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ABSTRACT

Despite the huge efforts to deploy wireless communications technologies in smart manufacturing scenarios,
some manufacturing sectors are still slow to massive adoption. This slowness of widespread adoption of wireless
technologies in cyber-physical systems (CPS) is partly due to not fully understanding the detailed impact of wireless
deployment on the physical processes especially in the cases that require low latency and high reliability commu-
nications. In this paper, we introduce an approach to integrate wireless network traffic data and physical processes
data in order to evaluate the impact of wireless communications on the performance of a manufacturing factory
work-cell. The proposed approach is introduced through the discussion of an engineering use case. A testbed that
emulates a robotic manufacturing factory work-cell is constructed using two collaborative-grade robot arms, ma-
chine emulators, and wireless communication devices. All network traffic data is collected and physical process
data, including the robots and machines states and various supervisory control commands, is also collected and
synchronized to the network data. The data is then integrated where redundant data is removed and correlated
activities are connected in a graph database. A data model is proposed, developed, and elaborated; the database
is then populated with events from the testbed, and the resulting graph is presented. Query commands are then
presented as a means to examine and analyze network performance and relationships within the components of the
network. Moreover, we detail the way by which this approach is used to study the impact of wireless communications
on the physical processes and illustrate the impact of various wireless network parameters on the performance of
the emulated manufacturing work-cell. This approach can be deployed as a building block for various descriptive
and predictive wireless analysis tools for CPS.

1 Introduction

Smart manufacturing and modern factories require interactions and collaborations between various distributed equip-
ment, products, and logistics to accomplish unprecedented levels of productivity and operational efficiency. Wireless com-
munication is among the enabling technologies to achieve this vision [1]. Due to an increased demand for ease of installation,
reduced costs of deployment and maintenance, and flexibility, wired networks are being replaced with wireless networks.
This presents a real challenge for the networks and control systems. Compared with wired connections, wireless links have
their unique advantages in connecting field sensors and actuators with reduced cabling cost and natural support of mo-
bility [2]; however, most current communication systems lack the latency and reliability support [3] mandated by factory
requirements [4,5]. More specifically, the adoption of wireless in cyber-physical systems (CPS) requires innovative methods
and approaches to quantify the impact of wireless technologies in terms of production efficiency and measure the cost of
wireless link failures on performance [6].

In modern CPS, a large volume of heterogeneous data is generated and transferred within a variety of equipment,
sensors, controllers and computing platforms. Data analytics for CPS play a critical role in improving factory operation
and product quality, reducing machine downtime, and enhancing manufacturing efficiency [7, 8]. Generally, data analytics
performs the task of extracting information, analyzing performance, and predicting production forecast. In [7], the life cycle
of data analytics in CPS includes data acquisition, prepossessing, storage, and analysis. Data acquisition includes adding
various points of data collection and the data transfer to the storage and processing units. Afterwards, typical prepossessing
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Fig. 1: Graph database approach for wireless network performance evaluation

techniques for cleaning, integration, and compression are deployed because of the big volume, redundancy, and heterogeneity
of the raw data. Finally, data analysis is performed for data modelling and visualization.

Database management systems play the role of organizing data efficiently and effectively. Two types of databases exist,
namely, relational and non-relational. The non-relational databases are also known as NoSQL and are used often to store
semi-structure and unstructured data. NoSQL databases include various data models such as key-value stores, columnar
databases, document stores, and graph databases (GDBs) [9]. Therefore, non-relational databases are more suitable for
managing heterogeneous data in industrial settings [10]. A GDB is a NoSQL database that uses nodes, edges, and properties
to store and present data. The GDB does not enforce a particular schema by having a data model that allows any node type to
have different set of properties, and similarly, the relationships. Specifically, not each property or relationship corresponding
to a specific node type is required for each instance of the GDB implementation. The relationships within a GDB can
be efficiently queried because they are persistently stored within the database. In a GDB, queries can be made based on
relationships. This, in particular, presents an advantage when storing information regarding systems with correlations that
are apparent but difficult to visualize or quantify.

In order to improve the deployment of industrial wireless in CPS, effective and easy-to-use strategies have to be offered
for the test and evaluation of such systems in a way that correlates network performance with operational performance. The
needed data for this purpose is collected from various CPS activities and networks, and is generally found to be of large
amounts, heterogeneous, and correlated. As a result, we present a novel method to simultaneously capture network and
operational event information using a GDB. The use of a GDB allows for more intuitive inferences to be made through the
stored relationships and graph theoretic models [11].

The main benefits of deploying a GDB approach are as follows: 1) it allows to have direct relationships between the
corresponding messages, transactions and physical actions which allows faster database querying compared to the relational
databases (i.e., accessing a vertex of GDB and its neighbors can occur with a simple memory lookup through a pointer
attached to each vertex), and ii) it offers a clear explanation of the impact of wireless communications individual events on
the corresponding individual physical action not based on statistical criteria.

In [12], we have presented the wired baseline design of the National Institute of Standard and Technologies (NIST) col-
laborative two-robot machine-tending work-cell testbed. In this paper, we extend the usage of this testbed through deploying
a wireless network for the robotic supervisory control traffic. We then propose the complete data analytics approach shown
in Fig. 1 to evaluate the performance of the wireless network and its impact on physical activities of the work-cell. In [13],
we have presented a GDB implementation to measure wireless performance of the network without yet correlating that to
the physical actions of the work-cell. In summary, the contributions of this work are as follows:

1. A wirelessly connected collaborative two-robot machine-tending work-cell testbed is described and the method to collect
the network traffic and physical actions data of the testbed is elaborated.

2. A GDB application for the capture and analysis of the cyberphysical system performance of a manufacturing workcell
utilizing the Neo4;j database platform is explained in detail where a proposed data model is described to correlate both
network and operational events.

3. Numerical results are obtained to validate the proposed approach and to describe the impact of wireless communications
on this specific use case.

This paper discusses multiple components through the discussion of an engineering use case. Some of these components
are generic and can be further used while the rest can be more specific for this use case. These components include the general
framework using a GDB, the data model design and implementation, the testbed implementation and data collection, and



data analysis. The introduction of a GDB approach for analyzing industrial CPS, which achieves the one-to-one mapping
between the network activities and the corresponding physical actions, is needed to understand industrial wireless network
impacts on the physical activities. To the best of our knowledge, this framework is the first to achieve this mapping on an
experimental study. Hence, the idea of using GDB is generic and can be used in many industrial scenarios. The data model
introduced can be widely adopted in multiple use cases that deploy industrial wireless networks for supervisory control of
robots and machines including machine tending and pick-and-place applications. This model and the implemented scripts
that build the GDB using the collected network data, robots state feedback, and the machine status can be suitable for
these supervisory applications. On the other hand, the exact use case implementation and the ensuing data analysis are more
specific to the engineering use case where we try to introduce the proposed framework and the date while being implemented
in an experimental study. Some ideas for data collection and synchronization can be generic but they are already examined
in the literature as well.

Our paper is organized as follows: in Section 2, we present a review of the related literature where we start by the state-
of-the-art of industrial wireless in Section 2.1, followed by discussing the importance of industrial data analytics in Section
2.2. We discuss the graph database applications and advantages in Section 2.3 followed by examples of its deployment in
industrial data analytics in Section 2.4. In Section 3, the use case and the testbed setup are briefly presented. In Section 4,
we start by introducing the justifications for selecting the GDB approach and the use of the Neo4j tool. We then present the
GDB related architecture in Section 4.1 and various data processing stages in Section 4.2. We then present the results of our
analysis in Section 5, followed by conclusions and future direction in Section 6.

2 Related Work
2.1 State-of-the-art of Industrial Wireless

Wireless communications in industrial environments enables machine-to-machine (M2M) information exchange to im-
prove production efficiency and safety. Generally, industrial wireless services have various requirements in different use
cases. Ahmadzai et al. summarized CPS requirements for M2M systems and called out high connectivity within the factory
coupled with autonomy indicating needs for reliable wireless systems [14]. A recent technical report, in [15], identifies
specific service requirements in different classes of industrial wireless applications with finely tuned metric thresholds. Pang
et al. discussed the possibility of new wireless techniques to support high performance industrial services such as cycle time
(1 ms to 10 us), reliability (medium 107% to high 10’9), and scale (100’s to 10,000’s) [16]. Industrial wireless system design
also faces challenges such as the transmission loss in radio propagation and diverse interference on the factory floor. A series
of channel measurement campaigns have shown unique radio channel features in real industrial sites. In [17], the channel
performance was analyzed within two different factories showing multipath environment clearly for different antenna and
polarization types. Both active and passive channel measurement data was collected in different sites and identified the huge
diversity of radio propagation characteristics that vary with the factory layouts and production activities [18]. Besides, the
factory contains various sources of interference that may impair wireless links. The authors in [19] enumerate few sources
such as motors, frequency converters, voltage regulators, welding equipment, and office computers. Therefore, efficient eval-
uation methods are needed to verify existing and emerging industrial wireless solutions. The authors in [17,20] discussed the
performance of IEEE 802.15.4 radios in real industrial environments with strong multi-path fading and concluded that exist-
ing solutions could not overcome the log-normal shadowing, measured in 7 — 12 dB, as they did not employ strong channel
coding in their receivers. There is a real need to have a testbed that can evaluate the performance of wireless solutions in
support of industrial applications [21].

When industrial status information is collected at the field device or a control command is generated by the controller
for remote actuators, the intermediate network has to timely and reliably transmit these data, especially in wireless links.
However, connecting the wireless system information flows to the operation of the physical system is not always evidently
apparent. Current studies do not unveil hidden dependencies in such complex systems.

In Table 1, we compare this work to the most related works in the literature for industrial wireless system evaluation.
The comparison includes the application domain, the test use case, the system setup, the data collection approach, and the
evaluation criteria. Our work is the only work that achieves the one-to-one mapping between physical actions to network
activities. Furthermore, it introduces hardware systems for both physical and network domains to capture the realistic impacts
of hardware on CPS system performance.

2.2 Importance of Industrial Data Analytics

Industrial data analytics play an essential role in achieving the smart factory vision and improving decision-making in
various industrial applications. Five main industrial data methodologies are generally studied including highly distributed
data ingestion, data repository, large-scale data management, data analytics, and data governance [30]. Industrial data
processing offers valuable information about various sections of industrial applications including inefficiencies in industrial
processes, costly failures and down-times, and effective maintenance decisions [31,32]. The industrial data analytics are



Table 1: Feature comparison with existing industrial wireless evaluation platforms

Application System Setup Data Collection Evaluation
Use Case
Domain Physical Wireless . Data CPS
RF Factor Physical | Network
System Network Process Metrics
Indoor (Lab), Device Pipeline, Control
HW (PLC, HW (WLAN Ethernet
This Factory Robotic managed WLAN | logging, scripts, delay,
robots, 10 - IEEE 802.11b/g/n /WLAN
work Automation | Work-cell interference remote graph system
125 Hz updates) | as presented) sniffer
radios in 2.4 GHz | access database failure
SW (Wireless
Dual-Tank Visual
Aminian Process SW (by Mesh with Simulator | Simulator Control,
level control SW inspection,
2013 [22] | Automation Simulink) IEEE 802.15.4), logging logging 1/0
as presented scripts
HIL (tentative)
Industrial
Jecan Process HW (WirelessHART Network .
Wireless No Indoor (Lab) No scripts No
2018 [23] | Automation plus ISA100.11a) manager
Network
Indoor (factory),
Wireless HW (valve
Ding Process HW (WirelessHART, | managed Zigbee Packet .
Sensor & control, 1 Hz No scripts No
2015 [24] | Automation ISA100.11a) and WLAN in sniffer
Actuation updates)
2.4 GHz
WLAN
Wireless HW (operation Indoor (multiple Health
Liu, Q Process HW (WLAN signal . Database
medical room surgical rooms separated database scripts
2018 [25] | Automation IEEE 802.11b/g/n) analyzer, requests
telemetry monitoring) by walls) (MySQL)
JPerf
Signal
Indoor (two Location
Fink . HW (mobile strength .
Robotics Robot teams HW (IEEE 802.15.4) | office/lab reported scripts No
2013 [26] AGVs) reported
buildings) at5 Hz
at5 Hz
Signal
Device analyzer,
Motion
Liang Factory X HW (mobile Indoor (industrial | logging, spectrum .
AGYV, safety HW (WIA-FA) scripts distance
2019 [27] | Automation AGVs) sites) field analyzer,
error
measures | network
analyzer
Chemical HIL (process
Candell Process HW (IEEE Simulator . Process
process simulator, PLC, Indoor (Lab) No scripts
2015 [28] | Automation 802.15.4-TDMA) logging control
control Sensors)
Chemical Process
Liu, Y. Process SW (process SW (IEEE SW (PER-SNR Simulator | Simulator .
process scripts control
2016 [29] | Automation simulator) 802.15.4-TDMA) curves) logging logging
control safety

Notes: HW: hardware testbed; SW: software simulation; HIL: hardware-in-the-loop simulation.

“scripts” stands for the data processing that uses specific code/program to treat experiment data in the performance evaluation.

generally deployed for improving factory operations through improving machinery utilization and predicting production
demands, improving product quality by analyzing market demands and reducing defective products, and enhancing supply
chain efficiency by analyzing risk factors and making accurate logistic plans and schedules [7]. The methods of industrial
data analytics can be split into different categories such as descriptive, diagnostic, predictive, and prescriptive analytics [7].
Descriptive and diagnostic analytics are responsible for analyzing historic data and the causes of events and behaviors.
Predictive and prescriptive analytics require more processing power, anticipate the trends of data, and deploy the historical
data in making decisions to achieve production goals. Examples of industrial data analytics frameworks can be found in
[33-36]. In [34], a platform for performing industrial big data analysis is presented where the performance requirements are



introduced to achieve a cost-effective operation. In [33], a manufacturing big data solution for active preventive maintenance
in manufacturing environments is proposed. Various other frameworks for industrial data analysis can be found in [35,36],
where the importance of using data analysis in decision making is emphasized.

2.3 Advantages of the GDB Approach

Multiple surveys about GDBs have been presented to describe the associated models, tools, and their features such
as [11,37,38]. The advantages of deploying GDB include having a more natural approach of data modelling and keeping data
properties connected to nodes and relationships [11]. Moreover, GDBs offer graphical and visualization interfaces to data and
are able to keep the time-related information of events through various graph paths [38]. Also, an extended list of applications
and implementations of GDBs is presented in [39] to show their use on enterprise data, social networks, and determining
security and access rights. It was found that GDBs provide the much needed structure for storing data and incorporating a
dynamic data model. In general, the use cases, in which GDBs perfectly improve the data management, include path finding
with weighted and time-related path properties, mapping dependencies of various system components to capture potential
weak points, and communications between various networked elements [38]. On the other hand, query languages are used to
extract data, including traversing the database, comparing node properties, and subgraph matching [37,40]. The performance
of different GDB tools and methodologies is analyzed and compared in [41,42]. Various aspects of functionality differentiate
the performance of query languages such as subgraph matching, finding nodes connected by paths, comparing and returning
paths, aggregation, node creation, and approximate matching and ranking [40].

2.4 GDB for Industrial Data Analysis

Due to their advantages including scalability, efficiency, and flexibility, GDBs are widely adopted in various industry-
related applications and use cases such as network operations, fraud detection, and asset and data management [43]. In [44],
authors have proposed a new object tracking approach for surveillance applications. The GDB approach is selected to
contribute to the scalability of the proposed scheme and support the required connectivity analysis for the object tracking.
Moreover, relationships in social networks have been modeled using a GDB for structural information mining and market-
ing [45]. On the other hand, GDBs are also deployed in business solutions for scenarios with multiple large data sources
which require distributed processing in decision making for various problems such as fraud detection, trend prediction, and
product recommendation [46].

In [8], it was shown that GDB and Neo4j can be used in network security-related applications because the network
characteristics are in compliance of GDB concept of nodes and relationships. It was stated that Neo4; is selected to efficiently
query and analyze the data where the query results can be visualized directly. Moreover, in [47], Neo4j was also used to build
a model for a power grid network analysis where experimental results compared the performance to an example relational
database system. In [48], an efficient and secure information retrieval framework for content centric networks used the
Neo4j graph database to improve the efficiency of storing and processing large-scale data. In [49], Neo4j was used to
analyze network vulnerability to guarantee the accuracy of the attack graph generation and analysis process.

Moreover, the use of GDB, and more specifically Neo4j, in analyzing time stamped data logs has been demonstrated
in [50,51]. In [50], a GDB approach has been used for analyzing network log files from different sources in real-time. The
data from different network layers has been exported and combined is a single graph in order to detect anomalies in network
performance. In [51], the business event logs monitoring is demonstrated where a loan application was exported to a GDB in
order to facilitate the business decision making process based on the available data. In our work, we introduce the application
of a GDB approach for analyzing industrial CPS, which achieves the one-to-one mapping between the network activities and
the corresponding physical actions.

3 Case Study: Robotic Machine-tending

The NIST industrial wireless testbed and measurement system provides a reusable framework that can be utilized to
evaluate numerous wireless technologies. In this section, a two-robot machine-tending work-cell case study is presented to
introduce the proposed procedures in the data workflow. This section reviews the design of the work-cell, measurement sys-
tem, and equipment used that serve in a typical evaluation case. In this section, we detail the physical system implementation
of the discussed engineering use case where our evaluation approach is applied

3.1 Work-cell Implementation and Measurements

In the testbed, the two-robot pick-and-place task is performed that can be tailored to other use-cases and wireless
technologies. A work-cell was constructed to perform a dual robot pick-and-place task that is controlled by a supervisor
programmable logic controller (PLC). The robots have six degrees-of-freedom and utilize Modbus/TCP communication
messages to receive and execute assigned tasks from the supervisor PLC. There are also four emulated computers numerically



Fig. 2: Collaborative work cell testbed
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Fig. 3: Network diagram of the testbed. Solid lines represent Ethernet based communications and dashed lines represent
wireless based communications.

controlled (CNC) machines that detect the physical state of the testbed with proximity sensors. To detect whether the CNC
machine is free or occupied, proximity sensors are positioned at the inner radius of the cups that hold the parts.

Fig. 2 depicts the robots, supervisor PLC, and CNC machines in the testbed in relation to the physical queue ramp that
supplies parts to the CNC machines. A human-machine interface (HMI) is used to add tasks to the job queue. To perform
the pick-and-place task, the operator moves parts from the queue ramp to each of the CNC machines, and back to the queue
ramp. Between each Operator movement, the Inspector performs a force seeking detection to determine if the part is in the
correct location before the Operator proceeds. More detail regarding the workflow of the testbed can be found in [12].

All communicating devices in the testbed were originally designed to use Ethernet TCP/IP for communications. To
enable wireless in the testbed, Ethernet-WiFi bridges are utilized for wireless communications through a common access
point (AP). It is also possible to use other industrial wireless technologies such as Ethernet-Zigbee converters. To establish
the Ethernet-WiFi bridges, small form factor computers, called NUCs, are used as they allow for flexibility in the work-cell.
For the experiment in this paper, the NUCs used a single antenna for wireless communications using IEEE 802.11n (Wi-Fi)
in the 2.4 GHz ISM band. Each NUC is configured to be one of the following forms: a bridge, a wireless sniffer, a traffic
generator, or a traffic sink. These configurations in the network are shown in Fig. 3.

Three different types of measurements (network, robot, and PLC state data) are collected in the testbed. Network, wired,
and wireless traffic data are captured using seven test access point (TAP) devices and a wireless sniffer, shown in Fig. 3 with
green labels. A machine running UBUNTU 18.04, not shown, is used to capture the data from all wired network traffic in
the testbed. The position data and robot state data are captured from the robot controllers using the real time data exchange



(RTDE) protocol [52]. RTDE data is captured on a Linux data capture workstation. Lastly, the PLC state data is captured
locally on the supervisor PLC during each trial of the experiment. These three types of measurements (network, robot, and
PLC state data) share a precise time stamp that originates from the synchronization to the grand master time server. We
adopted the IEEE 1588 precision time protocol (PTP) to allow synchronized distributed clocks to stamp the accurate time on
all measurement devices in the testbed [53].

3.2 Equipment Used

The following pieces of equipment are illustrated in Fig. 3. Intel Core i7-equipped NUCs running UBUNTU 14.04,
that enable wireless communications in the testbed, are used; the NUCs communicate through a common AP. The AP is
a Netgear AC1900 wireless router capable of IEEE 802.11ac 4x4; however, MIMO is not used for the experiment in this
paper. For the wired communications, two Cisco IE 4000 industrial grade Ethernet switches that are PTP compatible for
time synchronization are used. The collaborative robots that perform the pick-and-place task are Universal Robots “UR3”
CB series. The collaborative robots are equipped with OnRobot HEX-H Force/Torque Sensors, which are used by the
Inspector to inspect parts. The supervisor PLC is a Beckhoff CX2020 with an EL6688 PTP module for time synchronization.
The CNC simulators are Beckhoff CX9020 PLCs. The seven TAP devices on the testbed are SharkTap Gigabit Network
Sniffers. To synchronize the timing of the devices while taking measurements, a Meinberg Lantime M900 grand master time
server is used. Lastly, the Operator and Inspector each use a D-link DGS-108 8-port unmanaged Ethernet switch for wired
communications between the robot controller and the force-torque sensor. These switches are also used to enable the Linux
workstation to collect RTDE data through a wired connection.

4 Application of GDB in the Robotic Machine-Tending

A GDB was built to manage data collected from testbed measurements of both network traffic and physical operations.
In this section, we briefly introduce graph components developed for our testbed and the data processing flow that transforms
measurement results to graph entities.

In order to justify using the proposed approach, we start by stating and defining the collected data characteristics and
the requirements for the deployed database approach in handling the data for the goal of our study as follows:

1. Heterogeneous data - The collected data from industrial wireless communications system is heterogeneous in different
aspects as follows

(a) Different sources: We collect network data at various network nodes in the system. Also, collected data using
wireless sniffer describes the wireless physical environment. Data from the supervisor controller is also collected
which includes the system states and the supervisory commands. Data from the robots is used to describe the
physical actions taken.

(b) Different formats: The data includes different file formats such as packet capture (PCAP) files, and data that comes
from different PLC and robot controllers is stored in the format of comma separated value (CSV) files. Another
example is the time stamp format from different devices.

(c) Different rates: data packets can be both periodic and event driven. Also, the robot state feedback is periodic with
a different update rate than the update rate of the PLC state.

2. Entities are interrelated - This is the main requirement and challenge in this work where the goal is to obtain the
direct one-to-one connection between physical actions and their corresponding entities including network activities, the
physical wireless environment through sniffer reports, and the physical system state.

3. Various entity types - The data model will consider two types of system entities, namely dynamic and static. The class
of static entities covers testbed setup profiles which contain testbed components, network interfaces, and their settings.
These entities are normally predetermined or collected in the initialization of each measurement. The class of dynamic
entities captures various system events such as machine status reports, network traffic, and information flows in the
testbed. These entities are dynamically added into the data set whose quantities and properties are determined by the
measured data.

4. Data Model with multiple abstraction mechanisms - The considered data model and the corresponding queries should
encompass multiple levels of abstraction including traffic data level, physical hardware level, physical environment
level, physical actions level, and the interactions between these various levels. The network database system must allow
for the categorization and labeling through these levels.

5. Time travel queries - The data model and the resulting database should allow for direct querying for temporal variations
of the studied entities. Hence, temporal relationships between data packets and the corresponding physical actions
should be stored and directly accessible.

6. Efficient path and relationship queries - Given the requirement of having interrelated nodes, the query language should
allow for path and relationship queries to directly extract this information. These types of queries are used for calculating



various system metrics and hence should be performed in an efficient manner.

Given these discussed requirements, the graph database approach is selected for data management due to the following
reasons. First, the data model is defined such that nodes of same type may have different sets of properties, and hence,
the GDB offers the ability to store data without an enforced schema such that there is more flexibility of how the data is
organized and accessed in the most suitable way for the application [54]. The GDB also allows one to gain insights from
the relationships between data points or in applications where the information available to end users is determined by their
connections to others. Furthermore, the GDB intuitively display data, thus, visual inspection of certain data connections can
be performed [9, 38, 55]. More specifically, the collected data coming out of the testbed are in table format. However, to
perform queries that traverse these tables requires expensive processing; hence building a connected graph once makes the
traversing easier and obtaining the queries more direct.

Regarding the use of Neo4j in the proposed GDB approach, we found through studying the literature that Neo4j offers
the following: neighborhood queries or graph traversal, the ability to be embedded within our analytical tools in Python, the
query complexity not dependent on the graph size, and the use of Cypher querying language [55-57]. More specifically,
the stored records in Neo4j are linked with direct pointers to avoid maintaining an additional dedicated indexing structure
to traverse the graph and consequently, the query complexity does not depend on the graph size. Instead, it only depends
on how large the visited subgraph is. Moreover, in Table 3 and Section 4.8 in [55], a comparison between Neo4j and
other GDB approaches is summarized where the criteria of comparison are the used model, the record storage properties,
storing edges, and data distribution. It was stated in [55] that Neo4;j is the most popular graph database system, according to
different database rankings. On the other hand, the Cypher syntax is used for querying the graph database structure in Neo4;.
Cypher is a declarative query language that allows users to specify which actions they want to perform, such as, matching,
inserting, updating, and deleting graph data. The syntax is in the ASCII format, which provides a well-known and legible
way to collapse patterns of nodes and relationships within graph data sets [56]. It was stated in [57] that Neo4j can store
hundreds of trillion entities. Neo4j can support the operations of storage, query, backup, and redundancy for large-scale data.
Although these characteristics can be found in other tools, we found that Neo4;j satisfies them well, and hence, suitable for
our application.

4.1 Reference Data Model

In a GDB, the data model, which can be roughly analogous to the “schema” of relational databases, illustrates how data
records are organized and stored in a graph. However, unlike a fixed schema, the data model of GDBs has more flexibility
of depicting diverse data types, content, and connections between different entities whose structure and property profile
can update and evolve with more data and/or better observation. A data model contains different node types with specific
properties in the graph and various relationships between them. In [13], we identified the requirements of a GDB data model
and built a graph containing nodes and relationships that mainly exhibit information around networked industrial devices in a
factory work-cell. In this paper, we further populate the earlier-defined work-cell data graph by introducing additional node
types characterizing physical actions that are newly captured. Accordingly, we update the relationships, such as associating
individual quality of service (QoS) report data from the wireless sniffer with the packets captured at the collocated receiver.
The updated data model provides a comprehensive view of production operations, information flows, and wireless channel
variations in the testbed, which facilitates further analysis work.

As shown in Fig. 4, an example is illustrated here that summarizes nodes, relationships, and their key properties used in
the GDB. We will elaborate the definition and use of these entities in the remainder of this section.

Node Design

To effectively depict testbed operations in the measurement, we define a series of node types in the graph. Nodes are
GDB elements that are used to identify testbed components, device states, and messages that store snapshots of the testbed
for further analysis. They can be found in two main classes depending on what type of objects the node represents.

The class of static nodes covers testbed setup profiles, which contain testbed components, network interfaces, and their
settings. These entities are normally predetermined or collected in the initialization of each measurement. They usually
remain constant in each round of measurements. In our data model, this class of nodes include the following.

Actor A physical component within the factory work-cell such as a robot, PLC, or other networked item.

NtwkID A network address item for an actor such as an Internet Protocol (IP) address.

SMS An spectrum management system (SMS) observes and records significant spectral events within the work-cell and
may report those events to actors within the work-cell.

Sniffer Measurement device that records all transmissions conducted over the wireless medium and includes the wireless
header information for each wireless transmission detected.

Adapter Device that serves to connect an actor to a network (adapters are divided into sub-categories depending on the type
of interface to a network).
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Fig. 4: The data model of the graph database used for each operational run of the NIST wireless factory testbed. The graph
is organized into nodes and edges, where the edges signify relationships among network elements and physical operational
elements.

Adapter:Ethernet A subcategory of adapter representing an Ethernet interface.
Adapter:Wireless A subcategory of adapter representing a wireless interface.
Adapter:Wireless:AP A subcategory of adapter representing a wireless access point interface.
Adapter:Wireless:UE A subcategory of adapter representing a wireless user equipment interface.

The class of dynamic nodes in the graph captures various system events such as machine status reports, network traffic,
and information flows in the testbed. These nodes are dynamically added into the graph, and that quantities and properties
are determined by the measured data. In our data model, this class of nodes include the following.

Transaction A complete information exchange between two or more actors (multiple actors may participate in a transac-
tion).

Message A network transmission event that occurs between two actors (messages are essentially packet transmissions cap-
tured at the transport layer; multiple messages support a transaction).

QoSReport Quality of service report of a message (not all messages will have a QoS report).

Physical Action (PhyAction) A physical occurrence within the factory work-cell associated with Actors through multiple
time-based relationships.

PhyAction:URSchedule A subcategory of PhyAction representing a schedule decision made by the supervisor PLC for a
robot

PhyAction:SensorState A subcategory of PhyAction representing a real-time reading of the proximity sensor state in a
CNC

PhyAction:RouteState A subcategory of PhyAction representing a real-time reading of the action route in a robot

Graph Relationships
A relationship in the graph denotes an action taken to associate two nodes, either homogeneous or heterogeneous ones,
which shows their connections in the topology, timeline, or affiliation. We identify the following relationships in the testbed.

PARTICIPATED_IN Actors will participate in transactions. A transaction exists for each logical set of messages between
actors such as the setting of a Modbus register or the sending of a command to a robot. Therefore, actors will participate
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Fig. 5: Data processing flow from factory work-cell to database

in many transactions, and multiple actors may participate in a single transaction.

SUPPORTED Messages (i.e., packets between actors) are associated with transactions through the SUPPORTED relation-
ship. Depending on the protocol and the quality of the channel, a single transaction could have one or many messages
connected through this relationship.

TX/RX An actor may either transmit (TX) or receive (RX) a message. Both the TX and RX relationships contain a times-
tamp in the format of an epoch time which is a floating point number in seconds since January 1, 1970, with a resolution
of microseconds.

TOOK When an actor performs a physical action, a TOOK relationship is created between the actor and the physical
action node. This relationship contains start and stop time properties as well as the source of the observation such as a
networked camera.

REPORTED_TO An SMS may be a passive or active listener within a work-cell. When an SMS operates as an active
listener, spectral reports from the SMS may be sent to an actor such that the actor can respond intelligently to the
spectral event. Reports from an SMS to an actor are captured within this relationship.

COVERED A wireless sniffer keeps monitoring the working wireless channel(s) and extracts the real-time link QoS infor-
mation from the sniffed wireless packets, such as the received signal strength indicator (RSSI). A COVERED relation-
ship links the QoSReport node with the concurrent Message node received at the same spot. Not all Message nodes have
such a relationship with QoSReport which depends on the availability of the sniffer collocated with the receiver and any
wireless sniffer data reported during the transmission.

Other relationships shown in Fig. 4 but not explained above are considered self-explanatory.

Closer Examination

The graph data model is designed in a way where nodes and relationships are centered around Actors. Actors have dual
roles in the work-cell operations. In the factory system, Actors participate in the production operations. In the example of
Fig. 4, two Actor nodes are presented. In this case, Actor “Supervisor” is the supervisory controller, and Actor “Operator” is
a robot arm. The Supervisor schedules the production, collects the other Actors’ states, and hosts supportive services, such
as SMS. The Operator follows the instructions of the Supervisor and moves parts between work stations. Meanwhile, Actors
also act as communication nodes that exchange messages between each other through various network interfaces. In Fig. 4,
Actors participate in a transaction, which, in this example, is a Modbus/TCP exchange. The transaction itself is associated
with one or more messages (i.e., packets). Each message associated with a transaction manifests itself as a node in the graph.
Multiple message nodes will exist for each transaction. Additionally, QoS reports may be associated with each actor node
through a collocated sniffer node.

Dynamic event nodes in the measurement, i.e., physical actions, network messages, information transactions, and QoS-
Report records, have timestamps representing “measurement time” of the recorded events. Once a new event occurs, a
proper relationship would be added between the actor and the physical/network event node. All timestamps are accurately
synchronized to the grand-master clock.

4.2 Information Workflow

A multi-stage workflow is deployed to feed the graph with instances of nodes, relationships, and their properties that are
extracted from measurement data, as shown in Fig. 5. In the measurement data set, network data from distributed network
probes in selected links is stored in packet capture (PCAP) files, while operational data that comes from different PLC
and robot controllers is stored in the format of comma separated value (CSV) files. The whole process contains four steps
including data preprocessing, feature extraction, database insertion, and post-import tuning. Such conversion from raw data
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Fig. 6: Timeline illustration of multiple network captures in a control command transaction

to the ready-to-go graph has been done by running automated scripts on a host machine that maintains data repositories of
measurement results and deploys the Neo4;j desktop application. The functions and operation features in individual steps are
discussed next.

Data Preprocessing

Data preprocessing is the first step where measurement data is verified, cleaned, and formatted to facilitate the following
processing steps. As fore-mentioned, measurement data contains results collected from heterogeneous modules/devices in
the testbed, which may adopt different data types, sampling rates, time and metric resolution, and file formats. For example,
different machines may represent and store the record timestamps in various formats depending on local clock settings. Once
we obtained the data, we unified the time representation in the entire data set using the time epoch that has microsecond
resolution. In another example, we deployed packet filters to remove unrelated packet captures. In treating measurement
data, e.g., experimenting with single or double wireless interference links, we managed to reduce the sniffer data in the order
of gigabytes to only a few megabytes while keeping all signaling handshakes of interest in the studied links.

Feature Extraction

Feature extraction refers to the process of extracting relevant information from measurement data and prepare the data
for insertion into the database. Nodes and relationships are defined by a set of features that share common views. We
developed bash and Python scripts that pick the desired features to produce CSV files that are ready for insertion into the
Neo4j database. In this step, a bash script was developed running the tshark tool to extract fields of protocol headers in
packet captures and save the field information into CSV files. Each line in these CSV records will create one Message node
instance as a sender or receiver copy of the packet through a link. A Python script was also used to detect state switches in
the physical action data and label these moments that were triggered by testbed communications.

For example, Fig. 6 illustrates the timing information that is extracted from network capture data and used as features in
the created nodes, e.g., Transactions and Messages, and relationships, e.g., TX and RX. A complete message transaction in
the PLC-PLC/UR3 link includes two messages, i.e., a request and a response. In the measurement data, there are four packet
copies corresponding to one transaction regardless of retransmissions or packet loss. Therefore, in the feature extraction
step, our bash script calls tshark to dissect packet captures to obtain these four timestamps which will be used later to pair
the transmitted and received packet copies.

Graph Insertion

We load the prepared data into the Neo4j GDB using bulk importing, which can create one or multiple nodes and/or
relationships in the graph by reading a CSV file once. Neo4;j uses Cypher to construct GDB queries to import data. As the
output of feature extraction, each line of the CSV file can create one new node entity and/or generate the criteria of linking
two qualified nodes for a new relationship. Properties of new entities can be assigned explicitly by the column values of



records or inferred from predetermined rules such as some fixed combination of nodes and edges in the graph. Multiple
types of nodes can be created from the same data file using one common node template in which each node type has its
own subgroup of properties. For example, Modbus and ADS packets use the same Message node structure in our graph to
manage the common transmission information such as IP addresses and TCP session identification. Meanwhile, each of these
Messages maintains its own application layer header information in the node properties, e.g., Modbus register addresses and
ADS function codes.

Post-Import Tuning

Post-import tuning refers to any additional modification in the graph after CSV data is imported. This step treats a few
cases where raw data work with current graph insights to obtain new ones. First, in the additive insertion case, i.e., when new
data is added into the graph, it links the newly added nodes to the existing ones following necessary relationships between
them. Time series data often use this method to link consecutive event nodes in the recorded process. Second, it is the case in
which higher level features are needed in the graph that can be abstracted from the imported data. For example, Transaction
nodes are built upon Message nodes who participate in the same application transactions; Message nodes themselves are
also the summary of packet data, i.e., packet copies at the wireless transceivers. Third, it can feed feature extraction with
pieces of information in the current graph for purposes such as coupling data records. For example, coupling QoS reports
and Messages in their observation windows used to be an extremely time-consuming process. On one hand, each Message
raw data, i.e., the transmitter or receiver copy, contains only half of the transmission time window information. On the other
hand, the Cypher query takes a long time to find all eligible relationships as Neo4j would generate a huge Cartesian product
when treating the large sample set. We solved this issue by obtaining qualified Message nodes and feeding them into feature
extraction where a more efficient Python script finds all Message-QoS Report pairs and later presents them in the graph as
new COVERED relationships.

The above four data processing steps can be performed through multiple iterations to treat data and refine the graph
according to the data complexity and requirements.

S Results

Once the data resides within the database, we apply queries to extract information for the evaluation of work-cell perfor-
mance and visualization of network and operational events within the work-cell. By tracking paths through the relationships
within the graph, discerning how a network event such as interference relates to physical events such as position uncer-
tainty or part throughput is possible. Various impairments may be introduced as a part of work-cell operation. Examples of
such impairments include competing wireless traffic, radio interference, and reflections and diffraction due to the multi-path
environment [58]. We have shown that it is feasible to implement such impairments and measure the resulting physical
performance manifestation [12].

This section is introduced to show the type of results that can be obtained for the investigated use case using the GDB
approach. These quantities include the impact of wireless transaction latency on the corresponding physical action processing
time and the correlation between these quantities. This section introduces the realized data model of the implemented GDB
as well to verify that the implemented GDB follows the intended data model. Although the obtained results reflect the
performance of the testbed, and hence, can be obtained using other approaches. It will be overly complicated to obtain the
one-to-one connection between the physical actions and the network activities using another approach to the best of our
knowledge. Traversing the tables of the collected data for each query will be time consuming if the GDB is not built. Hence,
we assert that our approach can achieve these results in an efficient way.

In the following subsections, we show results from an experimental scenario of the NIST industrial wireless testbed. In
this scenario, two wireless links are used to connect the robot controllers and the wireless AP that is connected to all the
other actors in the testbed. The wireless nodes are IEEE 802.11b/g/n devices. During each run of this experimental scenario,
the production of 20 parts was emulated, which resulted in 12 minutes of network activity. We performed 4 different
experimental cases with respect to the communications network, namely, 1) wired baseline where all links are connected
using Ethernet cables to act as a benchmark for performance comparison, 2) wireless baseline where the robots traffic is the
only traffic transferred over the wireless network, 3) with 2500 packets per second (pps) wireless traffic where a pair of a
source and a sink operate simultaneously with the robots traffic over the wireless network, and 4) with 2x1250 pps traffic
where two communications pairs of a source and a sink that each source generates 1250 pps traffic simultaneously with the
robots traffic. These external traffic pairs have packet size of 1000 Bytes.

5.1 Realized Schema
After populating the database with data captured from the experiment runs, the resulting realized schema is shown in
Fig. 7. The schema visualization is produced by invoking the command
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Fig. 7: Realized schema of the graph database fully populated after capturing network and operational data from the NIST
industrial wireless testbed

call db.schema.visualization ()

in Neo4j. It is important to note that, in comparison to the data model shown in Fig. 4, a realized schema shows only one
representation of each node and relationship. Where label inheritance is employed, such as the case for different adapter
types, relationships are reproduced; however, this is a result of the visualization tool rather than the schema itself. Fig. 7
serves, therefore, to validate that the intended data model was indeed realized by the insertion of event data from the testbed.
In the realized schema, inherited labels are shown as separate nodes.

5.2 Physical Actions Processing

In this subsection, we use the extracted data from the GDB to study the impact of the wireless communications on the
physical action performance. We focus our analysis in this subsection on the URSchedule and RouteState progress over
time where URSchedule is the dynamic node to represent a physical action decision at the supervisor and RouteState is the
dynamic node to represent a physical action command received by one of the robots where the command parameters are
stored at the robot registers. Note here that the transaction between a robot controller and the supervisor is initiated by a
request message from the robot controller and terminated by correctly receiving a response message from the supervisor to

the robot controller as well.

The supervisor takes decisions based on available information about the testbed. Once it makes a decision, it is reflected
on the value of the URSchedule. We define the supervisor processing time as the time from the instant the decision is taken
to the instant when the wireless transaction is initiated to request a new physical action and it is denoted by Tsyp. Then,
the transaction latency is the total time spent by all the wireless packets corresponding to an action such that it is the time
between the instant, at which the wireless transaction is initiated by the robot controller to require a new action until the
data arrives from the supervisor at the intended robot controller. The wireless transaction latency is denoted by Tw. The
robot processing time is the time between the instant the wireless data is received by the robot controller to the instant when
the required action is updated in the RouteState register indicating the physical action starts. The robot processing time is
denoted by Trep. The total physical action time, which represents the time needed for a supervisor command to be reflected
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at the corresponding robot, is denoted by Ta; and evaluated through
Tact = TSup + Tw + Trob- (D

In Fig.8-12, we present the values of the three components of the total physical action time for each run of the testbed.
The horizontal axis represents the action index for all the operator and inspector actions while the corresponding time
components are shown in the vertical figure axis.

In Fig. 8, the value of the transaction latency is almost fixed by deploying a wired channel while in Fig. 9 more fluctua-
tions start to appear because of introducing a wireless channel in the wireless baseline. In this case, the channel is relatively
good so very few fluctuations happen. In later Figs. 10-12, the wireless interference is introduced where these fluctuations
increase significantly. The RouteState register update happens once during the robot program scan cycle in a periodic fashion
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almost every 120 ms. In this same loop, the transaction initiation happens as well, and hence, the sum of these two quantities
(Tw + Trob) equals the loop time of approximately 120 ms. That is why when the transaction latency increases with certain
amount of time, the corresponding robot processing time dips with exactly the same amount of time. Such observations are
captured in the figures 8-12.

On the other hand, most of the randomness in the total physical action time results from the supervisor processing
time. We also notice that the randomness in the supervisor processing time is not impacted by the wireless channel where
multiple runs of the same wireless case with the same interfering traffic have completely different supervisor processing time
performance as shown in Fig. 10 and 11.

5.3 Stochastic Distribution of Physical Action Time

In this subsection, we present the normalized histograms of the transaction latency and the total physical action time in
Figs. 13 and 14, respectively. In Fig. 13, we notice the clear impact of the communication channel and interference on the
histogram of the transaction latency where the mean and the variance are clearly impacted by the wireless parameters. On
the other hand, the total physical action time is not impacted directly by the communications channel in this use case due to
the fact that the robot processing loop compensate of any transaction latency below the loop time of 120 ms.

5.4 Timeline Visualization

Finally, we present a simple visualization result achieved by processing the data through the GDB. In Fig. 15, we draw
the timeline of various events related to the physical actions. These events happen at the supervisor and the corresponding
robot where the mapping is achieved through creating and querying the GDB. The detailed timeline is just a zoomed in
version to the data in the left where URSchedule value changes can be captured through this visualization. The main
connection between these events as shown in the schema is the triggering transaction.

5.5 Discussion
In the studied specific use case of machine-tending supervisory control, the impact of network latency on physical action
is the main metric to study for supervisory control applications. Other metrics, such as reliability, can be beneficial in other
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applications as feedback control. Hence, we assessed the performance through latency related metrics in this use case. In
future work, we plan to modify the use case to allow for further metrics evaluation. The current set of results illustrates the
use of our approach in achieving latency results and evaluate interference impact on this specific use case.

6 Conclusions

We have presented in this paper a novel approach to capturing network and operational event information from a factory
work-cell with the purposes of 1) capturing and storing network and operational events, 2) calculating performance metrics of
the network, and 3) discovering performance dependencies between the network and the physical assembly of the work-cell.
Using a graph database, we have demonstrated that it is possible to construct such a database, compute network performance
metrics and discover correlations. We have also developed the capability of examining the correlation between network
events and the performance of physical actions. We have tested this approach in an emulated robotic manufacturing factory
work-cell that has two collaborative grade robot arms for a pick-and-place task. We have shown that wireless transaction
latency has a minimal impact on the physical actions processing time in this use case. This behavior is expected to occur in
many similar use cases in which the physical action is performed after a loop scan for the action triggering parameters.

The future progress and measurement data will be released in the NIST public domain repository as a reference for
industrial traffic modeling efforts and comparative studies on industrial wireless technologies [59]. Deploying this approach
allows for having a direct connection between network packets and physical actions. Initially, this can help in the wireless
network design by allowing the network to react to the events that may cause physical actions disturbance especially in
mission-critical applications. In future, the results can be used directly in control domain where the control loops will
be allowed to react to changes in physical parameters through adapting wireless networks parameters. Furthermore, by
deploying artificial intelligence, performing predictive analysis can allow the system to take the corrective actions early
enough not to disturb the physical process.

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best
available for the purpose.

References

[1] Martinez, B., Cano, C., and Vilajosana, X., 2019. “A square peg in a round hole: The complex path for wireless in the
manufacturing industry”. IEEE Communications Magazine, 57(4), Apr., pp. 109-115.

[2] Huang, V. K. L., Pang, Z., Chen, C. A., and Tsang, K. F., 2018. “New trends in the practical deployment of industrial
wireless: From noncritical to critical use cases”. IEEE Industrial Electronics Magazine, 12(2), June, pp. 50-58.

[3] Vilajosana, X., Cano, C., Martinez, B., Tuset, P., Melia, J., and Adelantado, F., 2018. “The wireless technology
landscape in the manufacturing industry: A reality check”. ArXiv, abs/1801.03648.

[4] Kagermann, H., Wahlster, W., and Helbig, J., 2013. Recommendations for implementing the strategic initiative industrie
4.0, industrie 4.0 working group.

[5] Barnard Feeney, A., Frechette, S., and Srinivasan, V., 2017. Cyber-Physical Systems Engineering for Manufacturing.
Springer International Publishing, Cham, pp. 81-110.



[6] Huang, V. K. L., Pang, Z., Chen, C. A., and Tsang, K. F,, 2018. “New trends in the practical deployment of industrial
wireless: From noncritical to critical use cases”. IEEE Industrial Electronics Magazine, 12(2), June, pp. 50-58.

[7] Dai, H.-N., Wang, H., Xu, G., Wan, J., and Imran, M., 2019. “Big data analytics for manufacturing internet of things:
opportunities, challenges and enabling technologies”. Enterprise Information Systems, June, pp. 1-25.

[8] Tao, F., Qi, Q., Liu, A., and Kusiak, A., 2018. “Data-driven smart manufacturing”. Journal of Manufacturing Systems,
48, July, pp. 157-1609.

[9] Drake, M., 2019. A Comparison of NoSQL Database Management Systems and Models.

[10] Lade, P., Ghosh, R., and Srinivasan, S., 2017. “Manufacturing analytics and industrial internet of things”. IEEE
Intelligent Systems, 32(3), May, pp. 74-79.

[11] Angles, R., and Gutierrez, C., 2008. “Survey of graph database models”. ACM Comput. Surv., 40(1), Feb., pp. 1:1-1:39.

[12] Liu, Y., Candell, R., Kashef, M., and Montgomery, K., 2019. “A collaborative work cell testbed for industrial wireless
communications — the baseline design”. In 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE),
pp- 1315-1321.

[13] Candell, R., Kashef, M., Liu, Y., Montgomery, K., and Foufou, S., 2020. “A graph database approach to wireless IIoT
work-cell performance evaluation”. In 2020 IEEE International Conference on Industrial Technology (ICIT). (preprint,
URL.: https://www.nist.gov/publications/graph-database-approach-wireless-iiot-work-cell-performance-evaluation).

[14] Ahmadi, A., Moradi, M., Cherifi, C., Cheutet, V., and Ouzrout, Y., 2019. “Wireless Connectivity of CPS for Smart
Manufacturing: A Survey”. In International Conference on Software, Knowledge Information, Industrial Management
and Applications, SKIMA.

[15] Montgomery, K., Candell, R., Liu, Y., and Hany, M., 2019. Wireless User Requirements for the Factory Work-cell.
Tech. rep. URL: https://www.nist.gov/publications/wireless-user-requirements-factory-workcell.

[16] Pang, Z., Luvisotto, M., and Dzung, D., 2017. “Wireless High-Performance Communications: The Challenges and
Opportunities of a New Target”. IEEFE Industrial Electronics Magazine, 11(3), pp. 20-25.

[17] Damsaz, M., Guo, D., Peil, J., Stark, W., Moayeri, N., and Candell, R., 2017. “Channel modeling and performance
of Zigbee radios in an industrial environment”. IEEE International Workshop on Factory Communication Systems -
Proceedings, WFCS.

[18] Candell, R., Remley, K. A., Quimby, J. T., Novotny, D., Curtin, A., Papazian, P. B., Kashef, M., and Diener, J., 2017.
Industrial wireless systems radio propagation measurements. Tech. rep. doi: 10.6028/nist.tn.1951.

[19] Islam, K., Shen, W., and Wang, X., 2012. “Wireless sensor network reliability and security in factory automation: A
survey”. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews.

[20] Peil, J., Damsaz, M., Guo, D., Stark, W., Candell, R., and Moayeri, N., 2017. Channel Modeling and Performance of
Zigbee Radios in an Industrial Environment (NIST-TN-1941). Tech. rep., NIST, Gaithersburg, MD.

[21] Lu, C., Saifullah, A., Li, B., Sha, M., Gonzalez, H., Gunatilaka, D., Wu, C., Nie, L., and Chen, Y., 2016. Real-Time
Wireless Sensor-Actuator Networks for Industrial Cyber-Physical Systems. doi: 10.1109/JPROC.2015.2497161.

[22] Aminian, B., Araujo, J., Johansson, M., and Johansson, K. H., 2013. “GISOO: A virtual testbed for wireless cyber-
physical systems”. In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, IEEE,
pp- 5588-5593.

[23] Jecan, E., Pop, C., Padrah, Z., Ratiu, O., and Puschita, E., 2018. “A dual-standard solution for industrial Wireless
Sensor Network deployment: Experimental testbed and performance evaluation”. In 2018 14th IEEE International
Workshop on Factory Communication Systems (WFCS), IEEE, pp. 1-9.

[24] Ding, Y., Hong, S. H., Lu, R., Kim, J., Lee, Y. H., Xu, A., and Xiaobing, L., 2015. “Experimental investigation of the
packet loss rate of wireless industrial networks in real industrial environments”. In 2015 IEEE International Conference
on Information and Automation, IEEE, pp. 1048-1053.

[25] Liu, Q., Ma, L., Fan, S.-Z., Abbod, M. F,, Lu, C.-W., Lin, T.-Y., Jen, K.-K., Wu, S.-J., and Shieh, J.-S., 2018. “Design
and Evaluation of a Real Time Physiological Signals Acquisition System Implemented in Multi-Operating Rooms for
Anesthesia”. Journal of Medical Systems, 42(8), aug, p. 148.

[26] Fink, J., Ribeiro, A., and Kumar, V., 2013. “Robust Control of Mobility and Communications in Autonomous Robot
Teams”. IEEE Access, 1, pp. 290-309.

[27] Liang, W., Zheng, M., Zhang, J., Shi, H., Yu, H., Yang, Y., Liu, S., Yang, W., and Zhao, X., 2019. “WIA-FA and
Its Applications to Digital Factory: A Wireless Network Solution for Factory Automation”. Proceedings of the IEEE,
107(6), jun, pp. 1053-1073.

[28] Candell, R., 2015. “A Research Framework for Industrial Wireless Deployments”. In Proceedings of 2015 ISA
Instrumentation Symposium.

[29] Liu, Y., Candell, R., Lee, K., and Moayeri, N., 2016. “A simulation framework for industrial wireless networks and
process control systems”. In 2016 IEEE World Conference on Factory Communication Systems (WFCS), IEEE, pp. 1-
11.

[30] Wang, J., Zhang, W., Shi, Y., Duan, S., and Liu, J., 2018. “Industrial big data analytics: Challenges, methodologies,
and applications”. CoRR, abs/1807.01016.




[31] Lee, J., 2015. Industrial Big Data (Mechanical Industry Press, China). 07.

[32] Raptis, T. P, Passarella, A., and Conti, M., 2019. “Data management in industry 4.0: State of the art and open
challenges”. IEEE Access, 7, pp. 97052-97093.

[33] Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., and Vasilakos, A. V., 2017. “A manufacturing big data solution
for active preventive maintenance”. IEEE Transactions on Industrial Informatics, 13(4), Aug, pp. 2039-2047.

[34] (GE). Unlocking machine data to turn insights into powerful outcomes. Online. URL https://www.ge.com/digital/,
Accessed 2019-07-01.

[35] Brian Courtney. Industrial big data analytics: The present and future. Online. URL
https://www.isa.org/intech/20140801/, Accessed 2019-07-01.

[36] (ABB). Big Data and decision-making in industrial plants. Online. URL https://new.abb.com/cpm/production-
optimization/big-data-analytics-decision-making, Accessed 2019-07-01.

[37] Kumar Kaliyar, R., 2015. “Graph databases: A survey”. In International Conference on Computing, Communication
Automation, pp. 785-790.

[38] Vyawahare, H. R., and Karde, P. P, 2015. “An overview on graph database model”. International Journal of Innovative
Research in Computer and Communication Engineering (IJIRCCE), 3, August, pp. 7454-7457.

[39] Satone, K. N., 2014. “Modern graph databases models”. International Journal of Engineering Research and Applica-
tions (IJERA), pp. 19-24.

[40] Wood, P. T., 2012. “Query languages for graph databases”. SIGMOD Record, 41, pp. 50-60.

[41] Jadhav, P. S., and Oberoi, R. K., 2015. “Comparative analysis of graph database models using classification and
clustering by using weka tool”.

[42] Macko, P., Margo, D., and Seltzer, M., 2013. “Performance introspection of graph databases”. In Proceedings of the
6th International Systems and Storage Conference, SYSTOR *13, ACM, pp. 18:1-18:10.

[43] Webber, J., and Robinson, 1., 2015. “The top 5 use cases of graph databases”. white paper, Neo4;.

[44] Kiiciikkececi, C., and Yazici, A., 2019. “Multilevel object tracking in wireless multimedia sensor networks for surveil-
lance applications using graph-based big data”. IEEE Access, 7, pp. 67818-67832.

[45] Gomez-Rodriguez, M., Leskovec, J., and Krause, A., 2012. “Inferring networks of diffusion and influence”. ACM
Trans. Knowl. Discov. Data, 5(4), Feb., pp. 21:1-21:37.

[46] Skhiri, S., and Jouili, S., 2013. Large Graph Mining: Recent Developments, Challenges and Potential Solutions.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 103—124.

[47] Kan, B., Zhu, W., Liu, G., Chen, X., Shi, D., and Yu, W., 2017. “Topology Modeling and Analysis of a Power Grid
Network Using a Graph Database”. International Journal of Computational Intelligence Systems, 10(1), p. 1355.

[48] T.K., A. K., Thomas, J. P., and Parepally, S., 2017. “An efficient and secure information retrieval framework for content
centric networks”. Journal of Parallel and Distributed Computing, 104, jun, pp. 223-233.

[49] Barik, M. S., Mazumdar, C., and Gupta, A., 2016. “Network Vulnerability Analysis Using a Constrained Graph Data
Model”. pp. 263-282.

[50] Diederichsen, L., Choo, K.-K. R., and Le-Khac, N.-A., 2019. “A graph database-based approach to analyze network
log files”. In Network and System Security, J. K. Liu and X. Huang, eds., Springer International Publishing, pp. 53-73.

[51] Esser, S., 2019. “Using graph data structures for event logs”.

[52] Universal Robots. Real-Time Data Exchange (RTDE) Guide. Online. URL https://www.universal-robots.com/how-
tos-and-fags/how-to/ur-how-tos/real-time-data-exchange-rtde-guide-22229, Accessed 2020-01-08.

[53] Technical Committee, 2008. “IEEE standard for a precision clock synchronization protocol for networked measurement
and control systems - redline”. IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002) - Redline, July, pp. 1-300.

[54] Robinson, 1., Webber, J., and Eifrem, E., 2015. “Graph database internals”. In Graph Databases, second edi ed.
O’Relly, ch. 7, pp. 149-170.

[55] Besta, M., Peter, E., Gerstenberger, R., Fischer, M., Podstawski, M., Barthels, C., Alonso, G., and Hoefler, T., 2019.
“Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, System Designs, and Graph Queries”.

[56] Fosic, 1., and Solic, K., 2019. “Graph Database Approach for Data Storing, Presentation and Manipulation”. In
2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), IEEE, pp. 1548-1552.

[57] Huang, H., and Dong, Z., 2013. “Research on architecture and query performance based on distributed graph database
Neo4j”. In 2013 3rd International Conference on Consumer Electronics, Communications and Networks, IEEE,
pp- 533-536.

[58] Candell, R., Remley, C., Quimby, J., Novotny, D., Curtin, A., Papazian, P., Koepke, G., Diener, J., and Kashef, M.,
2017. Industrial wireless systems: Radio propagation measurements. Tech. rep., National Institute of Standards and
Technology, Gaithersburg, MD.

[59] Candell, R., Hany, M., Liu, Y., and Montgomery, K. Reliable, High Performance Wireless Systems for Factory Automa-
tion. URL https://www.nist.gov/programs-projects/reliable-high-performance-wireless-systems-factory-automation.



