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Abstract—The Common Weakness Enumeration (CWE) is a 
prominent list of software weakness types. This list is used by 
vulnerability databases to describe the underlying security faws 
within analyzed vulnerabilities. This linkage opens the possibility 
of using the analysis of software vulnerabilities to identify the 
most signifcant weaknesses that enable those vulnerabilities. 
We accomplish this through creating mashup views combining 
CWE weakness taxonomies with vulnerability analysis data. 
The resulting graphs have CWEs as nodes, edges derived from 
multiple CWE taxonomies, and nodes adorned with vulnerability 
analysis information (propagated from children to parents). Using 
these graphs, we develop a suite of metrics to identify the most 
signifcant weakness types (using the perspectives of frequency, 
impact, exploitability, and overall severity). 

Index Terms—Metrics, Software faws, Vulnerabilities 

I. INTRODUCTION 

The Common Weakness Enumeration (CWE) [1] [2] is a 
prominent list of software weakness types. It is maintained by 
the MITRE corporation, funded by the United States (U.S.) 
government, and developed with the participation of 55 orga-
nizations. The CWE list contains 808 weaknesses organized 
by multiple views. Views are ‘hierarchical representations’ of 
CWEs (i.e., taxonomies) serving different communities with 
different perspectives on the data. 

A specifc view, 1003, was created to support the labelling 
of publicly disclosed software vulnerabilities (‘potential weak-
nesses within sources that handle public, third-party vulner-
ability information’). It contains 123 software faws. The 
National Vulnerability Database (NVD) [3] and other vulner-
ability databases and security tools use view 1003 to describe 
the underlying security faws within analyzed vulnerabilities. 
98.8 % of the 12 760 fully analyzed vulnerabilities published 
by NVD in 2019 were able to be mapped to view 1003, 
demonstrating its applicability and coverage. 

This linkage of vulnerability analysis to the view 1003 
CWEs opens the possibility of using the NVD analysis of soft-
ware vulnerabilities to identify the most signifcant weaknesses 
that enable those vulnerabilities. In this work, we accomplish 
this through creating mashup views combining the following 
resources: 

• the multiple primary taxonomies of the CWE (views 
1003, 1000, 699, and 1008), 
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• the Common Vulnerabilities and Exposures (CVE) [4] 
enumeration of publicly disclosed software vulnerabili-
ties, 

• the NVD mapping of CVEs to view 1003 CWEs, and 
• the NVD measurements of each CVE using the Common 

Vulnerability Scoring System (CVSS) [5] [6]. This cal-
culates the exploitability, impact, and overall severity of 
each CVE outside of any particular deployment context. 

The result of creating mashups of this data are graphs 
that have CWEs as nodes. The edges between the nodes 
are extracted from the parent-child relationships between the 
multiple CWE taxonomies. And the nodes are labelled with 
CVE and CVSS information (propagated backwards along the 
edges). We apply to these graphs a suite of simple metrics that 
we developed to identify the most ‘signifcant’ weakness types. 
We evaluate signifcance from multiple perspectives using 
metrics focused on the following areas: frequency, impact, 
and exploitability. In doing this we evaluate the CWEs in 
two distinct groups to take into account the varying levels 
of abstraction of the CWEs. 

We create most signifcant weakness lists for each metric 
for the CVE vulnerabilities published in 2019 (not provided 
due to space limitations). We then analyze the differences 
between these six lists (3 metrics * 2 sets of CWE types) using 
two algorithms for comparing differences between ordered 
lists (Kendall’s Tau and the Spearman’s footrule variant [7]). 
We fnd that different weaknesses tend to emerge as the 
most signifcant depending upon the perspective, the metric 
used, and the CWE type. Note that we use simple low level 
metrics for our perspectives. This is because there is no ground 
truth for aggregating those metrics; equations in security that 
aggregate simple metrics are often practically useful but less 
scientifcally defensible. 

Finally, we note that the CWE already has an offcial 
metric to identify the ‘most dangerous’ CWEs. It aggregates 
both frequency and severity with severity itself being an 
aggregate metric combining exploitability and impact. We 
discover weaknesses with this offcial metric that leads to the 
under counting of certain CWEs. 

We recommend that software developers and creators of 
software bug fnding tools use our approach to prioritize 
fnding and eliminating these most signifcant weaknesses to 
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reduce the number and severity of security related faws in 
software. 

II. BACKGROUND 

As mashup research, our approach combines multiple re-
sources. These are briefy described and referenced here. 

A. Common Weakness Enumeration 

Our research is primarily focused on the Common Weak-
ness Enumeration (CWE) [8], a ‘community-developed list 
of common software security weaknesses’. ‘It serves as a 
common language, a measuring stick for software security 
tools, and as a baseline for weakness identifcation, mitigation, 
and prevention efforts’ [9]. The 808 software weaknesses 
within the enumeration are referred to as CWEs where each 
is named CWE-X with X being some integer. Each CWE is 
characterized as either a class, base, variant, or compound. 
Classes are the highest level of abstraction, followed by bases, 
and then by variants. Compounds are relatively rare and 
are combinations of multiple bases and/or variants. In our 
work we evaluate classes separately from bases, variants, and 
compounds, given that the classes have a much higher level 
of abstraction. 

Besides the CWE weaknesses, there are also 295 categories 
and 38 views. Confusingly, these are also considered CWEs; 
for simplifcation we use the name CWE to refer only to 
the weakness CWEs. The categories are used to organize the 
CWEs within select views (this is not used in our research). 
The views are hierarchical organizations of a subset of CWEs 
according to some perspective (essentially a taxonomy). The 
three primary taxonomies are the ‘Research Concepts’ (view 
1000), ‘Development Concepts’ (view 699), and ‘Architectural 
Concepts’ (view 1008). This last view, 1008, was not useful 
to our work and is not used because it doesn’t provide a 
hierarchy of CWEs but instead uses the categories to group 
CWEs. The view 1003 designed for vulnerability databases, 
mentioned previously, is called ‘CWE Weaknesses for Sim-
plifed Mapping of Published Vulnerabilities View’ and is the 
core data structure upon which our work builds. 

B. Common Vulnerabilities and Exposures 

The set of software vulnerabilities used for this research 
come from the Common Vulnerabilities and Exposures (CVE) 
program, maintained by the MITRE corporation. ‘CVE is a 
list of entries—each containing an identifcation number, a 
description, and at least one public reference—for publicly 
known cybersecurity vulnerabilities’ [4] [10]. 

C. Common Vulnerability Scoring System 

The Common Vulnerability Scoring System ‘provides a 
way to capture the principal characteristics of a vulnerability 
and produce a numerical score refecting its severity’ [11]. It 
provides equations for calculating a vulnerability’s base score 
(inherent risk outside of any particular environment), temporal 
score (changing risk over time), and environmental score (risk 
within a particular environment). We use the base score, which 

is composed of two sub-scores that calculate the exploitability 
and impact of a vulnerability. It is maintained by the Forum of 
Incident Response and Security Teams (FIRST). The detailed 
specifcation for CVSS version 3.1 is available at [5]. 

D. National Vulnerability Database 

The National Vulnerability Database (NVD) is ‘the U.S. 
government repository of standards based vulnerability man-
agement data’ [3]. It is maintained by the U.S. National 
Institute of Standards and Technology. We use its scoring of 
CVEs with CVSS scores and its mapping of the CVEs to view 
1003 CWEs. 

III. FOUNDATIONAL DATA STRUCTURES 

This section describes how we generate the foundational 
data structure used by our metrics to calculate the most 
signifcant security relevant software faw types. We generate 
a directed acyclic graph (DAG) of CWEs that we will use to 
propagate CWE analysis data between the CWEs. 

A. View 1003 Graph 

We begin with the set of CWEs in CWE view 1003 
since that is the set that was adopted by the NVD (and 
is the set identifed by MITRE as most applicable to CVE 
vulnerabilities). We then form a graph of the view 1003 nodes 
through extracting the ‘ChildOf’ relationships in the CWE 
view 1003 Extensible Markup Language (XML) fle. Other 
kinds of relationships are provided in the XML fle but we 
don’t use them because none of them defnitively indicate 
the parent child relationship needed to construct edges in our 
graph (for example, ‘CanPrecede’). The result is a rooted tree1 

with the root being CWE 1003, the nodes at distance one from 
the root being classes, and the nodes at distance 2 being bases, 
variants, and compounds. We remove the root as we are only 
interested in the classes, bases, variants, and compounds. The 
resulting DAG has 123 nodes and 87 edges, shown in Figure 
1. On the left side are the 36 class nodes in blue. The majority 
of class nodes have edges to bases, variants, or compounds, 
but fve do not. On the right side, the largest grouping of nodes 
in a single column in purple represents the 82 bases. Moved 
slightly to the right and in green are the 3 variants. Moved 
even farther to the right in orange are the 2 compounds. 

B. Direct Edge Augmentation 

We next augment our view 1003 DAG with edges extracted 
from the ‘ChildOf’ relationships specifed within other CWE 
view XML fles. For this we use both the CWE research 
and development concepts views (essentially alternate tax-
onomies). We can do this because for our metrics we aren’t 
focused on a particular type of child-parent relationship, we 
just want to know that a child-parent relationship defnitively 
exists between some pair of CWEs in the view 1003 set. This 
analysis adds 19 edges, shown in green in Figure 2. Note that 
we move three of the class nodes slightly left of the main 

1A perfect tree structure is uncommon in weakness/vulnerability tax-
onomies. This encouraged us to explore possible missing relationships. 



Fig. 1. CWE View 1003 (123 nodes, 87 edges) 

Fig. 2. CWE View 1003 Nodes with Direct Edges from Non-1003 Views 
(123 nodes, 19 edges) 

column of class nodes to enhance visibility because they now 
have edges to other classes. 

C. Indirect Edge Augmentation 

Lastly, we create a new DAG (to be used temporarily for 
this section’s analysis) by unifying the set of nodes in views 
1003, 1000, and 699 and then adding edges based on the 
’ChildOf’ relationships specifed in the three XML view fles. 
This produces a DAG with 834 CWEs and 1046 edges. Then 
for each pair of nodes within view 1003, we determine if a 

Fig. 3. CWE View 1003 Nodes with Edges Representing Paths from Non-
1003 Views (123 nodes, 29 edges) 

Fig. 4. Composite Graph of View 1003 with Direct Edges and Edges 
Representing Paths from Non-1003 Views (123 nodes, 135 edges) 

Fig. 5. View 1003 Nodes Adorned with NVD Data (no propagation) 

path exists connecting them that uses at least one node not 
in view 1003. Each such discovered path can be used to add 
an edge to our foundational data structure DAG. These 29 
‘indirect’ edges (that really represent paths using nodes not 
shown) can be seen in blue in Figure 3. 

D. Composite Directed Acyclic Graph 

We now put together our DAG representing the 1003 view 
with the direct edge augmentation from Section III-B and the 
indirect edge augmentation from Section III-C. The resulting 
graph is shown in Figure 4. It has 123 nodes and 135 edges. 

E. Node Adornment 

The next step is to adorn the DAG with vulnerability 
analysis data from the NVD. We take each CVE in NVD that 
has one or more CWE mappings, and we label each relevant 
CWE node in the DAG with a vector containing the CVE 
name, the publish date, and the CVSS attribute information. 
Figure 5 shows this adornment for the CVEs published in 
2019. Note that the size of each node now represents the 
number of vulnerability vectors mapped to that node. 

F. Data Propagation 

The edges within the DAG represent opportunities for 
propagating vector data between CWEs. Parent CWEs receive 



Fig. 6. View 1003 Nodes Adorned with NVD Data (with propagation) 

the vectors of their children (with any duplicates being re-
moved). This is because if a vector applies to a CWE then 
it by defnition applies to its more general parent. Also, we 
discovered that NVD analysts only label a CVE with its most 
specifc CWE. They do not label a CVE with a class if 
they can determine the applicable base, variant, or compound 
within that class. Figure 6 shows the DAG adorned with 
the 2019 vulnerability vectors propagated from children to 
parents. Note, by comparing fgures 5 and 6, how without the 
propagation some classes get under counted (especially those 
with many popular bases that are the class’ children). 

IV. METRICS FOR CALCULATING SIGNIFICANCE 

The DAG in Figure 6 is what we use as the foundational 
data structure to calculate three simple metrics. The metrics 
we calculate on this DAG are normalized frequency, mean ex-
ploitability, and mean impact. These three metrics are defned 
below. 

We start with a metric to count the number of CVEs mapped 
to each CWE. Let I designate the set of all CWEs and let J 
be the set of all CVEs. For CWE i ∈ I , let Ni be the number 
of CVEs mapped to i. We can write it as: X 

Ni = eij , (1) 
j∈J 

where ( 
1, if CVE j is mapped to CWE i, 

eij = (2)
0, otherwise. 

A. Metric for normalized frequency (Fi) 

Ni − min(Ni0 )
i0∈I

Fi = . (3) 
max(Ni0 ) − min(Ni0 ) 
i0∈I i0∈I 

B. Metric for mean exploitability (Qi) 

Let qj be the CVSS exploitability score for CVE j. We can 
write the average of the qj in all CVEs mapped to CWE i as: P 

j∈J qj eij
Qi = . (4)

Ni 

C. Metric for mean impact (Ri) 

Let rj be the CVSS impact score CVE j. We can write the 
average of the rj in all CVEs mapped to CWE i as: P 

j∈J rj eij
Ri = . (5)

Ni 

V. WEAKNESSES IN THE OFFICIAL CWE EQUATION 

In September 2019, the offcial CWE website provided 
a metric for measuring the ‘CWE Top 25 Most Dangerous 
Software Errors’ [12]. It is an aggregate metric combining the 
normalized frequency of CVEs mapped to CWEs while using 
the CVSS severity calculated for each mapped CVE. 

This metric, like ours, combines together CWE and NVD 
data, evaluating only the CWEs within the 1003 view. Dif-
fering from ours, it uses the raw NVD mappings (it doesn’t 
perform any data propagation) and evaluates all CWE types 
together (i.e., classes, bases, variants, and compounds). The 
metric is described in [12], we summarize it below (leveraging 
two of our equations from section IV). 

A. Offcial CWE Metric 

We frst need to defne the mean CVSS score for some CWE 
i as Si. Let sj be the CVSS base score for CVE j. We can 
write the average of the sj in all CVEs mapped to CWE i as: P 

j∈J sj eij
Si = . (6)

Ni 

Now we defne the offcial ‘most dangerous’ CWE score as 
Di for some CWE i. Let Fi refer to equation 3 and let cj be 
the CVSS score for the j-th CVE. 

Si − min(cj ) 
Di = Fi ∗ 

j∈J ∗ 100. (7) 
max(cj ) − min(cj )
j∈J j∈J 

B. Weakness 1: Undercounting Parent CWEs 

Almost all CWE classes in view 1003 have children, as 
do a few bases. All CWEs that are parents then get under 
counted because CVEs that apply to them are often assigned 
to their children. The offcial CWE metric does not propagate 
CVE assignments from children to parents. Also, the NVD 
analysts assign only the most specifc CWE to a CVE; they 
do not include the parents of marked CWEs. This artifcially 
decreases the importance of CWEs that have children when 
using the offcial metric. Using the offcial CWE metric on the 
2019 data, each CWE gets assigned a mean of 87.99 CVEs. 
Using the propagation proposed in this paper to avoid under 
counting parents, each CWE gets assigned a mean of 294.71 
CVEs. 

C. Weakness 2: Class Bias 

The inclusion of all CWE types in the offcial metric (i.e., 
classes, bases, variants, and compounds) causes some classes 
to be unfairly promoted to being within the top lists. This 
is because classes are at a much higher level of abstraction 
and thus more CVEs will apply to them. Using the offcial 



metric, we fnd that there are 8 classes on the 2019 top 25 
list (32 %) while there are 36 classes out of 123 CWEs in the 
1003 view (29 %). While a bias is not particularly apparent 
here, the bias is muted because the classes are under counted 
due to weakness 1 (above). To correctly isolate and measure 
weakness 2, we remove weakness 1 by using the offcial 
metric but while performing data propagation from children to 
parents. Our regenerated 2019 offcial top 25 list then contains 
16 classes (64 %); here the classes are vastly over represented 
since only 29 % of the CWEs in view 1003 are classes. 

VI. ANALYSIS 

Our approach of propagating CVE data over the CWE 
taxonomies flls in data missing from the offcial CWE metric 
approach. This addresses weakness 1 described in Section V-B. 
Our approach a creating separate top lists for the two levels of 
CWE abstraction addresses weakness 2, described in Section 
V-C. Thus, we argue that our approach improves over the 
original. The question though is whether these improvements 
make any difference in the results. 

Using our DAG and the three metrics, we calculated the 
most signifcant CWEs for 2019 at the two levels of abstrac-
tion. We now evaluate these results to verify that propagating 
analysis data over our DAG substantially changes the gener-
ated most signifcant software faw lists. We also verify that 
our multiple metrics produce substantially different lists. To 
compare different rankings, we measure their distance using 
two related metrics: the Kendall’s Tau and the Spearman’s 
Footrule [7]. For two rankings l1 and l2, the Kendall’s Tau 
K(l1, l2) measures the number of pairs of elements in l1 that 
are swapped in their relative positions in l2. The Spearman’s 
Footrule F (l1, l2) measures the number of adjacent element 
swaps that would need to be performed in l1 to convert it 
into l2. It has been proven that ∀l1, l2,K(l1, l2) ≤ F (l1, l2) ≤ 
2K(l1, l2) [7]. 

Both approaches require that the rankings be of the same 
length and contain the same elements. Thus, when comparing 
rankings we use the full rankings of all CWEs observed in the 
data as opposed to comparing top X lists where X is some 
integer (using some X to limit list length usually results in 
lists that contain at least one distinct CWE). The number of 
observed class CWEs in our data was 36 and the number of 
non-class CWEs was 87. We performed an empirical study to 
determine K() and F() for random lists of these sizes using 
100 000 trials. The results are shown in Table I. 

TABLE I 
DISTANCE BETWEEN RANDOM RANKINGS 

K() F() 
Length 36 315 432 
Length 87 1870 2522 

We frst verify that propagating data over our DAG sub-
stantially changes the rankings. For each of our metrics, we 
calculate the full ranking using all available CWEs and then 
compare that against a ranking created using the same metric 

but without propagating data over our DAG. The results are 
shown in Table II. Overall, they show that the lists do change 
signifcantly when using the DAG to propagate data. Note 
that the distances are less for the non-class CWEs which is 
remarkable because those lists are more than twice as long as 
the class CWE lists (longer lists in general produce greater 
distances due to more elements possibly being out of place). 
However, this can be explained by noting that there are only 
4 edges between the non-class CWEs which diminishes the 
effect of propagating data from children to parents. There 
are, on the other hand, 135 edges over which data can be 
propagated to the class CWEs. 

We next verify that our multiple metrics produce substan-
tially different lists. If this were not the case, then that would 
argue towards producing just a single list as opposed to multi-
ple lists with different perspectives. Table III shows the results 
for the class CWE lists and Table IV shows the results for the 
non-class CWE lists. Overall, all the lists appear different. The 
mean exploitability lists have the most distinction from the 
other two. Comparing the mean exploitability and normalized 
frequencies lists for the class CWEs we get lists that are even 
more different than random (see Table I). Comparing the mean 
exploitability and the mean impact lists, they are almost as 
different as the random lists. 

VII. RELATED WORK 

The NVD also provides CWE rating data. This is in the form 
of two visualizations that show the relative frequency between 
the observed CWEs per year and another that shows the actual 
frequency change for the most frequent CWEs [13]. This data 
is incorrect because it miscounts the frequencies of the CWEs 
that have children in the CWE taxonomies (because NVD only 
labels a CVE with its most specifc CWE and this information 
is not propagated to its parents). Also, NVD doesn’t dis-
tinguish between classes and bases/variants/compounds. The 
classes are larger categories biasing them to be very frequent, 
crowding out the bases that are less likely simply due to them 
being more specifc. 

VIII. CONCLUSION 

The multiple CWE views can be evaluated as hierarchical 
taxonomies that reveal parent-child relationships between pairs 
of CWEs. The different perspectives for each view does not 
invalidate unifying them because in scoring a CWE as to its 
signifcance we want to know all applicable CVEs regardless 
of the particular method used to organize the CWEs hierar-
chically. View 1003 provides an obvious base taxonomy from 
which to start as it was designed to cover the CWEs most used 
by CVEs. However, its perfect tree structure indicates likely 
missing relationships. We fnd those relationships through 
evaluating the primary three CWE taxonomies (one of which 
we have to discard because it uses non-CWEs for its higher 
level classifcations). We frst fnd direct missing edges and 
then fnd indirect edges (those that represent paths traversing 
non-1003 view CWEs). 



TABLE II 
DISTANCE BETWEEN TOP LISTS CREATED USING RAW CWES VERSUS PROPAGATING DATA OVER THE CONSTRUCTED DAG 

Class CWEs Non-Class CWEs 
(list length of 36) (list length of 87) 
K() F() K() F() 

Normalized Frequency 213 324 115 228 
Mean Exploitability 188 264 81 154 
Mean Impact 175 256 82 164 

TABLE III 
DISTANCE BETWEEN TOP CLASS CWE LISTS CREATED USING DIFFERENT METRICS (WITH PROPAGATING DATA ON THE DAG) 

Normalized Frequency Mean Exploitability Mean Impact 
Kendall Tau Spearman Kendall Tau Spearman Kendall Tau Spearman 

Normalized Frequency 0 0 357 488 213 290 
Mean Exploitability 0 0 312 420 
Mean Impact 0 0 

TABLE IV 
DISTANCE BETWEEN TOP NON-CLASS LISTS CREATED USING DIFFERENT METRICS (WITH PROPAGATING DATA ON THE DAG) 

Normalized Frequency Mean Exploitability Mean Impact 
Kendall Tau Spearman Kendall Tau Spearman Kendall Tau Spearman 

Normalized Frequency 0 0 1281 1716 976 1350 
Mean Exploitability 0 0 1527 1984 
Mean Impact 0 0 

The NVD is an ideal data source to analyze the CWEs 
because it both maps the CVEs to CWEs and also provides 
CVSS scores for each CVE. We adorned our unifed DAG 
with the CVE information from NVD and propagated that 
information from children to parents. We then evaluated the 
DAG with three simple metrics; focusing separately on classes 
and bases/variants/compounds due to their very different levels 
of abstraction. We then generated top lists that provide the 
most signifcant CWEs relative to a particular perspective and 
abstraction. We analyzed those lists and discovered signifcant 
differences between them. This argues for the usefulness of 
and need for multiple top lists with different perspectives. 

It is our hope that software developers and creators of 
software bug fnding tools will use our approach to help 
prioritize fnding and eliminating CWEs in their code. We hope 
in turn that this will help reduce the number and severity of 
security related faws in software. 
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