
A Suite of Metrics for Calculating the Most
Signifcant Security Relevant Software Flaw Types

Peter Mell
National Institute

of Standards and Technology
Gaithersburg MD, USA

peter.mell@nist.gov

Abstract—The Common Weakness Enumeration (CWE) is a
prominent list of software weakness types. This list is used by
vulnerability databases to describe the underlying security faws
within analyzed vulnerabilities. This linkage opens the possibility
of using the analysis of software vulnerabilities to identify the
most signifcant weaknesses that enable those vulnerabilities.
We accomplish this through creating mashup views combining
CWE weakness taxonomies with vulnerability analysis data.
The resulting graphs have CWEs as nodes, edges derived from
multiple CWE taxonomies, and nodes adorned with vulnerability
analysis information (propagated from children to parents). Using
these graphs, we develop a suite of metrics to identify the most
signifcant weakness types (using the perspectives of frequency,
impact, exploitability, and overall severity).

Index Terms—Metrics, Software faws, Vulnerabilities

I. INTRODUCTION

The Common Weakness Enumeration (CWE) [1] [2] is a
prominent list of software weakness types. It is maintained by
the MITRE corporation, funded by the United States (U.S.)
government, and developed with the participation of 55 orga-
nizations. The CWE list contains 808 weaknesses organized
by multiple views. Views are ‘hierarchical representations’ of
CWEs (i.e., taxonomies) serving different communities with
different perspectives on the data.

A specifc view, 1003, was created to support the labelling
of publicly disclosed software vulnerabilities (‘potential weak-
nesses within sources that handle public, third-party vulner-
ability information’). It contains 123 software faws. The
National Vulnerability Database (NVD) [3] and other vulner-
ability databases and security tools use view 1003 to describe
the underlying security faws within analyzed vulnerabilities.
98.8 % of the 12 760 fully analyzed vulnerabilities published
by NVD in 2019 were able to be mapped to view 1003,
demonstrating its applicability and coverage.

This linkage of vulnerability analysis to the view 1003
CWEs opens the possibility of using the NVD analysis of soft-
ware vulnerabilities to identify the most signifcant weaknesses
that enable those vulnerabilities. In this work, we accomplish
this through creating mashup views combining the following
resources:

• the multiple primary taxonomies of the CWE (views
1003, 1000, 699, and 1008),

Assane Gueye
University Alioune Diop, Bambey-Senegal

Prometheus Computing, LLC
Bambey, Senegal

a.gueye@prometheuscomputing.com

• the Common Vulnerabilities and Exposures (CVE) [4]
enumeration of publicly disclosed software vulnerabili-
ties,

• the NVD mapping of CVEs to view 1003 CWEs, and
• the NVD measurements of each CVE using the Common

Vulnerability Scoring System (CVSS) [5] [6]. This cal-
culates the exploitability, impact, and overall severity of
each CVE outside of any particular deployment context.

The result of creating mashups of this data are graphs
that have CWEs as nodes. The edges between the nodes
are extracted from the parent-child relationships between the
multiple CWE taxonomies. And the nodes are labelled with
CVE and CVSS information (propagated backwards along the
edges). We apply to these graphs a suite of simple metrics that
we developed to identify the most ‘signifcant’ weakness types.
We evaluate signifcance from multiple perspectives using
metrics focused on the following areas: frequency, impact,
and exploitability. In doing this we evaluate the CWEs in
two distinct groups to take into account the varying levels
of abstraction of the CWEs.

We create most signifcant weakness lists for each metric
for the CVE vulnerabilities published in 2019 (not provided
due to space limitations). We then analyze the differences
between these six lists (3 metrics * 2 sets of CWE types) using
two algorithms for comparing differences between ordered
lists (Kendall’s Tau and the Spearman’s footrule variant [7]).
We fnd that different weaknesses tend to emerge as the
most signifcant depending upon the perspective, the metric
used, and the CWE type. Note that we use simple low level
metrics for our perspectives. This is because there is no ground
truth for aggregating those metrics; equations in security that
aggregate simple metrics are often practically useful but less
scientifcally defensible.

Finally, we note that the CWE already has an offcial
metric to identify the ‘most dangerous’ CWEs. It aggregates
both frequency and severity with severity itself being an
aggregate metric combining exploitability and impact. We
discover weaknesses with this offcial metric that leads to the
under counting of certain CWEs.

We recommend that software developers and creators of
software bug fnding tools use our approach to prioritize
fnding and eliminating these most signifcant weaknesses to

mailto:a.gueye@prometheuscomputing.com
mailto:peter.mell@nist.gov

reduce the number and severity of security related faws in
software.

II. BACKGROUND

As mashup research, our approach combines multiple re-
sources. These are briefy described and referenced here.

A. Common Weakness Enumeration

Our research is primarily focused on the Common Weak-
ness Enumeration (CWE) [8], a ‘community-developed list
of common software security weaknesses’. ‘It serves as a
common language, a measuring stick for software security
tools, and as a baseline for weakness identifcation, mitigation,
and prevention efforts’ [9]. The 808 software weaknesses
within the enumeration are referred to as CWEs where each
is named CWE-X with X being some integer. Each CWE is
characterized as either a class, base, variant, or compound.
Classes are the highest level of abstraction, followed by bases,
and then by variants. Compounds are relatively rare and
are combinations of multiple bases and/or variants. In our
work we evaluate classes separately from bases, variants, and
compounds, given that the classes have a much higher level
of abstraction.

Besides the CWE weaknesses, there are also 295 categories
and 38 views. Confusingly, these are also considered CWEs;
for simplifcation we use the name CWE to refer only to
the weakness CWEs. The categories are used to organize the
CWEs within select views (this is not used in our research).
The views are hierarchical organizations of a subset of CWEs
according to some perspective (essentially a taxonomy). The
three primary taxonomies are the ‘Research Concepts’ (view
1000), ‘Development Concepts’ (view 699), and ‘Architectural
Concepts’ (view 1008). This last view, 1008, was not useful
to our work and is not used because it doesn’t provide a
hierarchy of CWEs but instead uses the categories to group
CWEs. The view 1003 designed for vulnerability databases,
mentioned previously, is called ‘CWE Weaknesses for Sim-
plifed Mapping of Published Vulnerabilities View’ and is the
core data structure upon which our work builds.

B. Common Vulnerabilities and Exposures

The set of software vulnerabilities used for this research
come from the Common Vulnerabilities and Exposures (CVE)
program, maintained by the MITRE corporation. ‘CVE is a
list of entries—each containing an identifcation number, a
description, and at least one public reference—for publicly
known cybersecurity vulnerabilities’ [4] [10].

C. Common Vulnerability Scoring System

The Common Vulnerability Scoring System ‘provides a
way to capture the principal characteristics of a vulnerability
and produce a numerical score refecting its severity’ [11]. It
provides equations for calculating a vulnerability’s base score
(inherent risk outside of any particular environment), temporal
score (changing risk over time), and environmental score (risk
within a particular environment). We use the base score, which

is composed of two sub-scores that calculate the exploitability
and impact of a vulnerability. It is maintained by the Forum of
Incident Response and Security Teams (FIRST). The detailed
specifcation for CVSS version 3.1 is available at [5].

D. National Vulnerability Database

The National Vulnerability Database (NVD) is ‘the U.S.
government repository of standards based vulnerability man-
agement data’ [3]. It is maintained by the U.S. National
Institute of Standards and Technology. We use its scoring of
CVEs with CVSS scores and its mapping of the CVEs to view
1003 CWEs.

III. FOUNDATIONAL DATA STRUCTURES

This section describes how we generate the foundational
data structure used by our metrics to calculate the most
signifcant security relevant software faw types. We generate
a directed acyclic graph (DAG) of CWEs that we will use to
propagate CWE analysis data between the CWEs.

A. View 1003 Graph

We begin with the set of CWEs in CWE view 1003
since that is the set that was adopted by the NVD (and
is the set identifed by MITRE as most applicable to CVE
vulnerabilities). We then form a graph of the view 1003 nodes
through extracting the ‘ChildOf’ relationships in the CWE
view 1003 Extensible Markup Language (XML) fle. Other
kinds of relationships are provided in the XML fle but we
don’t use them because none of them defnitively indicate
the parent child relationship needed to construct edges in our
graph (for example, ‘CanPrecede’). The result is a rooted tree1

with the root being CWE 1003, the nodes at distance one from
the root being classes, and the nodes at distance 2 being bases,
variants, and compounds. We remove the root as we are only
interested in the classes, bases, variants, and compounds. The
resulting DAG has 123 nodes and 87 edges, shown in Figure
1. On the left side are the 36 class nodes in blue. The majority
of class nodes have edges to bases, variants, or compounds,
but fve do not. On the right side, the largest grouping of nodes
in a single column in purple represents the 82 bases. Moved
slightly to the right and in green are the 3 variants. Moved
even farther to the right in orange are the 2 compounds.

B. Direct Edge Augmentation

We next augment our view 1003 DAG with edges extracted
from the ‘ChildOf’ relationships specifed within other CWE
view XML fles. For this we use both the CWE research
and development concepts views (essentially alternate tax-
onomies). We can do this because for our metrics we aren’t
focused on a particular type of child-parent relationship, we
just want to know that a child-parent relationship defnitively
exists between some pair of CWEs in the view 1003 set. This
analysis adds 19 edges, shown in green in Figure 2. Note that
we move three of the class nodes slightly left of the main

1A perfect tree structure is uncommon in weakness/vulnerability tax-
onomies. This encouraged us to explore possible missing relationships.

Fig. 1. CWE View 1003 (123 nodes, 87 edges)

Fig. 2. CWE View 1003 Nodes with Direct Edges from Non-1003 Views
(123 nodes, 19 edges)

column of class nodes to enhance visibility because they now
have edges to other classes.

C. Indirect Edge Augmentation

Lastly, we create a new DAG (to be used temporarily for
this section’s analysis) by unifying the set of nodes in views
1003, 1000, and 699 and then adding edges based on the
’ChildOf’ relationships specifed in the three XML view fles.
This produces a DAG with 834 CWEs and 1046 edges. Then
for each pair of nodes within view 1003, we determine if a

Fig. 3. CWE View 1003 Nodes with Edges Representing Paths from Non-
1003 Views (123 nodes, 29 edges)

Fig. 4. Composite Graph of View 1003 with Direct Edges and Edges
Representing Paths from Non-1003 Views (123 nodes, 135 edges)

Fig. 5. View 1003 Nodes Adorned with NVD Data (no propagation)

path exists connecting them that uses at least one node not
in view 1003. Each such discovered path can be used to add
an edge to our foundational data structure DAG. These 29
‘indirect’ edges (that really represent paths using nodes not
shown) can be seen in blue in Figure 3.

D. Composite Directed Acyclic Graph

We now put together our DAG representing the 1003 view
with the direct edge augmentation from Section III-B and the
indirect edge augmentation from Section III-C. The resulting
graph is shown in Figure 4. It has 123 nodes and 135 edges.

E. Node Adornment

The next step is to adorn the DAG with vulnerability
analysis data from the NVD. We take each CVE in NVD that
has one or more CWE mappings, and we label each relevant
CWE node in the DAG with a vector containing the CVE
name, the publish date, and the CVSS attribute information.
Figure 5 shows this adornment for the CVEs published in
2019. Note that the size of each node now represents the
number of vulnerability vectors mapped to that node.

F. Data Propagation

The edges within the DAG represent opportunities for
propagating vector data between CWEs. Parent CWEs receive

Fig. 6. View 1003 Nodes Adorned with NVD Data (with propagation)

the vectors of their children (with any duplicates being re-
moved). This is because if a vector applies to a CWE then
it by defnition applies to its more general parent. Also, we
discovered that NVD analysts only label a CVE with its most
specifc CWE. They do not label a CVE with a class if
they can determine the applicable base, variant, or compound
within that class. Figure 6 shows the DAG adorned with
the 2019 vulnerability vectors propagated from children to
parents. Note, by comparing fgures 5 and 6, how without the
propagation some classes get under counted (especially those
with many popular bases that are the class’ children).

IV. METRICS FOR CALCULATING SIGNIFICANCE

The DAG in Figure 6 is what we use as the foundational
data structure to calculate three simple metrics. The metrics
we calculate on this DAG are normalized frequency, mean ex-
ploitability, and mean impact. These three metrics are defned
below.

We start with a metric to count the number of CVEs mapped
to each CWE. Let I designate the set of all CWEs and let J
be the set of all CVEs. For CWE i ∈ I , let Ni be the number
of CVEs mapped to i. We can write it as: X

Ni = eij , (1)
j∈J

where (
1, if CVE j is mapped to CWE i,

eij = (2)
0, otherwise.

A. Metric for normalized frequency (Fi)

Ni − min(Ni0)
i0∈I

Fi = . (3)
max(Ni0) − min(Ni0)
i0∈I i0∈I

B. Metric for mean exploitability (Qi)

Let qj be the CVSS exploitability score for CVE j. We can
write the average of the qj in all CVEs mapped to CWE i as: P

j∈J qj eij
Qi = . (4)

Ni

C. Metric for mean impact (Ri)

Let rj be the CVSS impact score CVE j. We can write the
average of the rj in all CVEs mapped to CWE i as: P

j∈J rj eij
Ri = . (5)

Ni

V. WEAKNESSES IN THE OFFICIAL CWE EQUATION

In September 2019, the offcial CWE website provided
a metric for measuring the ‘CWE Top 25 Most Dangerous
Software Errors’ [12]. It is an aggregate metric combining the
normalized frequency of CVEs mapped to CWEs while using
the CVSS severity calculated for each mapped CVE.

This metric, like ours, combines together CWE and NVD
data, evaluating only the CWEs within the 1003 view. Dif-
fering from ours, it uses the raw NVD mappings (it doesn’t
perform any data propagation) and evaluates all CWE types
together (i.e., classes, bases, variants, and compounds). The
metric is described in [12], we summarize it below (leveraging
two of our equations from section IV).

A. Offcial CWE Metric

We frst need to defne the mean CVSS score for some CWE
i as Si. Let sj be the CVSS base score for CVE j. We can
write the average of the sj in all CVEs mapped to CWE i as: P

j∈J sj eij
Si = . (6)

Ni

Now we defne the offcial ‘most dangerous’ CWE score as
Di for some CWE i. Let Fi refer to equation 3 and let cj be
the CVSS score for the j-th CVE.

Si − min(cj)
Di = Fi ∗

j∈J ∗ 100. (7)
max(cj) − min(cj)
j∈J j∈J

B. Weakness 1: Undercounting Parent CWEs

Almost all CWE classes in view 1003 have children, as
do a few bases. All CWEs that are parents then get under
counted because CVEs that apply to them are often assigned
to their children. The offcial CWE metric does not propagate
CVE assignments from children to parents. Also, the NVD
analysts assign only the most specifc CWE to a CVE; they
do not include the parents of marked CWEs. This artifcially
decreases the importance of CWEs that have children when
using the offcial metric. Using the offcial CWE metric on the
2019 data, each CWE gets assigned a mean of 87.99 CVEs.
Using the propagation proposed in this paper to avoid under
counting parents, each CWE gets assigned a mean of 294.71
CVEs.

C. Weakness 2: Class Bias

The inclusion of all CWE types in the offcial metric (i.e.,
classes, bases, variants, and compounds) causes some classes
to be unfairly promoted to being within the top lists. This
is because classes are at a much higher level of abstraction
and thus more CVEs will apply to them. Using the offcial

metric, we fnd that there are 8 classes on the 2019 top 25
list (32 %) while there are 36 classes out of 123 CWEs in the
1003 view (29 %). While a bias is not particularly apparent
here, the bias is muted because the classes are under counted
due to weakness 1 (above). To correctly isolate and measure
weakness 2, we remove weakness 1 by using the offcial
metric but while performing data propagation from children to
parents. Our regenerated 2019 offcial top 25 list then contains
16 classes (64 %); here the classes are vastly over represented
since only 29 % of the CWEs in view 1003 are classes.

VI. ANALYSIS

Our approach of propagating CVE data over the CWE
taxonomies flls in data missing from the offcial CWE metric
approach. This addresses weakness 1 described in Section V-B.
Our approach a creating separate top lists for the two levels of
CWE abstraction addresses weakness 2, described in Section
V-C. Thus, we argue that our approach improves over the
original. The question though is whether these improvements
make any difference in the results.

Using our DAG and the three metrics, we calculated the
most signifcant CWEs for 2019 at the two levels of abstrac-
tion. We now evaluate these results to verify that propagating
analysis data over our DAG substantially changes the gener-
ated most signifcant software faw lists. We also verify that
our multiple metrics produce substantially different lists. To
compare different rankings, we measure their distance using
two related metrics: the Kendall’s Tau and the Spearman’s
Footrule [7]. For two rankings l1 and l2, the Kendall’s Tau
K(l1, l2) measures the number of pairs of elements in l1 that
are swapped in their relative positions in l2. The Spearman’s
Footrule F (l1, l2) measures the number of adjacent element
swaps that would need to be performed in l1 to convert it
into l2. It has been proven that ∀l1, l2,K(l1, l2) ≤ F (l1, l2) ≤
2K(l1, l2) [7].

Both approaches require that the rankings be of the same
length and contain the same elements. Thus, when comparing
rankings we use the full rankings of all CWEs observed in the
data as opposed to comparing top X lists where X is some
integer (using some X to limit list length usually results in
lists that contain at least one distinct CWE). The number of
observed class CWEs in our data was 36 and the number of
non-class CWEs was 87. We performed an empirical study to
determine K() and F() for random lists of these sizes using
100 000 trials. The results are shown in Table I.

TABLE I
DISTANCE BETWEEN RANDOM RANKINGS

K() F()
Length 36 315 432
Length 87 1870 2522

We frst verify that propagating data over our DAG sub-
stantially changes the rankings. For each of our metrics, we
calculate the full ranking using all available CWEs and then
compare that against a ranking created using the same metric

but without propagating data over our DAG. The results are
shown in Table II. Overall, they show that the lists do change
signifcantly when using the DAG to propagate data. Note
that the distances are less for the non-class CWEs which is
remarkable because those lists are more than twice as long as
the class CWE lists (longer lists in general produce greater
distances due to more elements possibly being out of place).
However, this can be explained by noting that there are only
4 edges between the non-class CWEs which diminishes the
effect of propagating data from children to parents. There
are, on the other hand, 135 edges over which data can be
propagated to the class CWEs.

We next verify that our multiple metrics produce substan-
tially different lists. If this were not the case, then that would
argue towards producing just a single list as opposed to multi-
ple lists with different perspectives. Table III shows the results
for the class CWE lists and Table IV shows the results for the
non-class CWE lists. Overall, all the lists appear different. The
mean exploitability lists have the most distinction from the
other two. Comparing the mean exploitability and normalized
frequencies lists for the class CWEs we get lists that are even
more different than random (see Table I). Comparing the mean
exploitability and the mean impact lists, they are almost as
different as the random lists.

VII. RELATED WORK

The NVD also provides CWE rating data. This is in the form
of two visualizations that show the relative frequency between
the observed CWEs per year and another that shows the actual
frequency change for the most frequent CWEs [13]. This data
is incorrect because it miscounts the frequencies of the CWEs
that have children in the CWE taxonomies (because NVD only
labels a CVE with its most specifc CWE and this information
is not propagated to its parents). Also, NVD doesn’t dis-
tinguish between classes and bases/variants/compounds. The
classes are larger categories biasing them to be very frequent,
crowding out the bases that are less likely simply due to them
being more specifc.

VIII. CONCLUSION

The multiple CWE views can be evaluated as hierarchical
taxonomies that reveal parent-child relationships between pairs
of CWEs. The different perspectives for each view does not
invalidate unifying them because in scoring a CWE as to its
signifcance we want to know all applicable CVEs regardless
of the particular method used to organize the CWEs hierar-
chically. View 1003 provides an obvious base taxonomy from
which to start as it was designed to cover the CWEs most used
by CVEs. However, its perfect tree structure indicates likely
missing relationships. We fnd those relationships through
evaluating the primary three CWE taxonomies (one of which
we have to discard because it uses non-CWEs for its higher
level classifcations). We frst fnd direct missing edges and
then fnd indirect edges (those that represent paths traversing
non-1003 view CWEs).

TABLE II
DISTANCE BETWEEN TOP LISTS CREATED USING RAW CWES VERSUS PROPAGATING DATA OVER THE CONSTRUCTED DAG

Class CWEs Non-Class CWEs
(list length of 36) (list length of 87)
K() F() K() F()

Normalized Frequency 213 324 115 228
Mean Exploitability 188 264 81 154
Mean Impact 175 256 82 164

TABLE III
DISTANCE BETWEEN TOP CLASS CWE LISTS CREATED USING DIFFERENT METRICS (WITH PROPAGATING DATA ON THE DAG)

Normalized Frequency Mean Exploitability Mean Impact
Kendall Tau Spearman Kendall Tau Spearman Kendall Tau Spearman

Normalized Frequency 0 0 357 488 213 290
Mean Exploitability 0 0 312 420
Mean Impact 0 0

TABLE IV
DISTANCE BETWEEN TOP NON-CLASS LISTS CREATED USING DIFFERENT METRICS (WITH PROPAGATING DATA ON THE DAG)

Normalized Frequency Mean Exploitability Mean Impact
Kendall Tau Spearman Kendall Tau Spearman Kendall Tau Spearman

Normalized Frequency 0 0 1281 1716 976 1350
Mean Exploitability 0 0 1527 1984
Mean Impact 0 0

The NVD is an ideal data source to analyze the CWEs
because it both maps the CVEs to CWEs and also provides
CVSS scores for each CVE. We adorned our unifed DAG
with the CVE information from NVD and propagated that
information from children to parents. We then evaluated the
DAG with three simple metrics; focusing separately on classes
and bases/variants/compounds due to their very different levels
of abstraction. We then generated top lists that provide the
most signifcant CWEs relative to a particular perspective and
abstraction. We analyzed those lists and discovered signifcant
differences between them. This argues for the usefulness of
and need for multiple top lists with different perspectives.

It is our hope that software developers and creators of
software bug fnding tools will use our approach to help
prioritize fnding and eliminating CWEs in their code. We hope
in turn that this will help reduce the number and severity of
security related faws in software.

ACKNOWLEDGEMENT

This work was partially accomplished under NIST Co-
operative Agreement No.70NANB19H063 with Prometheus
Computing, LLC.

REFERENCES

[1] Y. Wu, I. Bojanova, and Y. Yesha, “They know your weaknesses–
do you?: Reintroducing common weakness enumeration,” CrossTalk,
vol. 45, 2015.

[2] R. Martin, S. Barnum, and S. Christey, “Being explicit about security
weaknesses,” Blackhat DC, 2007.

[3] “National vulnerability database,” 2019, accessed: 2019-12-10. [Online].
Available: https://https://nvd.nist.gov

[4] “Common vulnerabilities and exposures,” 2019, accessed: 2019-12-10.
[Online]. Available: https://cve.mitre.org

[5] “Common vulnerability scoring system version 3.1 specifcation
document revision 1,” 2019, accessed: 2019-12-10. [Online]. Available:
https://www.frst.org/cvss/v3.1/specifcation-document

[6] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability scoring
system,” IEEE Security & Privacy, vol. 4, no. 6, pp. 85–89, 2006.

[7] “Generalized distances between rankings,” 2010, accessed: 2019-12-10.
[Online]. Available: https://tinyurl.com/theory-stanford-edu-sergei

[8] R. A. Martin and S. Barnum, “Common weakness enumeration (cwe)
status update,” ACM SIGAda Ada Letters, vol. 28, no. 1, pp. 88–91,
2008.

[9] “Common weakness enumeration,” 2019, accessed: 2019-12-10.
[Online]. Available: https://cwe.mitre.org

[10] D. W. Baker, S. M. Christey, W. H. Hill, and D. E. Mann, “The devel-
opment of a common enumeration of vulnerabilities and exposures,” in
Recent Advances in Intrusion Detection, vol. 7, 1999, p. 9.

[11] “Common vulnerability scoring system special interest group,” 2019,
accessed: 2019-12-10. [Online]. Available: https://www.frst.org/cvss

[12] “2019 cwe top 25 most dangerous software er-
rors,” 2019, accessed: 2019-12-10. [Online]. Available:
https://cwe.mitre.org/top25/archive/2019/2019 cwe top25.html

[13] “National vulnerability database, cwe over time,”
2019, accessed: 2019-12-10. [Online]. Avail-
able: https://nvd.nist.gov/general/visualizations/vulnerability-
visualizations/cwe-over-time

https://cwe.mitre.org/top25/archive/2019/2019
https://www.first.org/cvss
https://cwe.mitre.org
https://tinyurl.com/theory-stanford-edu-sergei
https://www.first.org/cvss/v3.1/specification-document
https://cve.mitre.org
https://https://nvd.nist.gov

