly focuses on uplink beamforming of ve-
hicle to RSI communications. Due to the higher velocity of
vehicles compared with pedestrians, the channel conditions
of vehicle communication are more fluctuant and less stable.
A codebook based biological inspired algorithm named
ASA is proposed to enhance the stability and robustness
of the communication link when uplink beamforming is
considered for communication between vehicles and RSIs.
The simulation results verify that the time consumption that
is required for beam training becomes highly efficient when
ASA is used for fast-moving vehicles. Finally, it is important
to point out that unlike the baseline system, which requires
the CSI, the proposed ASA-assisted beamforming schme
operates with a very limited channel information.

VI. APPENDIX

With the above approach, we can construct a codebook
to support different beam patterns with different transmitting
directions and beam widths to do uplink beamforming for
V2I communications.

Defining Ga{s,k,m} =
∥∥∥F{s,k,m}

H − F
{s,k,m}
A F

{s,k,m}
D

∥∥∥
F

,
where ∥ · ∥F is the Frobinius norm of the corresponding ma-
trix.Consequently, the design of the hybrid analog and digital
training precoding matrices is accomplished by solving the
following problems [41];

{
F

{s,k,m}∗
A ,F

{s,k,m}∗
D

}
= argminGa{s,k,m},

subject to
[
F

{s,k,m}
A

]
:,i

∈
{
[Acan]:,l | 1 ≤ l ≤ Ncan

}
i = 1, 2, · · · · · · , NRF(
Ga{s,k,m})2 = 1.

(42)
Where NRF is the number of activated RF chains,

[Acan] : , l is the lth column of matrix Acan, and Acan is a
NT ×Ncan candidate analog precoding matrix defined as,

[Acan]v,w =
1√
NT

j
Fl

[
(v−1)Mod

[
(w−1)+

NT
2 , NT

]
/(NT /4)

]
,

(43)
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where [·]v,w represents the entry in the vth row, uth column
of a matrix with 1 ≤ v ≤ NT and 1 ≤ w ≤ NRF , Fl [·] is
the function that returns the biggest integer smaller than or
equal to its argument, and Mod [·, ·] is the modulo operation.

Thus, given the matrix of possible analog beamforming
vectors, the optimization problem in (43) can be further
solved as a sparse approximation problem similar to the opti-
mization problem in [31], with the corresponding optimized
hybrid precoding matrix as,

F
{s,k,m}
H = Cs

(
ABS,DAH

BS,D

)−1
ABS,DG{s,k,m}, (44)

where ABS,D is expressed as,

ABS,D = [aT (φ1) . . . . . .aT (φNA
)] , (45)

with,

aT (φu) =
1√
NT

[
1, ej

2π
λ d sin(φu), . . . , ej

2π
λ d(NT−1) sin(φu)

]
,

(46)
and,

φu =
2πu

NA
u = 0, 1, . . . , NA − 1 . (47)

G{s,k,m} is a NA × 1 matrix where each column m

containing 1 in the locations u if u ∈ I (s, k,m), and zeros
in the positions if u /∈ I (s, k,m), with,

I (s, k,m) =
{

NA

Ms (M (k − 1) +m− 1) + 1, . . .

. . . , NA

Ms (M (k − 1) +m)
}

.
(48)

By using the algorithm in [42], we can get the hybrid
precoding matrix and the corresponding analog and base-
band precoding matrix for each position {s, k,m} in the
codebook F .
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