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The hardness of the effective inverse-power-law potential, which can be obtained from thermodynamics or collision
integrals, can be used to demonstrate similarities between thermodynamics and transport properties. This link is inves-
tigated for systems of increasing complexity (i.e., the EXP, square-well, Lennard-Jones, and Stockmayer potentials; ab
initio results for small molecules; and rigid linear chains of Lennard-Jones sites). These results show that while the two
approaches do not yield precisely the same values of effective inverse power law exponent, their qualitative behavior
is intriguingly similar, offering a new way of understanding the effective interactions between molecules, especially
at high temperatures. In both approaches, the effective hardness is obtained from a double-logarithmic temperature
derivative of an effective area.

I. INTRODUCTION

The nature of interactions between chemical entities
(atoms, particles, molecules, etc.) underpins all measureable
macroscopic thermophysical properties. At all temperatures,
measured properties are driven by a delicate equilibrium be-
tween attraction and repulsion. At extremely high tempera-
tures, the entities have so much kinetic energy that their inter-
actions are entirely dominated by repulsive interactions; the
particles are able to probe increasingly repulsive parts of the
potential during the brief time that they are interacting. At
lower temperatures, the balance between attraction and repul-
sion swings in the direction of attraction, and at the Boyle
temperature (where the second virial coefficient is zero), the
attraction and repulsion balance each other on average.

In the 1960s, significant activity centered around efforts
to connect thermodynamic and transport properties of dilute
gases1–8, though that effort seems to have fallen out of favor in
the intervening years. This paper aims to nudge the communi-
ties of researchers in transport and thermodynamic properties
towards each other.

One practical motivation for considering the effective hard-
ness of the interaction is to constrain the functional forms
of empirical correlations of thermophysical properties needed
for technical applications. It is an unfortunately common sit-
uation that no experimental data are available for tempera-
tures much above ambient temperature; this presents obvious
problems for applications involving high temperatures, such
as combustion. Therefore, developing a theoretically rigorous
test for the proper extrapolation of both the virial coefficients
and the transport property models at very high temperatures
is of great value to ensure that the correct limiting values are
reproduced in the limit of infinite temperature, and also that
quantitatively correct extrapolation behavior is enforced for
high but not infinite temperature.
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II. EFFECTIVE IPL EXPONENT

The inverse power law (IPL) potential is given by

V = ε
(σ

r

)n
(1)

with V the potential, ε the energy scaling parameter, σ the
length scaling parameter, r the separation, and n the hardness
of the repulsion. The second virial coefficient of this potential
has a concise closed-form solution9,10:

B2 =
2π
3

σ3Γ(1−3/n)(T ∗)−3/n (2)

where T ∗ = T/(ε/kB), and Γ is the mathematical Gamma
function.

The IPL satisfies isomorph theory exactly over its entire
phase diagram11 and it is therefore desirable to map the prop-
erties of real fluids onto the properties of the IPL. The effec-
tive inverse-power-law exponent neff (sometimes called the
density scaling exponent) makes a number of appearances
throughout the literature on isomorph theory12,13. The quan-
tity neff arises naturally from the consideration of properties
along lines of constant residual entropy, and neff is used in
molecular simulations within isomorph theory to trace out
lines of constant residual entropy13,14 because neff defines the
relationship between temperature and density along a line of
constant residual entropy.

Physically, the neff can be thought of as a means of char-
acterizing how “hard" the interactions are between interact-
ing entities (sites, atoms, molecules). A very large value of
neff indicates that the interactions are more like those of hard
spheres (a rigid hard sphere has a neff of infinity), and the
minimum stable IPL potential has an exponent of 3. Strictly
speaking, this understanding of the neff is only valid for fluids
for which the correlation between virial energy and potential
energy is strong (the necessary condition for the application of
isomorph theory), and here the focus is on dilute gases, which,
except in the limit of infinite temperature, cannot be expected
to necessarily follow isomorph theory. Nevertheless, this pa-
rameter still provides useful physical insights.
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A. Thermodynamic route

The residual entropy is defined by

sr ≡ s(T,ρN)− s(ig)(T,ρN) (3)

where s is the entropy, s(ig) is the ideal gas entropy, T is the
temperature, and ρN is the number density. The parameter s+

is then defined by

s+ ≡ −sr

kB
(4)

From thermodynamics, the effective inverse-power-law
(IPL) exponent is defined by the thermodynamic relation15

neff ≡ 3
(

∂ ln(T )
∂ ln(ρN)

)
s+

= 3
ρN

T

(
∂T
∂ρN

)
s+

(5)

It can be obtained directly from an empirical equation of
state16, or from molecular dynamics simulations17 and is often
called the density scaling exponent, in which case the density
scaling exponent is given by neff/3.

Application of the mathematical identity

(
∂T
∂ρN

)
s+

=−

(
∂ s+

∂ρN

)
T(

∂ s+

∂T

)
ρN

(6)

yields the definition

neff =−3
ρN

(
∂ s+

∂ρN

)
T

T
(

∂ s+

∂T

)
ρN

, (7)

valid for all densities.
In the limit of zero density, (1/T )× (∂ s+/∂ρN)T is posi-

tive because the entropy of a finite-density gas must always be
less than that of an ideal gas at the same temperature and den-
sity – interactions, whether attractive or repulsive, increase the
structure of the fluid phase. In a virial expansion where virial
coefficient terms above B2 are dropped, the second virial co-
efficient expansion expression for s+ is defined by

s+ =B2ρN + . . . (8)

with the definition

B2 ≡
d(T B2)

dT
= B2 +T

dB2

dT
(9)

The zero-density limit of ρN/(∂ s+/∂T )ρN is an indetermi-
nate form of 0/0, therefore, de l’Hôpital’s rule yields

lim
ρN→0

neff =−3

(
∂ s+

∂ρN

)
T

T
�
�
�
��>

1(
∂ρN

∂ρN

)
T(

∂ 2s+

∂T ∂ρN

)
ρN

(10)

and after substitution the result for the effective exponent from
thermodynamics is

lim
ρN→0

neff =−3
T

dB2

dT
+B2

T 2 d2B2

dT 2 +2T
dB2

dT

=− 3(
dlnB2

dlnT

) (11)

because in the limit of zero density(
∂ s+

∂ρN

)
T
=B2 (12)

and

T
(

∂ 2s+

∂T ∂ρN

)
= T 2 d2B2

dT 2 +2T
dB2

dT
(13)

Thus in the zero-density limit, the effective IPL exponent can
be obtained directly from the second virial coefficient B2 and
its temperature derivatives. In the case of the IPL potential of
hardness n, substitution of Eq. (2) into Eq. (11) yields n again.

Equation (11) can be slightly reformulated to further high-
light the similarities with the neff coming from the viscos-
ity route. To do so, the effective area from the thermody-
namic route can be defined as Aeff,B2 ≡ B

2/3
2 . Substituting

into Eq. (11) yields

lim
ρN→0

neff =− 3dlnA3/2
eff,B2

dlnT

 =− 2(
dlnAeff,B2

dlnT

) . (14)

An alternative (defective) definition of the second virial co-
efficient can be obtained from neff = −3/(dlnB2/dlnT ) in
analogy to the viscosity definition of the effective hardness,
but this alternative definition is not recommended because the
maximum in the second virial coefficient (where dB2/dT = 0)
results in a pole. A further definition can be obtained from the
acoustic virial coefficients (see the SI, Section ??), but is also
not recommended due to the presence of poles. So far, the
present definition from Eq. (11), which was obtained rather
fortuitously, is the only one that is well-behaved at all temper-
atures of interest.

B. Viscosity route

To first order in the Sonine expansion, the dilute-gas vis-
cosity of the IPL potential is given by

η∗
ρN→0,IPL =

5
16

(
T ∗

π

)1/2 1
Ω(2,2)∗ (15)

where η∗ = ησ 2/
√

mε , and with the reduced collision inte-
gral Ω(2,2)∗ equal to18 (see supporting information)

Ω(2,2)∗ =
1
2

A2(ν = n+1)Γ
(

4− 2
n

)
(

2
n

)2/n

(T ∗)2/n

, (16)
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FIG. 1. Values of η+ for the fully-repulsive IPL potential of hardness
n and the EXP potential in the zero-density limit.

where A2 is a function of the hardness of the potential18 (see
supporting information). Thus in the case of the IPL fluid,
Ω(2,2)∗ ∝ (T ∗)−2/n. This result, in a different form, was uti-
lized by Hellmann et al. in their discussion of Lennard-Jones
chains19, and in subsequent work on the same theme20.

If the value of the effective collision integral and its deriva-
tive with respect to temperature are imposed to be equal to
those of the IPL, an effective hardness can be extracted from
the collision integral of the real fluid by the functional form

neff =
−2Ω(2,2)∗

T
dΩ(2,2)∗

dT

=− 2(
dlnΩ(2,2)∗

dlnT

) . (17)

This parameter was explored by Mason21 in the 1950s for the
EXP-6 potential, though a slightly different formulation was
used; Mason defined sη = ln(η)/ ln(T ), which is related to
neff by sη = (1/2) + (2/neff). The definition in Eq. (17) is
for viscosity, but an analogous formulation can be obtained
for self-diffusion from Ω(1,1)∗. The formulation in Eq. (17)
represents a tautology for the IPL potential. For other poten-
tials, the right-hand-side of Eq. (17) represents the effective
hardness of the potential obtained from the transport property
model. The derivation of this result is in the supporting infor-
mation (see Section ??).

As is described in Ref. 18, the value of η+
ρN→0 for the

IPL fluid has no temperature dependence, only n dependence.
Therefore, if the effective inverse power law exponent from
transport and thermodynamics both yield approximately the
same effective exponent, the value of η+

ρN→0 should also ap-
proach a value corresponding to the effective IPL exponent.
Figure 1 shows the values for selected IPL potentials, and the
EXP potential (to be described below). The values are within
10% of the universal value 0.27 proposed by Rosenfeld22.

C. Entropy Scaling

The framework of modified residual entropy scaling18,23

provides some guidance on the correct behavior of viscos-
ity models in the dense phase – for fluids that have strong
correlations between their virial and potential energies (are
strongly correlating in the Roskilde-simple sense), isomorph
theory12,13,15,24–29 describes that the (dimensionless) macro-
scopically scaled viscosity η̃ should be a monovariate func-
tion of the residual entropy over large parts of the phase dia-
gram. Isomorph theory provides a quasi-rigorous explanation
for entropy scaling approaches of transport properties. The
IPL potential follows entropy scaling exactly, unlike real flu-
ids which can only ever approximate entropy scaling to greater
or lesser extents.

The macroscopically reduced viscosity is given by

η̃ =
η

ρ2/3
N

√
mkBT

(18)

where η is the shear viscosity, ρN is the number density, m
is the mass of one molecule, kB is Boltzmann’s constant, and
T is the temperature. Although η̃ diverges at zero number
density, when both sides are multiplied by the negative of the
residual entropy to the power of 2/3, and a new variable η+ is
defined by

η+ ≡ η̃ ×
(
s+
)2/3 (19)

the new term η+ does not diverge at zero density18,23. The
zero-density limit of η+ is given by the form

lim
ρN→0

η+ =
ηρN→0√

mkBT
(B2)

2/3 (20)

This chimeric formulation includes an effective area coming
from viscosity (

√
mkBT/ηρN→0), and another from thermo-

dynamics ((B2)
2/3), and therefore the scaled viscosity η+ is

a competition between these two effective areas. The similar-
ity of these areas has been shown in a previous publication30.

The interest in this scaling, and especially its high-
temperature limit, is that the dilute-gas limit of η+ defines a
very narrow band of acceptable values for interactions that can
be suitably modeled by an inverse-power-law18,30 potential of
fixed exponent. This had already been shown by Rosenfeld in
199922.

D. Repulsion versus attraction

In this section the contributions to the thermodynamic neff
from attractive and repulsive effects are considered individu-
ally; such a subdivision cannot be made straightforwardly in
the case of transport properties.

The attractive and repulsive contributions cannot be unam-
biguously decoupled; both have some contribution at all sep-
arations (whether that contribution is of import is a separate
question). Some historical approaches have focused on split-
ting the potential into portions where the force (F =−dV/dr)
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is repulsive-only and attractive-only (the Weeks-Chandler-
Andersen approach31). An alternative approach from Heyes
et al.10 is to consider the contributions to the second virial co-
efficient from the attractive and repulsive contributions to the
residual pressure.

Another means of separating the potential that dovetails
with the approach in this paper is to consider the integrand
of the virial coefficient defined by

B2 = 2πNA

∫ ∞

0
[1− exp(−βV (r))]r2dr (21)

with β = 1/(kBT ). At a given temperature, portions of the in-
tegrand greater than zero correspond to separations for which
the interactions yield positive contributions to B2 (are repul-
sive), and integrands less than zero correspond to separations
for which the interactions are attractive32. If quantum correc-
tions are not included (see below), these contributions corre-
spond to the pairwise separations where the potential is pos-
itive or negative. This insight offers a straightforward means
to consider independently the attractive and repulsive contri-
butions to the second virial coefficient. The subdivision of the
second virial coefficient can be written as

B2 = B2,att +B2,rep (22)

in which B2,att is always negative, and B2,rep is always positive.
The effective hardness can be calculated for each contribution
by Eq. (11).

Perhaps the simplest prototypical fluid with attraction and
repulsion is the square-well fluid defined by

V =

 ∞ r < σ
−ε σ < r < λσ
0 r > λσ

, (23)

which has the virial coefficient contributions (evaluated from
Eq. (21) for the negative and positive parts, respectively) of

B2,rep =
2π
3

σ3 (24)

B2,att =−2π
3

(exp(βε)−1)σ3(λ 3 −1). (25)

The value of neff from the repulsive contribution will always
be infinite, but the attractive part has the neff for r > σ of

neff,att =−3
exp(βε)−1− (βε)exp(βε)

(βε)2 exp(βε)
, (26)

where βε = 1/T ∗, which is independent of the width of the
attractive well. The limiting values are 0 for βε → ∞ and 3/2
for βε → 0.

The overall reciprocal neff can be shown (SI, section ??)
to be a weighted average of the reciprocals of the neff of the
attractive and repulsive parts:

1
neff

=
Brep

Btot

1
neff,rep

+
Batt

Btot

1
neff,att

(27)

where

Bχ = Bχ +T
dBχ

dT
, (28)

where the subscript χ indicates the repulsive, attractive, or
total contribution.

For the square-well case, the overall neff therefore reduces
to

neff,SW =
Btot

Batt
neff,att (29)

E. Summary

The focus of this study is to investigate the behavior of the
effective IPL exponent and what lessons this parameter can
offer in terms of understanding the nature of interactions be-
tween particles and molecules. The focus is on the dilute-gas
limit because this limit is analytically accessible; the dilute-
gas limit informs the behavior for dense states.

The structure of this paper parallels the analysis in Ref. 30;
the effective hardness of the interactions are first investigated
for some model fluids in order to obtain insights about the na-
ture of this parameter, and then having a deeper appreciation,
these lessons are used to investigate the properties of noble
gases and small polyatomic molecules accessible to first prin-
ciples calculations. The paper closes with a discussion of a
practical application of testing the extrapolation of empirical
models.

III. MODEL POTENTIALS

Even with advances in the state-of-the-art analysis of
molecules from first principles calculations, model potentials
still have many lessons to offer because they can be probed to
a level of detail that is simply impossible for real substances.
Therefore, this section considers some standard pair poten-
tials.

A. Square-Well

The square-well fluid was already discussed above, but here
the calculation of its collision integral (and hence its viscos-
ity neff) is also included. The second virial coefficients of
the square-well fluid are particularly concise (see Eq. (24)
and Eq. (25)), but the collision integrals are more involved.
Modern numerical analysis techniques (adaptive quadrature
and Chebyshev expansions) enable accurate calculation of neff
from the viscosity route. The analysis and the Python code are
described in the SI.

In the case of the square well fluid (a behavior common
to all fluids with an infinitely repulsive hard core), the neff
goes to infinity in the limit of infinite temperature, and in the
case of the square well fluid, it also has a pole in its viscosity
neff caused by a maximum in its collision integral, a behavior
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transport (dashed curve) routes for a square-well potential of λ = 2

that seems to be consistent with molecular fluids (see below),
though none of the ab initio calculations extend to tempera-
tures low enough to definitively locate the maximum of the
collision integral.

B. Lennard-Jones

The second virial coefficients of the Lennard-Jones fluid are
known exactly from closed-form expressions. In addition, the
Lennard-Jones fluid is frequently considered as the reference
fluid for estimating dilute-gas transport properties, so it is im-
portant to see how well (or not) this model captures the correct
behavior of real fluids.

A number of closed-form solutions for the second virial
coefficient B2 of the Lennard-Jones fluid are available in the
literature, but a convenient formulation is that of Jones33 (of
Lennard-Jones fame), and recently re-presented by Sadus34,35,
given for the general Mie potential

V = ε
(

n
n−m

)( n
m

)m/(n−m) [(σ
r

)n
−
(σ

r

)m]
(30)

by

B∗
2 =

B2

σ3 =
2
3

πF(y) (31)

with

yn =

(
n

n−m

)n(n−m
m

)m

(T ∗)m−n (32)

and

F(y)

y
3

(n−m)

=

{
Γ
(

n−3
n

)
− 3

n

∞

∑
i=1

Γ
(

im−3
n

)
yi

i!

}
(33)

While Eq. (33) contains an infinite sum, the series is con-
vergent, and 200 terms were used, ensuring a very accurate
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FIG. 3. Effective IPL exponent neff for the Lennard-Jones 12-6 po-
tential from the B2 formulation of Jones33–35 (solid curve) and from
the empirical collision integral correlation from Kim and Monroe36

(dashed curve)

formulation. Figure 3 presents values for the effective IPL
exponent calculated from Eq. (31) in concert with Eq. (11),
which yields a value for the effective IPL exponent equal to
zero approaching zero temperature, and after passing through
a maximum, approaches the asymptote of an effective IPL ex-
ponent of 12 at high temperatures. The high-temperature limit
captures the repulsive part of the pairwise interactions, and ac-
cordingly, for the Mie potential, the high-temperature limit for
the IPL exponent is equal to the exponent n in Eq. (30).

To first order in the Sonine expansion, the dilute-gas vis-
cosity formulation for the Lennard-Jones fluid is given by

η∗
ρN→0

=
5
16

√
T ∗

π
1

Ω(2,2)∗ (34)

where the collision integral Ω(2,2)∗ is as given by the em-
pirical form of Kim and Monroe36, and η∗ is defined in the
same manner as the IPL potential. Higher-order correction
terms are not used here in order to ensure consistency with
the dilute-gas viscosity of the IPL potential. The value of η+

is then obtained from

η+ =
η∗
√

T ∗
(B∗

2)
2/3, (35)

where B∗
2 = B∗

2 + T ∗dB∗/dT ∗ is obtained from analytic
derivatives of B∗

2.
Figure 4 shows the calculated values of η+ in the domain of

validity of the correlation of Kim and Monroe36 (0.3 ≤ T ∗ ≤
400). The curve approaches the value of 0.264822 at high
temperatures (the value for an IPL exponent of 12; see the SI
of Ref. 30). The extrapolation behavior for T ∗ > 400 of the
collision integral correlation of Kim and Monroe is incorrect
(See the SI of Ref. 18); the collision integral should approach
the behavior of an IPL of exponent n = 12.

The effective IPL exponent for viscosity can be obtained by
evaluation of Eq. (17) for the Lennard-Jones fluid. An empir-
ical equation for the collision integral Ω(2,2)∗ is provided in
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the work of Kim and Monroe36, and complex step derivatives
are used to evaluate the temperature derivative with minimal
loss in precision. Figure 3 also shows calculated values for
the effective IPL exponent in the domain of validity of the
correlation. At high temperatures, there is spurious curvature
in the function caused by the empirical fit, but the effective
hardness of the potential is approaching the curve for the ther-
modynamic effective hardness.

The Lennard-Jones fluid is a demonstration of excellent
consistency between the high-temperature behavior of its ther-
modynamic and transport models – both approach the behav-
ior of neff = 12 at high temperatures.

C. EXP

As will be evident from a consideration of the noble gases,
the Lennard-Jones fluid does not share its repulsive behavior
with the noble gases. A pair potential that more faithfully
captures the high-temperature behavior is the EXP potential,
which is defined by

V = ϕ0 exp(−r/r0), (36)

where ϕ0 is the energy scaling parameter, and r0 is the length
scaling parameter.

Sherwood and Mason give the approximate second virial
cofficient of this potential by37

B2 =
2π
3

r3
0B̃, (37)

where the dimensionless quantity B̃ is given by

B̃ = ln(γx)3 + c1 ln(γx)+ c2 +
6exp(−x)

x3 + ..., (38)

where c1 = 4.93480199414941, c2 = 2.40411445241682, and
γ = 1.781072417990198, and where the dots signify higher-
order terms that are dropped (see Ref. 30 and its supporting

information). With the definition x = ϕ0/(kBT ), dx/dT =
−x/T ,

T
dB̃
dT

=−x
dB̃
dx

, (39)

and therefore

B2 =
2π
3

r3
0

(
B̃− x

dB̃
dx

)
. (40)

The x derivative term is given by

− x
dB̃
dx

=−3ln(γx)2 − c1 + exp(−x)
(

6
x2 +

18
x3

)
. (41)

In order to evaluate neff, the second derivative term is
needed

T 2 d2B̃
dT 2 = x2 d2B̃

dx2 +2x
dB̃
dx

, (42)

and the second derivative with x as the independent variable is

x2 d2B̃
dx2 = {−c1 −3ln(γx)2 +6ln(γx)

+exp(−x)
(

6
x
+

36
x2 +

72
x3

)
}

(43)

After substitution into Eq. (11) and cancellation

neff =−3
B̃− x

dB̃
dx

x2 d2B̃
dx2

(44)

which yields the curve in Fig. 5, which is a monovariate func-
tion of the parameter x. The curve is nearly linear in these
semi-log coordinates, except for at very high temperatures
where a very subtle deviation from linearity is present.

The values of ϕ0/kB are on the order of 5×107 K for noble
gases (see the SI of Ref. 30), therefore, even though Eq. (44)
has a pole at 1/x u 0.474, the range of applicability of the
EXP potential is up to approximately 107 K, well above the
temperature that atoms are ionized. For instance, the first ion-
ization limit (temperature at which 1% of atoms are ionized)
for the noble gases from helium to xenon are on the order of
103 K38, a factor of 104 smaller than the approximate limit of
the EXP model.
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Eq. (46))

The collision integral of the EXP potential is available in
tabular form39, so to make use of it, an empirical equation
was fit in order to evaluate Eq. (17) in a manner analogous to
that of the Lennard-Jones 12-6 potential. In previous work18,
no derivatives of the collision integral were needed, and inter-
polation was used, but a different approach is required here.
A rational polynomial function of the form

I22 =

∑
i

niα i

∑
i

diα i , (45)

where α = ln(x), was fit to the tabulated data of I22 from
Ref. 39 with the use of unweighted differential evolution min-
imization of the sum of square deviations with all coefficients
n⃗, d⃗ constrained to be in (-1000, 1000), and d0 = 1. Plots of
this function and the fitted values are in the SI (see section ??).
The effective collision integral is defined by Ω̃22 =α2I22. The
derivative in Eq. (17) is therefore expressed as

T
dΩ̃22

dT
= T

dΩ̃22

dα
dα
dx

dx
dT

=−dΩ̃22

dα
, (46)

and evaluated through the use of complex step derivatives.
The values of neff coming from the viscosity model are shown
in Fig. 5, showing a striking similarity to those of the thermo-
dynamic model.

D. Stockmayer

The canonical 12-6-3 Stockmayer pair potential is the
Lennard-Jones 12-6 potential with the subtraction of an
orientation-dependent point dipole contribution,

V (r,θ1,θ2,ϕ) = 4ε
[(σ

r

)12
−
(σ

r

)6
]
−Vµ (47)

where
Vµ

ε(µ∗)2
(σ

r

)3 = [2cosθ1 cosθ2 − sinθ1 sinθ2 cosϕ ] (48)

This potential is a commonly considered model for species
with dipolar interactions40.

Definition of the reduced dipole moment (µ∗)2 and de-
scription of calculation of B2 from the closed form solution
of Bartke and Hentschke41 (with additional terms in the se-
ries expansion) are described in detail in Ref. 30 (and its
SI). These terms are needed to calculate neff from the ther-
modynamic route. Multicomplex derivatives from the pymcx
Python package42 are used to calculate the temperature deriva-
tives. Figure 6 shows the results of these calculations for the
thermodynamic neff, for which a coherent result is seen: the
stronger the relative strength of the dipole, the more the peak
value of neff is reduced. The curves are obtained from an-
alytic solutions and are smooth. Even for very large dipole
moments, the qualitative behavior of neff doesn’t change sig-
nificantly (the value for (µ∗)2 for ordinary water is on the or-
der of five43 (pp. 599)). In this case, scaling the temperatures
by the Boyle temperature does not cause collapse of the neff
coming from the thermodynamic route.
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FIG. 6. Values for neff from thermodynamic and transport routes for
the Stockmayer potentials with (µ∗)2 = (1,2,3,4,6,8,10).

For the viscosity route for neff, tabulated values of the col-
lision integral are available in Monchick and Mason44 for val-
ues of (µ∗)2 = (1,2,3,4,6,8,10); Smith and Munn45 identify
issues with the collision integrals for T ∗ > 30, so skepticism
of the high-temperature behavior is appropriate. In order to
evaluate the temperature derivative of the collision integral, a
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two-fold approach was taken:

• the data points for the Stockmayer fluid of dipole (µ∗)2

were divided by the values for the Lennard-Jones fluid
at the same value of T ∗. This is notionally the same
approach taken by Xiang et al.40.

• an interpolating spline function (without any smooth-
ing) was used to fit the reduced collision integral with
the splrep function of scipy.interpolate. The
temperature derivative of this functional form was then
employed to calculate neff from Eq. (17).

While there is still some irregularity in these curves caused
by the collision integral data, over almost an order of mag-
nitude in temperature, the collapse of the neff curves is nearly
complete when the temperature is scaled by the Boyle temper-
ature. The high-temperature limit must be a neff of 12, as the
repulsive exponent dominates the high-temperature behavior,
so all other behaviors seen here can be ascribed to noise in
the collision integral data; the present data do not permit a
conclusive discussion of the correct high temperature behav-
ior for polar fluids. At low temperatures, the neff increases
again, similar to the case of the Lennard-Jones fluid. The
larger (µ∗)2 is, the lower the minimum of the viscosity neff
is; this partly helps to explain the results for water shown be-
low.

IV. AB INITIO

In recent years, first principles (ab initio) calculations
of thermophysical properties of dilute gases have become
tractable for small rigid molecules, and these results form the
basis of this section.

A. Atomic

In the case of the noble gases, ab initio calculations of the
virial coefficients and transport properties are available. Ref-
erence 30 collected the recommended ab initio data that ex-
isted as of that publication in tabular form.

1. Pair Potentials

Before considering the thermophysical properties of the no-
ble gases in the dilute gas limit, it is instructive to consider
their pair potentials as calculated from ab initio calculations.
Figure 7 shows the ab initio calculated potentials for the no-
ble gases taken from the literature. If the natural logarithm of
both sides of Eq. (36) is taken, the equation can be rewritten
as

ln(V/kB) = ln(ϕ0/kB)− r/r0, (49)

therefore if the pair potential V approaches a linear curve in
ln(V ) versus r coordinates, the pair potential is approaching

an EXP potential. This figure demonstrates that the repul-
sive core of the noble gases are indeed fairly modeled by the
EXP potential because their smallest separations correspond
to approximately linear curves in these semi-logarithmic co-
ordinates. The assumption of exponential repulsion in the re-
pulsive core was used directly for argon46 and krypton47 when
fitting their empirical potential functions. The behavior of an
exponential repulsion is contrary to the commonly assumed
repulsion of IPL of fixed exponent (e.g., in the Lennard-Jones
12-6 potential); when taking the logarithms of both sides of
Eq. (1), the result is ln(V ) = ln(εσ n) + n ln(r), a linear de-
pendence on ln(r), which is decidedly not the behavior shown
in the figure at small separations. That is to say, the repul-
sion of the Lennard-Jones fluids is too steep and the repulsion
should be exponential rather than inverse-power, a result that
has been previously described (e.g., see Ref. 48 or Fig. 6.
from Ref. 49).
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FIG. 7. Pair potential calculated from ab initio methods for the noble
gases from the literature (helium-450, neon51, argon52, krypton47,
xenon53), with markers at each tabulated potential value connected
with straight line segments, and with pair separation r normalized by
the pair separation at the minimum of the potential. The dashed lines
show extrapolation to zero separation.

2. Virial Coefficients

In Ref. 30, empirical correlations of second virial coeffi-
cients were developed in order to evaluate their temperature
derivatives. While these correlations were generally adequate
for evaluation of first derivatives of B2

30, the requirement
of also yielding correct second temperature derivatives of B2
does not always apply. Therefore, a more accurate method
for calculation of virial coefficient models was required in this
work. It is well known in the numerical analysis literature that
taking derivatives of noisy data is problematic, and it proved
very challenging to obtain reliable values of neff from fits of
ab initio virial coefficient data due to the necessity of having
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accurate second derivatives with respect to temperature.
By far the most robust solution for the noble gases proved

to be the integration of the empirical Tang-Toennies poten-
tials for each species. The Tang-Toennies empirical fit to the
potential is given by

V (R) =Aexp(a1R+a2R2 +a−1R−1 +a−2R−2)

−
8

∑
n=3

C2n

R2n

[
1− exp(−bR)

2n

∑
k=0

(bR)k

k!

]
(50)

and the necessary coefficients are given in each respective
publication (neon54, argon46, krypton47, xenon53), and pro-
vided in the SI. The second virial coefficients are obtained by
a third-order quantum correction, as is described in detail in
the supporting information (see the SI, section ??). The sec-
ond virial coefficient is then obtained from

B2 = Bcl(T )+λBqm,1(T )+λ 2Bqm,2(T )+λ 3Bqm,3(T ) (51)

with λ = h̄2/(12mkBT ), where m is the mass of one atom in
kg, kB is Boltzmann’s constant (1.380649×10−23 J K−1), and
h̄ = 1.054571817×10−34 J s. The classical term reads

Bcl =−2πNA

∫ ∞

0
[exp(−βV )−1]r2dr (52)

and the higher order quantum terms are of a similar form, but
with different integrands.

Each of the contributions in Eq. (51) are indefinite inte-
grals (see for instance the description in Ref. 55). The re-
pulsive core of these potentials were “patched" with the ex-
ponential core with the curves provided in the literature, and
supplemented in this work with curves for the fluids (neon,
xenon) where none was provided previously. The integrals
were joined into a single integral, and integrated from 0.01Rε
to 100Rε with trapezoidal integration, where Rε is the separa-
tion at the minimum of the potential. Multicomplex algebra
from the pymcx package42 in Python was used to obtain nu-
merical derivatives of B2 with respect to temperature with ac-
curacy approaching numerical precision. This approach yields
values of B2 and its temperature derivatives, the ingredients
needed to evaluate neff.

In the case of helium-4, calculations of the virial coeffi-
cients (and neff) were taken from fully quantum calculations
obtained from the literature56. The resulting values of neff
are calculated for temperatures from 1 K to 10,000 K, and
no additional analysis was needed in order to obtain values
for neff. Figure 8 shows the values obtained from the ab ini-
tio calculations, showing a somewhat similar qualitative be-
havior to Fig. 3, albeit with a much larger magnitude peak.
The theory behind neff was primarily developed for the liquid
phase, and the explanation for the large magnitude of the peak
is not presently clear. One possible explanation is that the
helium atom is somewhat more delocalized as quantum ef-
fects become more important, and the probability of finding a
helium-4 atom in the repulsive well of the potential becomes
more likely than would otherwise be expected. It should be
noted that an even more accurate potential is now available

for helium-457, but that potential has not yet been used to cal-
culate collision integrals or virial coefficients.
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FIG. 8. Effective IPL exponent neff for 4He from the ab initio
calculations56. Markers indicate tabulated values and are connected
with straight line segments to guide the eye.

Similarly, the results for the Tang-Toennies integration de-
scribed above provide reliable values of neff for the other no-
ble gases. Figure 9 shows the curves calculated for the noble
gases over an extreme range in temperature, outside the range
where the species are stable. Contrary to the Lennard-Jones
potential (see for instance Fig. 3), the high temperature limit
does not approach a horizontal asymptote in neff at high tem-
peratures.
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FIG. 9. Effective IPL exponent neff for the noble gases from B2 (up-
per panel; helium-4 in Fig. 8) and η (lower panel) routes. Values for
η taken from the literature (helium-456, neon55, argon46, krypton47,
xenon53).

3. Viscosity

For the ab initio data of shear viscosity, the effective colli-
sion integral for each discrete ab initio calculation is defined
by

Ω̃22 =

√
T

η
. (53)

The values of η were taken from classical calculations pre-
sented in the literature for each species (helium-456, neon55,
argon46, krypton47, xenon53). There is some noise in the vis-
cosity data, and as such, calculating the derivative of Ω̃22 with
respect to temperature requires some additional processing.
To evaluate the derivative, moving windows of 5 points were
fit by a third degree polynomial, and this approach yielded a
noisy value for neff, which was then smoothed to decrease the
noise. Some artifacts of the fitting approach can be identified,
but the overall curves are mostly smooth.

Figure 9 also presents the effective IPL exponent obtained
by this method. These results show that the effective IPL ex-
ponent obtained by the viscosity route is very similar to that of
the thermodynamic route, in both quantitative and qualitative

agreement. Both show a peak at approximately the same tem-
perature, and have similar high-temperature limits as well. On
the other hand, the low-temperature behavior differs. In the
case of the effective hardness coming from viscosity, there is
a local minimum at a value of neff of approximately 4. An ex-
treme anomaly can be seen in the case of helium-4, for which
its viscosity neff is similar to those of the heavier noble gases,
while its thermodynamic neff is an order of magnitude higher
at its peak (see Fig. 8).

B. Molecules

1. Rigid Lennard-Jones Chains

One of the present limitations of ab initio calculations is
that they can only be carried out for quite small molecules.
On the other hand, larger molecules are still of technical rel-
evance. A fair question is whether the behavior seen here
for small molecules should be expected to continue for larger
molecules. One model system that can provide some insight
into this question is rigid linear chains of Lennard-Jones 12-6
sites. This model, unphysical because it does not include in-
tramolecular flexibility, can nonetheless provide some insight
into the effective IPL exponent for larger molecules. For a
potential with orientational dependence, the second virial co-
efficient is obtained from

B2 =−2πNA

∫ ∞

0
(⟨exp(−βV )⟩−1)r2dr, (54)

where ⟨exp(−βV )⟩ is the orientational average of the poten-
tial for a center-of-mass separation of r. The orientational
average of a function G(θ1,θ2,ϕ) for a molecule with axial
symmetry is defined generically by

⟨G⟩= 1
8π

∫ 2π

0

∫ π

0

∫ π

0
Gsinθ1 sinθ2dθ1dθ2dϕ (55)

with the normalization constant of 8π being obtained from the
triple integral with the argument of G ≡ 1.

In order to evaluate exp(−βV ) for a given set of (r, θ1, θ2,
ϕ ), the linear molecule was initialized with its center of mass
at the origin of the Cartesian coordinate system, with its sites
oriented along the x axis, and then one molecule was rotated
around the −y axis by the angle θ1 (keeping the molecule in
the x-z plane), and the second molecule was rotated around
the −y axis by the angle θ2, around the +x axis by the angle
ϕ , and then translated in the +x direction by r. The site-site
interactions of each site i on the first molecule with each site j
on the second molecule are summed, forming M2 interactions
for a chain with M beads. Figure 10 shows a schematic of the
definition of the geometry of the molecules.

The code for the analysis used open-source
thread-parallelized code written in modern C++
(https://github.com/usnistgov/potter) to carry out the in-
tegration for B2 simultaneously with its temperature
derivatives.
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FIG. 10. Schematic showing the definitions of the angles θ1, θ2, and
ϕ for dimers projected into the x− z plane. The rotation angle ϕ is a
rotation taken around the +x axis.

This study represents the author’s first experience with
the calculation of second virial coefficients for rigid lin-
ear molecules, so verification was carried out, calculating
second virial coefficients that agreed with the results for
dimers58–60. Results for dimers with alternative potential
truncation schemes can also be found in the literature61,62.
Results verifying the classical second virial coefficients for
nitrogen63 are also provided in the code, showing that the ap-
proach agrees with the state-of-the-art calculations to nearly
the error estimation from the Monte Carlo-sampled potential.
Finally, results for the rigid 8-mer and 16-mer from Monte
Carlo methods were calculated by another group with an in-
dependent code64, along with their temperature derivatives,
confirming the values obtained in this work.

Figure 11 shows the effective exponents calculated from
the viscosity and thermodynamic routes for the rigid Lennard-
Jones chains. In the case of the thermodynamic neff, the curves
are still coherent with the simple potentials though there is a
larger magnitude peak followed by a decay to the value of 12
in the infinite temperature limit. This asymptote implies that
the high-temperature limit is governed by the site-site interac-
tions at contact with the r−12 repulsion.

The magnitude of the values for the viscosity neff values
are much larger. The curves tend to move upwards as the
chain length increases, a trend also noted by Hellmann et al.19;
their analysis considered the mean value of neff in the temper-
ature range 5 < T ∗ < 50, whereas the present study consid-
ers also the temperature dependence of the effective hardness,
rather than just the mean. The hypothesis, not accessible with
the present calculation data, is that neff for the longer chains
would also reach a maximum at sufficiently high tempera-
tures, followed by a decay back to the value of 12, in anal-
ogy to the values from the thermodynamic neff values. The
discrepancy between values of neff can be attributed to the ex-
treme anisotropy in the rigid Lennard-Jones chain model as
compared to more physical models like fully flexible Lennard-
Jones chains, which are more similar to real fluids (e.g., alka-
nes).
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FIG. 11. Effective IPL exponent neff for rigid LJC chains of site-
site distance σ and number of sites of 2,4,8,16 from the viscosity
and B2 routes. Viscosity data from Hellmann et al.19. A figure with
additional chain lengths is in the SI, Figure ??. The black curve
indicates the monomer value.

Galliero et al.65 found that the viscosity neff values var-
ied from 14.7 for the monomer to 19.8 for the 16-mer for
fully-flexible Lennard-Jones chains from dense-phase molec-
ular dynamics. If the maximum values for the thermodynamic
neff are used, and are overlaid with the averaged values taken
from Hellmann’s data for rigid chain viscosity (obtained from
the slope of a linear fit of ln(η∗) versus ln(T ∗) for T ∗ > 5),
and Galliero’s data for flexible chain viscosity, they all show
that the averaged effective hardness is increasing as the chain
length increases. This does not represent an apples-to-apples
comparison, but nonetheless, all three methods yield a similar
conclusion: the longer the chain, the more effectively repul-
sive the chains are, up to a point. At very high temperatures,
the effective interaction is again controlled by site-site inter-
actions.
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FIG. 12. Summary of neff values for rigid Lennard-Jones chains with
M segments (obtained from this study and Hellmann et al.19) and for
fully-flexible Lennard-Jones chains65. Note the logarithmic abscissa.
Points are connected with lines to guide the eye.

2. Polyatomic Molecules

Obtaining the second (and higher) virial coefficients from
integration of the potential between molecules (along with
quantum corrections) is much more complicated for poly-
atomic molecules than for monatomic gases. As such, while
in theory multifold integration over orientation and center-
of-mass separation could be carried out to obtain the second
virial coefficients, and multicomplex algebgra used to calcu-
late the temperature derivatives (as above for the noble gases),
a more pragmatic approach is taken here. While empirical fits
of B2 data from ab initio calculations are often infected by
spurious changes in curvature, they are usually at least rea-
sonable in their qualitative behavior.

The same fluids as in Ref. 30 were considered, except for
heavy water, for which reasonable high temperature behavior
of neff could not be achieved from empirical correlations of B2.
In the case of heavy water, the behavior of neff should be very
similar to that of ordinary water, but it was not, and this dif-
ference was already present in the first derivative of B2

30 (see
Fig. 8). In the case of hydrogen sulfide, the published data66

are calculated values from correlations of the data, and the
underlying ab initio results were provided by the authors67.

Figure 13 shows the values of neff obtained from the empir-
ical models for B2, and the curves are qualitatively similar to
those of the noble gases. The temperature was normalized by
the Boyle temperature (obtained from the fit of B2, the tem-
perature where B2 = 0). The values for water are much lower,
and do not follow the same trajectory as the other fluids stud-
ied here, which show a striking similarity.
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FIG. 13. Effective IPL exponent neff for polyatomic molecules via
B2 and η routes

The same approach as for the noble gases for neff coming
from the viscosity data is used. The effective collision inte-
gral is defined by Eq. (53), and Eq. (17) is used to obtain the
effective IPL exponent. Here too, the qualitative agreement is
similar among all the fluids studied, with the exception of wa-
ter, which is decidedly different. In fact, the effective hardness
coming from the viscosity data is even more similar than those
coming from the virial coefficients. The curves are nearly in-
distinguishable for many of the fluids.

V. PRACTICAL APPLICATIONS

The analysis thus far has been very theoretical in nature, in-
vestigating model systems and small rigid molecules. One of
the practical ramifications of this work is that it shows that the
high-temperature behavior of the neff coming from both ther-
modynamic and transport routes are generally similar. This
has a tangible consequence: because the neff are approach-
ing each other at high temperatures, both thermodynamics and
transport should be governed by the same effective IPL expo-
nent. Thus, the values of η+ for real fluids should fall between
0.2580 (n = 6) and 0.2886 (n = ∞) in the high temperature
limit, and should stay within this band. It is not clear that this
behavior should necessarily hold for large flexible molecules
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FIG. 14. Values of η+ in the dilute-gas limit for the models in NIST
REFPROP 1068 as a function of reduced temperature; each curve
represents one pure fluid. The grey band indicates the range of ac-
ceptable high-temperature values.

(e.g., proteins), but it seems likely that it would based on the
discussion of the rigid Lennard-Jones chains.

The NIST REFPROP thermophysical property software is
the de facto standard for the thermophysical properties of
more than 150 of the most well measured chemical species
and implements empirical correlations for thermodynamic
and transport properties. Some of the selected models were
implemented several decades ago, and our understanding of
the appropriate behavior of these models has improved in the
interim.

Figure 14 shows calculated values of η+ up to extremes in
temperature for the models implemented in NIST REFPROP
version 10.0. The models for ηρN→0 and B2 are both invoked
in order to calculate η+, according to Eq. (35). Of the more
than 140 fluids for which REFPROP provides viscosity mod-
els, only 22 yield predictions of η+ that are within the accept-
able band at a temperature of 10 times the critical temperature,
a temperature at which most molecules are already ionized, or
fully dissociated. The analysis in this work suggests that a
consideration of neff for both of transport and viscosity can
result in much more consistent thermodynamic and transport
models at high temperatures.

VI. OUTLOOK AND RECOMMENDATIONS

The effective hardness is shown to behave in a similar fash-
ion for both transport and thermodynamics, especially at high
temperatures. Arriving from two different directions, the ef-
fective hardness can be expressed as -2 divided by the double-
logarithmic derivative of an effective area with respect to the
temperature (Eq. (14) and Eq. (17)). The identical mathemati-
cal form suggests a heretofore novel interpretation of the inter-
play between thermodynamics and molecular transport. It is
speculated (though not yet confirmed) that the effective hard-
ness represents a universal means of linking transport proper-

ties and thermodynamics, though the “proof" remains empiri-
cal in nature.

The approach proposed in this work brings quantitative
constraints into the high-temperature extrapolation of the cou-
pled transport and thermodynamic models in the dilute gas
limit. The condition of η+ being within the band of 0.25 to
0.29 in the limit of high temperatures is a very stringent test.
As such, the transport and thermodynamic models need to be
developed concurrently in order to ensure that the models will
extrapolate correctly when coupled together.

The Boyle temperature can be thought of as the temperature
at which the interactions between pairs of molecules transition
from being attractive (on average) to repulsive (on average).
The Boyle temperature is very roughly equal to 2.5 times the
critical temperature69. Therefore, it is reasonable to expect
that above the Boyle temperature, when combining the trans-
port and thermodynamics models together, they should yield
a value of η+ like those of an IPL.

Discussing the properties of a fluid such as propane at 3600
K is of purely academic interest as such a fluid no longer ex-
ists at this temperature, but the appropriate extrapolation be-
havior of η+

ρN→0 and B2 at extremely high temperatures also
ensures quantitatively correct extrapolation at more moderate
temperatures of technical relevance but at which no experi-
mental data may exist.

VII. SUPPLEMENTARY MATERIAL

In order to ensure reproducibility of our results, the supple-
mentary material includes:

• The Python code and analysis for integration of the
Tang-Toennies potentials with quantum corrections

• The Python code and analysis for the square-well fluid

• An archival copy of potter. The repository can be found
at https://github.com/usnistgov/potter.

• The tabular results for the rigid Lennard-Jones chains

• Additional mathematical analysis and figures
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