
Notes on Interrogating Random Quantum Circuits

Luís T. A. N. Brandão*1 and René Peralta*2

May 29, 2020

Abstract
Consider a quantum circuit that, when fed a constant
input, produces a fixed-length random bit-string in each
execution. Executing it many times yields a sample of
many bit-strings that contain fresh randomness inherent
to the quantum evaluation. When the circuit is freshly
selected from a special class, the output distribution of
strings cannot be simulated in a short amount of time
by a classical (non-quantum) computer. This quantum
vs. classical gap of computational efficiency enables ways
of inferring that an honest sample contains quantumly
generated strings, and therefore fresh randomness. This
possibility, initially proposed by Aaronson, has been re-
cently validated in a “quantum supremacy” experiment
by Google, using circuits with 53 qubits.

In these notes, we consider the problem of estimating
information entropy (a quantitative measure of random-
ness), based on the sum of “probability values” (here
called QC-values) of strings output by quantum evalua-
tion. We assume that the sample of strings, claimed to
have been produced by repeated evaluation of a quantum
circuit, was in fact crafted by an adversary intending to
induce us into over-estimating entropy. We analyze the
case of a “collisional” adversary that can over-sample and
possibly take advantage of observed collisions.

For diverse false-positive and false-negative rates, we
devise parameters for testing the hypothesis that the sam-
ple has at least a certain expected entropy. This enables
a client to certify the presence of entropy, after a lengthy
computation of the QC-values. We also explore a method
for low-budget clients to compute fewer QC-values, at
the cost of more computation by a server. We conclude
with several questions requiring further exploration.

Keywords: certifiable randomness, distinguishability, en-
tropy estimation, gamma distribution, public randomness,
quantum randomness, randomness beacons.

*National Institute of Standards and Technology (Gaithersburg USA).

ORCIDs: 1 [0000-0002-4501-089X] and 2 [0000-0002-2318-7563].
Opinions expressed in this paper are from the authors and are not
to be construed as official or as views of the U.S. Department of
Commerce. Certain commercial entities, equipment, or materials
may be identified in this document in order to describe an ex-
perimental procedure or concept adequately. Such identification
is not intended to imply recommendation or endorsement by
NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

Index of sections
1. Introduction . 2

1.1. System model 2
1.2. Entropy of a sample 4
1.3. Organization 4

2. Exponential model. 5
2.1. The frequency-density representation 5
2.2. Summary statistics 6
2.3. Entropy per honest string 6
2.4. Sampling with vs. without replacement 6

3. Sums of QC-values. 7
3.1. Statistics of interest 8
3.2. CDFs of sums of i.i.d. variables 8
3.3. Testing honest sampling 9
3.4. Threshold vs. probability 9
3.5. Sample sizes vs. thresholds 9

4. Low-budget clients. 11
4.1. Truncated QC-values 11
4.2. Sum of truncated QC values (STQC) 12

5. Entropy estimation 12
5.1. Overview 13
5.2. The client 13
5.3. The pseudo-fidelity adversary 14
5.4. The collisional adversary 16
5.5. Final randomness for applications 20
5.6. Classes of adversaries 20

6. Concluding remarks. 21
Acknowledgments . 22
References . 22
A. Terminology . 22

A.1. Abbreviations 22
A.2. Acronyms 23
A.3. Symbols . 23

B. Expected value and variance 23
B.1. Auxiliary primitives 23
B.2. Expected values 24
B.3. Variances 24
B.4. The chosen-count sampling case 24

C. Sum of QC-Values (SQCs) 24
C.1. CLT approximation 24
C.2. Exact Gamma distributions 25
C.3. A Gamma approximation 27

D. Discretization of QC-values 28
D.1. Individual probabilities 28
D.2. Collisions 28
D.3. Approximate sum of “entropies” 30

E. Tables with more detail 32

Page 1 of 35

https://orcid.org/0000-0002-4501-089X
https://orcid.org/0000-0002-2318-7563

List of Figures
Figure 1 QC-values upon uniform string sampling . 5
Figure 2 QC-values upon quantum string sampling . 5
Figure 3 Various PDFs of QC-values 6
Figure 4 Various PDFs of SQC with 𝑚 = 10 8
Figure 5 PDF approximations of QC-values 𝑋𝐹,.5 . 9
Figure 6 PDF approximations of SQC 𝑋𝐹,𝑚=5,.5 . . 9
Figure 7 Inverse CDFs of SQC with 𝑚 = 106 10
Figure 8 Inverse CDFs of SQC with 𝑚 = 107 10
Figure 9 Sample size vs. FN=FP, with 𝜙1 = 0.002 . 10
Figure 10 Sample size vs. FN=FP, with 𝜙1 = 0.01 . . 11

List of Tables
Table 1 Statistics of QC-values 6
Table 2 Expected number 𝑐 of collisions (𝑁 = 253) . 7
Table 3 Statistics of SQCs of 𝑚 strings 8
Table 4 Number of strings for SQC distinguishability 11
Table 5 TQC truncation thresholds 11
Table 6 Statistics of Truncated QCs 12
Table 7 Number of client-verified TQC values . . . 12
Table 8 Number of strings for SQC distinguishability 16
Table 9 Comparison pseudo-fidelity vs. collisional . . 19
Table 10 Gamma vs. Normal (CLT) approximations . 27
Table 11 Entropy approximations: Uniform, 𝑞 = 1 . . 31
Table 12 Entropy approximations: Uniform, 𝑞 ≥ 1 . . 32
Table 13 Entropy approximations: Quantum, 𝑞 ≥ 1 . 32
Table 14 Sample size for SQC distinguishability . . . 33
Table 15 Sample size for STQC distinguishability . . 34
Table 16 Statistics per bin 𝑐 and budget factor 𝑏 . . . 35

1. Introduction

The recent experimental proof of quantum supremacy
using Noisy Intermediate-Scale Quantum (NISQ) devices
showed that quantum circuits with 50+ qubits can now
be sampled with significant fidelity [AABB+19]. Using
this technology, it is possible, in principle, to generate a
sample of bit-strings that can at a later time be “certi-
fied” as containing strings that were quantumly sampled
[Aar19], implying it can be externally verified that the
sample contained at least a minimum of fresh entropy.

We address the following two related questions: Under
a claim that a sequence of bit-strings has been generated
by sampling a given quantum circuit, how much entropy
can be safely assumed to be contained in it? Given a
goal of entropy, how many strings should be sampled to
enable a verification with high assurance? We consider an
adversarial setting, as usual in cryptography, where the
claimant tries to trick us into over-estimating entropy.

A metrological viewpoint. In the scope of the Na-
tional Quantum Initiative Act [NQIA] from the U.S
Congress, the National Institute of Standards and Tech-
nology (NIST) is interested in the development of quan-
tum computing and its applications. A potential appli-
cation, within reach of current or soon-to-reach state of
the art, is the production of certifiable randomness based
on evaluation of random quantum circuits [Aar19]. The
Computer Security Division at NIST has a special inter-
est in the area of randomness, which has an essential role
in cryptography. “Certifiable” randomness in particular
may be useful in the context of public randomness, such
as that produced by randomness beacons [KBPB19].

In these notes we take the viewpoint of a metrology body
[NIST] in doing a preliminary evaluation of the param-
eters of a potential application for obtaining certifiable
randomness. We consider a cryptographic perspective,
e.g., when asking what false positive and false negative
rates should be considered in distinguishability exper-
iments. This is a preliminary analysis and should be
taken as such. We do not investigate here the complexity-
theoretic basis for the assumption that sampling from
certain quantum circuits can be done efficiently with a
quantum computer but not classically [AC16]. However,
we explore how certain attacks drastically reduce entropy
from the set of bit strings to be certified. The analysis
thus illustrates the need to define appropriate safety mar-
gins for diverse parameters (e.g., number of strings to
sample), and rules out certain ranges thereof.

1.1. System model

1.1.1. The operator

We want to compare an honest operator of the quantum
computer — which generates a sample with fresh entropy
via an honest quantum evaluation, leading a sample to
be accepted with a statistically high probability (i.e., low
false-negative rate) — vs. a malicious operator — which
maliciously minimizes the amount of entropy in a sample
crafted to sill be acceptable with a not too-low probability
(i.e., a not-too-low false-positive rate).

In any of the cases, we assume that the circuit received for
quantum evaluation was unpredictable to the operator.
It could for example be based on fresh public random-
ness, or have been provided by a client interested in the
experiment. The operator then needs to output a sample
of strings (supposedly by evaluation of the circuit) after
a short amount of time, namely before being able to
compute their output probabilities.

The honest case. The honest operator of the quantum
computer repeatedly evaluates the quantum circuit, to
probabilistically obtain output strings that, based on the

Page 2 of 35

computational model, inherently contain fresh entropy.
It is assumed that the sampling from such probability
distribution in a fast way is only possible by way of said
quantum computation. Later, a classical super-computer
performs a lengthy computation (e.g., of a few days)
of the output probabilities of the output strings (e.g.,
see Ref. [PGNHW19] for an analysis of the complex-
ity of simulating probability values for circuits with 54
qubits). Finally, a statistical analysis of those probabili-
ties confirms that some strings must have been output by
quantum evaluation, and, consequently, that the sample
set contains entropy that was fresh at the time of the
sample generation. Such randomness is then denoted as
“certified” (or “certifiable”) randomness.

The adversarial case. In adversarial contexts (as
with cryptographic applications), we are interested in
scenarios where the operator of the quantum computer
wants to trick us into accepting a maliciously produced
sample. Therefore, we consider that the sampling may
have been performed in a variety of ways, such as:

• uniformly at random from a defined set 𝑆 of strings;
• as a pseudo-randomly generated output computed

from a fixed secret seed;
• using rejection sampling on the output of the circuit;
• a mix of the above and other unknown methods.

The malicious goal is to minimize the entropy of the
sample, while having a not-too-low probability of it being
a posteriori accepted by the statistical test performed
by a client, who will compute and take in consideration
the probability values of the strings in the sample. We
consider concrete specifications of adversary in Section 5.

The quantum computation. The operator can use
a quantum computer to quantumly-evaluate circuits that
output strings of 𝑛 bits. We denote by 𝑆𝑛 = {0, 1}𝑛

the set of 𝑛-bit strings. There are #(𝑆𝑛) ≡ 𝑁 = 2𝑛

such strings. The honest computer implementation is
characterized by a fidelity parameter 𝜙. The sampling is
with probability 𝜙 from correct quantum evaluation of
the circuit, and otherwise (i.e., with probability 1 − 𝜙)
uniform from 𝑆𝑛. As of this writing, both Google and
IBM report having quantum computers with more than 50
bits. As a reference in this work, we use the specification
reported about the quantum computer of Google, which
can evaluate circuits with 53 qubits at a fidelity of about
0.002 [AABB+19].

When honestly evaluating the quantum circuit, with fi-
delity 𝜙, the computer operator is not able to distinguish
whether an output string was obtained by uniform se-
lection (with probability 1 − 𝜙) or by a correct circuit
evaluation (with probability 𝜙). A malicious operator
can naturally decide to sample strings in arbitrary ways,
but (in the considered model) cannot determine, before

an expensive and lengthy classical computation, anything
new about the probability that a given string would have
been output from a correct circuit evaluation.

1.1.2. Circuits and probabilities

The circuits, with particular specifications [AABB+19,
Fig. 3], are selected from a class with large cardinality,
such that it is infeasible to precompute useful information
about a non-negligible proportion of circuits.

QC-values. Each quantum circuit 𝒞 has its own prob-
abilistic distribution of output strings upon quantum
evaluation. We are interested in the set

QCVALUES = {Prob(𝑠 ← 𝒞) ∶ 𝑠 ∈ 𝑆𝑛} (1)

of “probabilities of occurrence” — here denoted as “QC-
values” — of the output strings. For simplicity we used
a set, assuming all probabilities are different; otherwise
we could describe a list with possible repetitions.

Assumptions. The subsequent analysis in these notes
is based on assumptions whose coverage we have not
independently investigated. (Different assumptions may
invalidate some of our estimates of security or entropy
in adversarial settings.) An important notion is what
we call a “short amount of time” — the time duration
between the moment the adversary learns the circuit
specification and the deadline for publishing a sample of
output strings. At a high level, the assumptions are:

1. for all circuits in the class, the QC-values of the
output strings fit an exponential model: the density
of QC-values (real numbers between 0 and 1) is as-
sumed well approximated by an “exponential” curve.
More concretely, the “frequency density” is a normal-
ized negative exponential function 𝑓(𝑝) = 𝑁 ⋅ 𝑒−𝑁⋅𝑝

of the “probability value” 𝑝 [BISB+18].
2. a quantum computer can efficiently evaluate the

circuit many times within a short amount of time;
3. without prior knowledge of (an approximation of)

the probability values, classical computers cannot,
within a short amount of time, simulate a circuit
evaluation with the appropriate output distribution;

4. a computer (quantum or classical) cannot, within a
short amount of time, compute a useful approxima-
tion of probability values of the output strings;

5. a classical super-computer can calculate the QC-
values (i.e., Prob(𝑠 ← 𝒞) for any string 𝑠) after
a moderately large amount of time, at a large-but-
possible-in-practice computational cost.

The abilities and inabilities mentioned above depend on
the number 𝑛 of qubits. In these notes we focus on

Page 3 of 35

𝑛 = 53 qubits. We assume the computations referred in
Assumptions 3, 4 and 5 require resources exponential in
𝑛. Thus, 𝑛 needs to be chosen such that the exponential
cost is infeasible in a short amount of time, but feasible
in a moderately large amount of time.

Towards certified randomness. Relying on the
above, and based on a proposal by Aaronson [Aar19],
here is, at a high level, a potential experiment to produce
certified (i.e., externally verifiable) randomness:

1. The operator is given the specification of a quantum
circuit freshly chosen at random from a given class.
(For example, in the context of public randomness,
the choice may be based on a timely output of a
trusted randomness beacon.)

2. Soon thereafter, the operator evaluates the circuit
many times and publishes the output strings.

3. Later, a classical supercomputer computes the “QC-
values” corresponding to those sampled strings.

4. By statistically analyzing the “QC-values”, one then
gains assurance (or not) that at least some strings
were quantumly produced and thus have entropy.

For efficiency of execution we consider a sampling of
many strings from the same circuit. Comparatively, the
proposal by Aaronson uses one new circuit for each string,
to enable, with respect to entropy estimation, a security
reduction to a complexity theoretic hardness assumption.
It is an open problem what kind of reduction can be
made for the case of sampling multiple strings from a
single circuit. Section 2.4 considers tradeoffs between the
two approaches, and mentions the possible intermediate
case of several circuits with several strings each.

Random variables. For the initial statistical analy-
sis in these notes, the main random variable of interest
for each sampling experiment is the sum, across sampled
strings, of the QC-values. Recall that these are the “prob-
ability values” that a correct evaluation of the quantum
circuit — what we denote as quantum sampling fidelity
1 — would output such strings. We denote by 𝑋 the
random variable corresponding to this sum of QC-values
(SQC). We use indices to indicate the type of sampling
(𝑈, 𝑄, 𝐹, 𝐶) and its parameters (𝑚, 𝑞, 𝜙):

• Uniform: 𝑋𝑈,𝑚 (𝑚 strings are sampled uniformly)
• Pure Quantum: 𝑋𝑄,𝑚 (𝑚 strings are obtained by

correct quantum evaluation of the circuit)
• Fidelity 𝜙: 𝑋𝐹,𝑚,𝜙 (each of 𝑚 strings is obtained

either, with probability 𝜙, by correct quantum eval-
uation, or, with probability 1 − 𝜙, uniformly)

• Chosen-count 𝑞: 𝑋𝐶,𝑚,𝑞 (𝑞 strings are sampled by
correct quantum evaluation, and the other 𝑚 − 𝑞 are
pseudo-randomly selected)

The index 𝑚 may be omitted when it is 1. Note that the
Pure Quantum and the Chosen-count sampling are only
possible with a quantum computer with fidelity 1.

Distinguishability. In these notes, we are focused on
the problem of distinguishing honest Fidelity sampling
from a quantum circuit vs. malicious sampling performed
by an adversary with the goal of inducing over-estimation
of the entropy in the sample. We propose parameters for
sampling experiments, distinguishability thresholds, and
entropy estimation, assuming an adversarial setting.

1.2. Entropy of a sample

The meaning of entropy can be elusive and subject to
nuances. The measure of entropy of a string, or of a
sequence of strings, only makes sense with respect to
a probability distribution of outputs. For example, in
the case of a uniform distribution over the set of 𝑛-bit
strings we say that each occurring string has 𝑛-bits of
entropy. Conversely, a string obtained pseudo-randomly
from a fixed apriori determined seed (whose bits are not
counted) has overall entropy 0.

Typical interpretations of entropy relate to unpredictabil-
ity, compressibility, and/or reproducibility. We focus our
analysis on estimating Shannon entropy (the expected
negative binary logarithm, − log2, of probabilities) rather
than minimum entropy (min(− log2)).

Estimating entropy. In these notes, we estimate the
entropy of a sample viewed as a vector of strings. We
consider an adversarial setting where each string can be
obtained from a different probability distribution. The
distributions can have dependencies, such as those related
to sampling without replacement, and/or from sorting the
sequence based on some order relation. Even though the
adversary has an incentive to minimize entropy, that goal
is conditioned on the sample being accepted by the client
with a certain minimum probability. For appropriately
parametrized experiments, this requires the adversary to
use some quantumly-obtained strings that have associated
entropy. If we take into account the conditional form
of probability distributions, then we can consider the
overall entropy of the sample as sum of “entropies” of
its consecutive strings, when for each string there is an
underlying conditional probability distribution that takes
into account the dependency on the previous strings. In
fact, we will consider an adversary that selects strings one
by one, with dependencies across each other, and argue
that such adversary is optimal (within stated constraints).

1.3. Organization

Section 2 analyzes the exponential model of QC-values.
Section 3 discusses the distribution and statistics of
“Sums of QC-values” (SQCs) for several sampling ex-
periments, and determines optimal thresholds for distin-

Page 4 of 35

guishability. Section 4 explores alternative parameters for
settings where the client has a “low budget” for verifying
QC-values computed by a distrusted server. Section 5
considers the estimation of entropy in the face of an ad-
versarial sampling. Section 6 concludes with suggested
questions for followup. The Appendix contains auxiliary
details. Section A defines abbreviations, acronyms and
symbols. Section B derives formulas for the expected
value and variance of several distributions. Section C
analyzes several distributions of sums of QC-values. Sec-
tion D considers the discretization of QC-values and the
statistics when in the face of collisions. Section E presents
additional large tables.

2. Exponential model

2.1. The frequency-density representation

We consider the model [BISB+18] where the quantum
circuit outputs strings whose frequency density (𝑓, a
continuous approximation) of QC-values is defined by an
exponential distribution (Exp) with rate 𝑁:

𝑓(𝑝) = Exp[𝑁] = 𝑁 ⋅ 𝑒−𝑁⋅𝑝 (2)

2.1.1. U: Uniform sampling

The function 𝑓 is not a probability density function
(PDF) of the output strings, but rather a PDF of their
QC-values when strings are sampled uniformly from the
set 𝑆𝑛 of all 𝑛-bit strings. The corresponding cumulative
distribution function (CDF) 𝐹 is

𝐹(𝑝) = 1 − 𝑒−𝑁𝑝. (3)

In the continuous model we calculate statistics while
integrating between 0 and infinity, but the contribution
between 1 and infinity is negligible (∼ 𝑒−𝑁). The actual
discrete QC-values (see a discretization in Appendix D),
being probabilities, are between 0 and 1.

Figure 1 plots the frequency density curve (𝑓), and its
accumulator (integral, times 𝑁), along with a histogram
of 𝑓. In the histogram, the height of each constant-width
bin equals 𝑁 times the integral of the curve between the
limits of the bin. For example: 63.2 % is the fraction of
strings with “QC-values” ≤ 1/𝑁. The scales of the axes
are represented relative to 𝑁 = 2𝑛. The curve vanishes
exponentially fast.

0 1/N 2/N 3/N 4/N 5/N 6/N
0

0.1 N

0.2 N

0.3 N

0.4 N

0.5 N

0.6 N

0.7 N

0.8 N

0.9 N

N

QC-value

f: Exp[N] PDF
N × "Exp[N] CDF"
Histogram (bin width 1/N)

0.632

0.233

0.086
0.031 0.012 0.004

Figure 1: QC-values upon uniform string sampling

0 1/N 2/N 3/N 4/N 5/N 6/N
0

0.1 N

0.2 N

0.3 N

0.4 N

0.5 N

0.6 N

0.7 N

0.8 N

0.9 N

N

QC-value

N×f×p: Erlang[2,N] PDF
N × "Erlang[2,N] CDF"
Histogram (bin width 1/N)

0.264
0.330

0.207

0.108
0.051

0.023

Figure 2: QC-values upon quantum string sampling

2.1.2. Q: [pure] Quantum sampling

For more insight, Fig. 2 plots the density curve of fre-
quency times QC-value, and its accumulator (times 𝑁).
Since QC-values are the probabilities of QC-values upon
sampling by quantum circuit evaluation, the correspond-
ing PDF (𝑓𝑄) and CDF (𝐹𝑄) of QC-values are as follows:

𝑓𝑄(𝑝) = 𝑁 ⋅ 𝑓(𝑝) ⋅ 𝑝 = 𝑁2 ⋅ 𝑝 ⋅ 𝑒−𝑁⋅𝑝 (4)
𝐹𝑄(𝑝) = 1 − (𝑁 ⋅ 𝑝 + 1) ⋅ 𝑒−𝑁⋅𝑝. (5)

In Fig. 2, the accumulator curve shows 𝐹𝑄(𝑝) multiplied
by 𝑁 to enable simultaneous view with 𝑓𝑄(𝑝).

This is called an Erlang distribution, with “shape” 2 and
“rate” 𝑁. Interestingly, this random variable (𝑋𝑄) corre-
sponds to the sum of two exponential random variables
(𝑋𝑈) with rate 𝑁. This stems from the additivity of the
Erlang distribution, of which the exponential distribution
is the special case with shape 1. (It would be interesting
to explore whether this equivalence as a sum of two inde-
pendent exponential variables may have a more insightful
interpretation as a quantum phenomenon.)

Page 5 of 35

0 1/N 2/N 3/N 4/N 5/N 6/N
0

0.10 N

0.20 N

0.30 N

0.40 N

0.50 N

0.60 N

0.70 N

0.80 N

0.90 N

1.00 N

PDFs of QC-values
Pure-Quantum
Fidelity 0.4
Uniform

Figure 3: Various PDFs of QC-values

2.1.3. F: Fidelity sampling (the practical case)

In practice, honest sampling uses a quantum computer
characterized by a fidelity 𝜙 between 0 and 1. This fidelity
is the probability that during the quantum computation
all gates in the circuit function without fault. When one
or more gates fail, the model assumes that the evaluation
yields a uniformly random bit-string. The resulting PDF
and CDF of QC-values are a mix of the uniform and the
pure-quantum case, as follows:

𝑓𝜙(𝑝) = (1 − 𝜙) ⋅ 𝑓(𝑝) + 𝜙 ⋅ 𝑓𝑄(𝑝) (6)
𝐹𝜙(𝑝) = (1 − 𝜙) ⋅ 𝐹(𝑝) + 𝜙 ⋅ 𝐹𝑄(𝑝) (7)

The fidelity case (allowing a generic 𝜙) generalizes both
the uniform (𝜙 = 0) and the pure quantum cases (𝜙 = 1).
Figure 3 plots at once three PDFs of QC-values.

2.2. Summary statistics

From the PDFs of QC-values for each type of sampling
(e.g., 𝑈, 𝑄, 𝐹), we can derive statistics of interest, such as
the expected value (𝐸) and variance (𝑉). Table 1 shows
the resulting formulas. The calculations are detailed in
Appendix B. Two observations:

• Both 𝐸 and 𝑉 in the pure quantum case are twice
the corresponding statistic of the uniform case.

• The less trivial result is the variance 𝑉 [𝑋𝐹,𝜙] for

Table 1: Statistics of QC-values

Sampling type Random
variable

Expected
value 𝐸(𝑋) Variance 𝑉 (𝑋)

Uniform 𝑋𝑈 1/𝑁 1/𝑁2

Pure Quantum 𝑋𝑄 2/𝑁 2/𝑁2

Fidelity 𝑋𝐹,𝜙 (1 + 𝜙)/𝑁 (1 + 𝜙 ⋅ (2 − 𝜙))/𝑁2

fidelity sampling, since for each individual sampled
string the possible outcome as a uniform sampled
string (𝑋𝑈) is not independent of the possible out-
come as a correct quantum circuit output (as 𝑋𝑄).

2.3. Entropy per honest string

As a reference case, consider the expected entropy of
an individual string quantumly-sampled with fidelity 1.
Such entropy is slightly less than the number 𝑛 = 53 of
bits per string, since the quantumly-generated strings do
not have a uniform distribution. From the exponential
model for the frequency density of QC-values, we can
in a first approximation consider a notion of differential
entropy (using log base 2):

ℎ = ∫
∞

𝑝=0
𝑁 ⋅ 𝑓(𝑝) ⋅ 𝑝 ⋅ log2(𝑝) ⋅ 𝑑𝑝 (8)

In the integral, the factor 𝑁 ⋅ 𝑓(𝑝) corresponds to the
density-number of strings that have probability 𝑝. The
approximate result (ignoring terms negligible in 𝑛) is

ℎ = log2(𝑁) + (𝛾 − 1)/ log(2) = 𝑛 − 0.60995, (9)

where 𝛾 ≈ 0.57722 is the Euler-Mascheroni constant.
For 𝑛 = 53 this means about 52.39 bits of expected
entropy per string. This is the continuous approximation
of the Shannon entropy (10), which sums, across every
string, the product of each discrete QC-value and its log2.
Appendix D.1 considers a discretization.

ℎ =
𝑁

∑
𝑖=1

𝑝𝑖 ⋅ log2(𝑝𝑖). (10)

The 52.39 bits of entropy per string are valid in the setting
of honest fidelity-1 evaluation with replacement. That
value changes when considering a sample composed of
strings required to be distinct, and even more so if they
may be selected adversarially. Appendix D.2 considers
an adversary that outputs a sample only after observing
the result of many quantum evaluations of the circuit,
possibly observing repeated outputs.

2.4. Sampling with vs. without replacement

Independence vs. collisions. When sampling with
replacement, the probability of string collisions becomes
more significant as the sample size increases. When
uniformly sampling with replacement from a set with 𝑁
elements, the collision probability of about 50 % occurs
when the sample size 𝑚 is about √2 ⋅ log(2) ⋅ 𝑁. For
𝑁 = 253 this corresponds to about 111.7 million, i.e., 𝑚 ≈
0.776 ⋅ 226.5 strings. For non-uniform distributions, such
as for quantum string sampling, collisions are expected
to start earlier and be more frequent.

Page 6 of 35

Table 2 shows a few examples: the expected number of
collisions is 1 when 𝑚 ≈ 134.2 ⋅ 106 for uniform sampling,
or when 𝑚 ≈ 94.9 ⋅ 106 for quantumly sampling with
fidelity 1; if fixing the sample size to 232 strings, then the
expected number of collisions is about 210 for uniform
sampling, and about 211 for fidelity-1 quantum sampling.

Table 2: Expected number 𝑐 of collisions (𝑁 = 253)

𝐸(#coll) 𝑚
Uniform 1 227.0 ≈ 134.2 ⋅ 106

Quantum 226.5 ≈ 94.9 ⋅ 106

Uniform ≈ 210
232

Quantum ≈ 211

Explicit removal of collisions. We require that the
final sample does not contain collisions, (i.e., repeated
strings marked as output of the same circuit). In the
honest case this equates to sampling without replacement.
Thus, we require that the client rejects any sample con-
taining any pair of equal strings claimed to have been
generated from the same circuit. If a client does not check
for collisions, then an adversary could simply produce a
sample as a sequence of 𝑚 copies of a pseudo-randomly
generated string (with 0 entropy), and have a noticeable
probability of having an average probability value as high
or larger than an honest string from quantum evaluation.

Despite the mentioned requirement, as an approximation
we calculate statistics and thresholds while assuming
a sampling with replacement. This is valid when the
string length is sufficiently large. It is worth noticing
an (impractical) extreme case where the approximation
would not hold: sampling without replacement exactly
𝑁 = 2𝑛 strings, from a single circuit with 𝑛 qubits, yields
0 entropy (since all possible strings are present), apart
from the entropy contained in the ordering of the strings
(which can be 0 if maliciously ordered).

Changing the circuit. A repetition is counted as a
collision only when it happens within the same circuit.
Thus, collisions in the final sample can be inherently
avoided if requiring each string to be associated with a
different circuit. However, there is an efficiency motiva-
tion for proposing sampling from a single circuit or only
a few circuits, assuming that: (i) it is more efficient to
reevaluate a circuit, compared to preparing a new circuit
for first-time evaluation; (ii) it is more efficient to com-
pute many QC-values for a single circuit, compared to a
single QC-value for each of many circuits. If the sample
size is large enough to be reasonable to approximate the
sampling as being with replacement, then the statistics
of QC-values are similar between the single circuit and
many circuits cases.

An efficiency tradeoff. An alternative option to re-
duce the probability of collisions, while not substantially
decreasing efficiency, is to partition the sampling across
several circuits. Suppose the time taken to prepare a new
circuit for first time sampling is 104 times longer than
the time it takes to repeat one evaluation (e.g., 10 ms
vs. 1 𝜇). Then, allowing a sampling of up to 105 strings
per circuit would: (i) speed up the evaluation by about
9091 times, compared to the case of one string per circuit;
while (ii) only incurring a time increase factor of about
10 % compared to the case of sampling all strings from
the same circuit. With respect to verification time, the
complexity of verifying strings across several circuits in-
creases with the number of circuits, if assuming that the
computation/verification of several strings within each
circuit increases sub-linearly with the number of strings
(e.g., that verifying ten QC-values is less than 10 times
costlier than verifying a single QC-value).

A gap tradeoff. The range of possibilities between
one and many circuits may also allow tuning the gap be-
tween the time to sample strings and the time to compute
all QC-values. Compared with the many-string-from-a-
single-circuit setting, increasing the number of circuits to
simulate may substantially increase the time for comput-
ing QC-values, without significantly increasing the time
to evaluate the corresponding strings.

A subtle adversarial issue. An adversary who is able
to perform a very fast repeated evaluation of a quantum
circuit could possibly produce many string collisions. The
analysis of the frequency of collisions for each string would
show which strings are likely to have higher QC-values,
and could thus provide to the adversary an advantage in
skewing the SQC statistic, for example to adversarially
affect an estimation of entropy. This effect can be signifi-
cant if the number of qubits is small, namely when the
number of possible strings is smaller than the number of
evaluations the adversary is able to perform within the
time window to publish a sample.

3. Sums of QC-values

In this section we consider the distribution of the Sum
of QC-values (SQC). This distribution relates to the
Heavy Output Generation (HOG) test [AC16], where one
wants to find whether the SQC of generated outputs is
heavy enough to be reasonable to accept that some of the
originating strings must have been quantumly obtained.

We denote by 𝑋𝐹,𝑚,𝜙 the random variable SQC in the
honest case where 𝑚 strings are sampled by a quantum
computation with fidelity 𝜙. The cases of uniform sam-
pling (𝑋𝑈,𝑚) and pure-quantum sampling (𝑋𝑄,𝑚) are
special cases with fidelity 0 and 1, respectively.

Page 7 of 35

0 5/N 10/N 15/N 20/N 25/N 30/N 35/N 40/N
0

0.02 N

0.04 N

0.06 N

0.08 N

0.10 N

0.12 N PDFs of SQC (m=10)
Pure-Quantum
Fidelity 0.4
Uniform
Chosen-count (q=4)

Figure 4: Various PDFs of SQC with 𝑚 = 10

Another adversary of interest, with a quantum computer
with fidelity 1, chooses the number 𝑞 of quantumly-
sampled strings, and then uniformly samples the remain-
ing 𝑚 − 𝑞 ones. We denote the corresponding random
variable SQC as 𝑋𝐶,𝑚,𝑞 and denote the quotient 𝑞/𝑚 as
the “pseudo-fidelity” of the experiment.

3.1. Statistics of interest

Table 3 shows the expected values and variances of the
SQC of 𝑚 strings, for samplings of type 𝑈, 𝑄, 𝐹 and
𝐶. The results are computed in Appendix B. For the
first three sampling types the mean and the variance are
proportional to 𝑚, since each isolated circuit evaluation is
assumed independent of the other. It is worth noting that
the expected value of 𝑋𝐶,𝑚,𝑞 is the same as 𝑋𝐹,𝑚,𝑞/𝑚,
but the variance is slightly different.

Figure 4 shows the PDFs of SQCs for the 𝑈, 𝑄, 𝐶𝑞=4 and
𝐹𝜙=0.4 samplings of 𝑚 = 10 strings.

3.2. CDFs of sums of i.i.d. variables

The distinguishability analysis that we are aiming for
requires calculation of points in the CDF curves. However,
in comparison with the simple formula for the CDF of
QC-values, the distributions of SQCs need to account
for the new parameter 𝑚 that can specify an arbitrary
number of strings. A common approach to handle the
increase in complexity is to apply approximations that
simplify the analysis and are provably correct in a limit

Table 3: Statistics of SQCs of 𝑚 strings

Sampling type Random
variable

Expected
value 𝐸(𝑋) Variance 𝑉 (𝑋)

Uniform 𝑋𝑈,𝑚 𝑚/𝑁 𝑚/𝑁2

Pure Quantum 𝑋𝑄,𝑚 2 ⋅ 𝑚/𝑁 2 ⋅ 𝑚/𝑁2

Fidelity 𝜙 𝑋𝐹,𝑚,𝜙 (1 + 𝜙) ⋅ 𝑚/𝑁 (1 + 𝜙 ⋅ (2 − 𝜙)) ⋅ 𝑚/𝑁2

Chosen-count 𝑞 𝑋𝐶,𝑚,𝑞 (𝑚 + 𝑞)/𝑁 (𝑚 + 𝑞)/𝑁2

of increasing the number of summed variables.

Central Limit Theorem (CLT). When sampling a
large number of independently and identically distributed
(i.i.d.) QC-values, the distribution of their sum 𝑋∗,𝑚[,∗]
can be approximated by a Normal distribution (11), hav-
ing a Gaussian shaped PDF with mean 𝜇 = 𝐸[𝑋∗,𝑚[,∗]]
and standard deviation 𝜎 = √𝑉 [𝑋∗,𝑚[,∗]].

𝒩(𝜇, 𝜎) ∶ 1
𝜎

√
2 ⋅ 𝜋

𝑒− 1
2 (𝑥−𝜇

𝜎)2
(11)

At a first approximation, SQCs can be analyzed based
on the central limit theorem [BISB+18]. However, the
approximation can have noticeable inaccuracy if the num-
ber of summed variables is small and/or when evaluating
probabilities at the tails of the distribution.

Better approximations and exact formulas. Ap-
pendix C derives exact formulas for the PDFs and CDFs
of the SQCs under sampling experiments of interest. Even
for large 𝑚, the formulas are amenable for direct compu-
tation in the uniform, the quantum and the chosen-count
cases. For the general fidelity case we can use an exact
formula for not-too-large 𝑚, but when 𝑚 gets larger we
use a Gamma-approximation that yields better results
than the CLT.

For the upcoming analysis we are specifically interested
in the ability to evaluate the CDF and its inverse. The
Gamma distribution, with parameters derived in Ap-
pendix C.3, has a wide applicability, namely with the
following formula being applicable to several scenarios.

𝐶𝐷𝐹[𝑋∗] = 𝑃(𝑚 ⋅ (1 + 𝜙′), 𝑁 ′ ⋅ 𝑥𝑚), (12)

where 𝑃 denotes the [lower] incomplete gamma regular-
ized function (further details in Appendix C.2).

Particularly, the formula is:

• Correct for the uniform, the quantum and the
chosen-count cases, provided 𝜙′ = 𝜙 and 𝑁 ′ = 𝑁

• A better-than-the-CLT approximation for the gen-
eral fidelity case (F), provided 𝜙′ = 𝜙 ⋅ 𝑣 and
𝑁 ′ = 𝑁 ⋅ 𝑣, where 𝑣 = 1 + 𝜙 ⋅ (2 − 𝜙). The transfor-
mation of variables ensures that the expected value
(1+𝜙)⋅𝑚/𝑁 and the variance (1+𝜙⋅(2−𝜙))⋅𝑚/𝑁2

are as in the non-approximated case.

Figures 5 and 6 illustrate, for an example with 𝜙 = 0.5,
how much better the Gamma approximation is, compared
with the CLT (Gaussian) approximation. (The Gaussian
curve also extends to negative values.)

For not-too-large 𝑚, we can efficiently evaluate the PDF

Page 8 of 35

https://dlmf.nist.gov/8.2
https://dlmf.nist.gov/8.2
https://dlmf.nist.gov/8.2

0 1.0/N 2.0/N 3.0/N 4.0/N 5.0/N 6.0/N
0

0.10 N

0.20 N

0.30 N

0.40 N

0.50 N

0.60 N

0.70 N

0.80 N

0.90 N

1.00 N

QC-values(fid=0.5)
Real PDF
Gamma-approx. PDF
CLT-approx. PDF

Figure 5: PDF approximations of QC-values 𝑋𝐹,.5

0 2/N 4/N 6/N 8/N 10/N 12/N 14/N 16/N
0

0.02 N

0.04 N

0.06 N

0.08 N

0.10 N

0.12 N

0.14 N

0.16 N

0.18 N

0.20 N

SQC (m=5,fid=0.5)
Real PDF
Gamma-approx. PDF
CLT-approx. PDF

Figure 6: PDF approximations of SQC 𝑋𝐹,𝑚=5,.5

of the fidelity case (F) as a binomial weighted sum over
all possible numbers 𝑞 of quantumly sampled strings:

(1 − 𝜙)𝑚 ⋅
𝑚

∑
𝑞=0

(𝑚
𝑞

) ⋅ (𝜙
1 − 𝜙

)
𝑞

⋅ 𝑃 (𝑚 + 𝑞, 𝑁 ⋅ 𝑥𝑚). (13)

3.3. Testing honest sampling

Some terminology: We define distinguishability ex-
periments where the baseline question is: Are we in the
presence of an honestly generated set of 𝑚 strings [instead
of some other malicious or faulty sampling within a well-
defined range of behaviors]? In the scope of this experi-
ment/question, we define the following terms: negative
and positive respectively mean rejection and acceptance;
false and true respectively mean incorrect and correct
classification. We are particularly interested in the false
positive and false negative probabilities:

• False negative [rate] (FN): a test rejects an honestly
generated sample.

• False positive [rate] (FP): a test accepts a sample

generated by a reference malicious or faulty process.

When the honest case is characterized by fidelity 𝜙,
how many (𝑚) strings should be sampled, and what
threshold 𝑇 on the SQCs (𝑋) should be set for an accep-
tance/rejection test of honest behavior? It depends on:

• what is the reference malicious sampling procedure;

• what FN (𝜖1) and FP (𝜖2) rates are set as a goal.

Selecting a reference malicious sampling. As a
default reference, we sometimes measure FP with respect
to the uniform sampling case (i.e., with fidelity 0). How-
ever, the definition of FP should match a higher goal of
distinguishability. For example, if intending to maximize
the entropy estimate (see Section 5), then a more useful
FP will refer to a malicious case that ensures a certain
non-zero minimum of entropy. A useful reference of the
malicious sampling is 𝑋𝐶,𝑚,𝑚⋅𝜙/𝑘, where the adversary
samples with pseudo-fidelity 𝜙/𝑘 for some 𝑘 > 1, where
𝜙 is the claimed honest fidelity.

Selecting concrete FN and FP rates. For cryptog-
raphy applications, the value 2−40 is a common bench-
mark related to statistical security in the “one-shot” se-
curity scenario — what can the adversary do if having
luck up to an 𝜖-likely event? When application goals do
not indicate otherwise, we recommend 𝜖1 = 𝜖2 = 2−40

as a minimum goal for both FN and FP. In specific ap-
plications it might be reasonable to allow less stringent
security parameters, if explicitly justified.

3.4. Threshold vs. probability

Figure 7 shows, for several fidelity values 𝜙, the inverse
CDF of the SQC 𝑋𝐹,𝑚=106,𝜙 across 𝑚 = 106 sampled
strings. Each of these curves represents SQC as a func-
tion of the FN rate, i.e., of the accumulated probability
(horizontal axis) that the random variable 𝑋𝐹,𝑚,𝜙 is at
most equal to such threshold value (vertical axis). Fig-
ure 8 shows the same for sums across 𝑚 = 107 strings.
For the uniform case (𝜙=0) the curve is evaluated directly
from its exact formula. For the other cases the curves
are obtained from the Gamma approximation. For such
high 𝑚, the curves look visually the same as if they were
obtained from the CLT approximation.

The analysis of the curves illustrates the gap in SQC
as the fidelity increases, across the fidelity values in
{0, .001, .002, .005}. Also, comparing the two plots, it
is easy to notice the increase in the gap with the increase
in the number 𝑚 of sampled strings, becoming easier to
distinguish between two distinct fidelities.

3.5. Sample sizes vs. thresholds

We can now find, for each intended upper-bound 𝜖1 on

Page 9 of 35

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.9960 m/N

0.9970 m/N

0.9980 m/N

0.9990 m/N

1.0000 m/N

1.0010 m/N

1.0020 m/N

1.0030 m/N

1.0040 m/N

1.0050 m/N

1.0060 m/N

1.0070 m/N

1.0080 m/N

1.0090 m/N

N=2^53; m=10^6; m/N=1.11022E-10

Cumulative probability

S
Q

C
 (

S
um

 o
f Q

C
 v

al
ue

s)

Fidelity = 0.005
Fidelity = 0.002
Fidelity = 0.001
Fidelity = 0 (Uniform)

Figure 7: Inverse CDFs of SQC with 𝑚 = 106

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.9990 m/N

1.0000 m/N

1.0010 m/N

1.0020 m/N

1.0030 m/N

1.0040 m/N

1.0050 m/N

1.0060 m/N

N=2^53; m=10^7; m/N=1.11022E-09

Cumulative probability

S
Q

C
 (

S
um

 o
f Q

C
 v

al
ue

s) Fidelity = 0.005
Fidelity = 0.002
Fidelity = 0.001
Fidelity = 0 (Uniform)

Figure 8: Inverse CDFs of SQC with 𝑚 = 107

-40 -30 -20 -14 -10 -7 -4 -2-1

10^5

3×10^5

10^6

3×10^6

10^7

3×10^7
5×10^7

10^8

3×10^8

10^9

log2(FN=FP), in a Sqrt scale

m
: s

am
pl

e
si

ze
 (

nu
m

be
r

of
 s

tr
in

gs
)

(S
qu

ar
ed

-
lo

g
sc

al
e)

Fid1 = 0.002
Fid2/Fid1=3/4
Fid2/Fid1=1/2
Fid2/Fid1=1/4
Fid2/Fid1=0

Figure 9: Sample size vs. FN=FP, with 𝜙1 = 0.002

the FN rate what is the minimal number 𝑚 of strings
needed for an intended FP 𝜖2, i.e., that a defined malicious
execution with lower pseudo-fidelity 𝜙2 is accepted.

Example of FN vs. FP rates. Consider an honest
sampling of 𝑚 = 106 strings using fidelity 𝜙 = 0.002. If
the intended FN rate is 𝜖1 = 20 %, then the threshold
𝑇𝐹,𝑚,𝜙 is set at 𝑡 = 1.001156 ⋅ 𝑚/𝑁, i.e., the value 𝑡
satisfying Prob(𝑋𝐹,𝑚,𝜙 < 𝑡) = 0.2. If the malicious
reference is the uniform case, then the false-positive rate
is FP = 1 − Prob(𝑋𝑈,𝑚 > 𝑡) ≈ 12.4 %. If the malicious
reference is the case of fidelity equal to half of the honest
fidelity, then we get FP1 −Prob(𝑋𝐹,𝑚,𝜙/2 > 𝑡) ≈ 43.7 %.

Figures 9 and 10, respectively for honest fidelities 𝜙 =
0.002 𝜙 = 0.01, plot curves of the sample size (number
𝑚 of sampled strings) vs. the FN=FP rates (𝜖), for a
reference honest case 𝑋𝐹,𝑚,𝜙1

, and a malicious chosen-
count sampling 𝑋𝐶,𝑚,𝑚⋅𝜙2

with pseudo-fidelity 𝜙2, for
𝜙2/𝜙1 ∈ {0, 1/4, 2/4, 3/2}. The scales of the axes of the
plots are adjusted for a consolidated view of all plotted
pseudo-fidelities, while FN=FP range within [2−40, 2−1].
Each curve labeled with honest fidelity 𝜙1 and malicious
pseudo-fidelity 𝜙2 shows 𝑚 as a function of 𝜖 = FN = FP,
such that there exists a distinguishability threshold 𝑡 for
which Prob(𝑋𝐹,𝑚,𝜙1

< 𝑡) ≈ Prob(𝑋𝐶,𝑚,𝑚⋅𝜙2
> 𝑡) ≈ 𝜖.

For simplicity of computation, we applied here the
CLT-approximation, which provides a simple formula
for 𝑚 based on the inverse-erf function ((51), (50)), as
derived in Appendix C.1. It is worth noting that the
analytic results are independent of the string space
size 𝑁 (here assumed to be 𝑁 = 253), if we assume a
sampling with replacement.

Table 4 shows selected examples of sample-size (𝑚) vs.
honest-fidelity (𝜙1) and pseudo-fidelity (𝜙2). This is a
sub-table of the more-detailed Table 14 in Appendix E.

For example, the table shows that about 50 million strings

Page 10 of 35

-40 -30 -20 -14 -10 -7 -4 -2-1

10^4

3×10^4

10^5

3×10^5

10^6

3×10^6

10^7

3×10^7

log2(FN=FP), in a Sqrt scale

m
: s

am
pl

e
si

ze
 (

nu
m

be
r

of
 s

tr
in

gs
)

(S
qu

ar
ed

-
lo

g
sc

al
e)

Fid1 = 0.01
Fid2/Fid1=3/4
Fid2/Fid1=1/2
Fid2/Fid1=1/4
Fid2/Fid1=0

Figure 10: Sample size vs. FN=FP, with 𝜙1 = 0.01

Table 4: Number of strings for SQC distinguishability
(Selected entries from Table 14)

𝜙1 𝜖 Number 𝑚 of strings to sample
when

𝜙2 = 0
when

𝜙2
𝜙1

= 10−1
when

𝜙2
𝜙1

= 1/2

0.002 2−40 4.977E+7 6.146E+7 1.993E+8
2−30 2.273E+7 2.807E+7 9.102E+7
2−20 9.569E+6 1.182E+7 3.831E+7
10−3 1.646E+6 2.032E+6 6.589E+6

0.01 2−40 2.007E+6 2.480E+6 8.066E+6
2−30 9.165E+5 1.133E+6 3.684E+6
2−20 3.858E+5 4.767E+5 1.551E+6
10−3 6.635E+4 8.199E+4 2.667E+5

need to be sampled in order to obtain FN=FP rates of
2−40, if using a quantum computer with fidelity .002
and if the FP refers to a malicious uniform sampling.
The number increases about 4-fold if, instead, measuring
FPs with respect to a malicious sampling with pseudo-
fidelity of about one half of the honest fidelity. The
needed number of QC-values reduces about 25-fold if
using instead a quantum computer with fidelity 0.01.

Why considering pseudo-fidelities? Distinguishing
the honest vs. the malicious uniform case (fidelity 0) can
be useful to ascertain that some of strings resulted from
a quantum circuit evaluation. However, for the goal of
estimating entropy (see Section 5), it is more relevant to
distinguish the honest case from a malicious sampling
with some positive pseudo-fidelity 𝜙2 ∶ 0 < 𝜙2 < 𝜙1.

4. Low-budget clients

One drawback of the distinguishability experiment consid-
ered in the previous section is that it requires computing
many QC-values. In this section we consider a different
statistic that allows an interesting tradeoff: a powerful
server computes more QC-values; a weak verifying client
verifies fewer QC-values. The client verification can be a
recomputation of QC-values followed by equality check,
but other verifications are conceivable.

In the next subsections we consider one approach for
enabling a computationally cheaper verification by clients.
Other strategies exist and it would be interesting to
investigate which ones may yield useful tradeoffs.

4.1. Truncated QC-values

Suppose the client wants to save work by verifying only
(the sum of) a fraction 𝜈 of the QC-values. This may be
particularly useful in the setting of one string per circuit,
as there the cost of computing QC-values is maximal
per string. One approach is to set a threshold on the
QC-value, and then check only (the sum of) those with
higher value.

Truncation thresholds. We denote as truncated
QC-value (TQC), with respect to some truncation
threshold 𝑡, the measure that is equal to the QC-value
when it is not-smaller than 𝑡, and is 0 otherwise. For each
intended verification proportion 𝜈, it is useful to know
the matching truncation threshold 𝑡. Table 5 shows,
for several fidelities, the “truncation threshold” that
correspond to each of several verification proportions
𝜈 ∈ {2−1, 2−2, 10−1, 10−2, 10−3}. For notation simplicity
we let 𝜏 ≡ 𝑡 ⋅ 𝑁.

Table 5: TQC truncation thresholds
The indicated thresholds are to be divided by 𝑁.

Thresholds
Verification proportion (𝜈)

2−1 2−2 10−1 10−2 10−3

Fi
de
lit
y

𝜙

0.0 0.693 1.386 2.303 4.605 6.908
0.001 0.694 1.388 2.305 4.610 6.915
0.002 0.695 1.389 2.307 4.614 6.922
0.005 0.697 1.393 2.314 4.628 6.942
0.01 0.700 1.400 2.326 4.651 6.975
0.02 0.707 1.414 2.348 4.695 7.039
0.05 0.729 1.457 2.417 4.821 7.216
0.1 0.767 1.529 2.528 5.011 7.465
0.2 0.850 1.675 2.739 5.331 7.852
0.5 1.146 2.105 3.272 5.990 8.573
1.0 1.678 2.693 3.890 6.638 9.233

Page 11 of 35

Since the threshold is measured with respect to the honest
distribution of a single QC-value, we can find an exact
solution based on the inverse CDF of 𝑋𝐹,𝜙:

𝑡 = CDF−1[𝑋𝐹,𝜙](1 − 𝜈) (14)

= − 1
𝜙 ⋅ 𝑁

⋅ (𝜙 ⋅ 𝑊−1 (𝜈 ⋅ 𝑒−1/𝜙

𝜙
) + 1) , (15)

where 𝑊−1 is the real lower branch of the LambertW
function) [DLMF].

For example, for a proportion verification of 𝜈 = 1/2 in a
case of claimed fidelity 1, the threshold should be set at
𝜏 = 1.678. (It is interesting to notice that even though
𝐸(𝑋𝑄) is 2/N, the median occurs at about 1.678/𝑁.)
As another example, for a proportion verification of 𝜈 =
1/100, the threshold should be set at about 𝜏 = 6.638 if
the fidelity is 1, and at 𝜏 = 4.614 if the fidelity is 0.002.

Consider the random variable 𝑌∗ = 𝐼𝑡 ∘ 𝑋∗, equal to 𝑋∗
if 𝑋∗ ≥ 𝑡 and equal to 0 otherwise. (𝐼𝑡 is the indicator
function, equal to 1 if its input is greater than 𝑡; equal
to 0 otherwise.) For the sampling of a single string we
consider the cases 𝑈, 𝑄 and 𝐹, i.e., when 𝑌 is obtained
respectively from Uniform, pure-Quantum and Fidelity
samplings. Table 6 shows the formula for their expected
values and variances. We use 𝜏 = 𝑡 ⋅ 𝑁. Notice how
replacing 𝜏 by 0 leads to the formulas in Table 1.

Table 6: Statistics of Truncated QCs

Statistic Formula

𝐸[𝑌𝑈] 1
𝑁

⋅ 𝑒−𝜏 ⋅ (𝜏 + 1)

𝑉 [𝑌𝑈] 1
𝑁2 ⋅ (𝑒−𝜏 ⋅ (𝜏2 + 2𝜏 + 2) − 𝑒−2𝜏 ⋅ (𝜏 + 1)2)

𝐸[𝑌𝑄] 1
𝑁

⋅ 𝑒−𝜏 ⋅ (𝜏2 + 2𝜏 + 2)

𝑉 [𝑌𝑄] 1
𝑁2 ⋅ (𝑒−𝜏 ⋅ (𝜏3 + 3𝜏2 + 6𝜏 + 6) − 𝑒−2𝜏 ⋅ (𝜏2 + 2𝜏 + 2)2)

𝐸[𝑌𝐹,𝜙] 1
𝑁

⋅ 𝑒−𝜏 ⋅ (𝜏2 ⋅ 𝜙 + (𝜏 + 1) ⋅ (𝜙 + 1))

𝑉 [𝑌𝐹,𝜙]
1

𝑁2 ⋅ 𝑒−𝜏 ⋅ (𝜏3 ⋅ 𝜙 + 𝜏2 ⋅ (2𝜙 + 1) + (𝜏 + 1) ⋅ (4𝜙 + 2))

− 1
𝑁2 ⋅ 𝑒−2𝜏 ⋅ (𝜏2 ⋅ 𝜙 + (𝜏 + 1) ⋅ (𝜙 + 1))2

Legend: 𝐸 (Expected value); 𝐹 (Fidelity); 𝑄 (pure Quantum);
𝜏 (= 𝑡/𝑁, where 𝑡 is the truncation threshold); 𝑈 (Uniform); 𝑉
(Variance); 𝑌 (random variable: truncated QC-value).

4.2. Sum of truncated QC values (STQC)

Similarly to how we considered sums of QC-values, we
are now interested in the sum of truncated QC values.
We use 𝑌𝑚,∗ to denote the sum of TQC values (STQC) of
𝑚 strings obtained in an experiment 𝑌∗. Their expected
values and variances are obtained by simply multiplying

by 𝑚 the statistics of the single string.

We also consider the chosen-count case, where an ad-
versary with a fidelity 1 quantum computer chooses in
advance the number 𝑞 (out) of (𝑚) strings that it eval-
uates quantumly. The expected value and variance of
𝑌𝐶,𝑚,𝑞 are given by the corresponding weighted sums
from the uniform and the pure-quantum cases:

𝐸(𝑌𝐶,𝑚,𝑞) = (𝑚 − 𝑞) ⋅ 𝐸(𝑌𝑈) + 𝑞 ⋅ 𝐸(𝑌𝑄) (16)
𝑉 (𝑌𝐶,𝑚,𝑞) = (𝑚 − 𝑞) ⋅ 𝑉 (𝑌𝑈) + 𝑞 ⋅ 𝑉 (𝑌𝑄) (17)

It is now interesting to calculate the increase in the num-
ber of QC-values that a server needs to compute. Table 7
(with selected entries from Table 15 in Appendix E) shows,
for several FN𝜙1

= FP𝜙2
rates 𝜖, honest fidelities 𝜙1,

fidelity proportions 𝜙2/𝜙1, and verification proportions
𝜈, what is the number 𝑚 ⋅ 𝜈 of positive TQC-values to be
verified by the client, when the number 𝑚 of TQC-values
computed by the server is higher by a proportion 1/𝜈.

Table 7: Number of client-verified TQC values
(Selected entries from Table 15)

𝜙1 𝜖 𝐸(𝑚 ⋅ 𝜈): # client-verified TQC-values

when 𝜈 = 10−1 when 𝜈 = 10−2

when
𝜙2 = 0

when
𝜙2
𝜙1

= 1/2
when

𝜙2 = 0
when

𝜙2
𝜙1

= 1/2

0.002 2−40 7.29E+6 2.92E+7 2.24E+6 8.99E+6
2−20 3.33E+6 1.33E+7 1.02E+6 4.10E+6
10−3 1.40E+6 5.61E+6 4.31E+5 1.73E+6
10−1 2.41E+5 9.65E+5 7.41E+4 2.97E+5

0.01 2−40 2.97E+5 1.19E+6 9.34E+4 3.78E+5
2−20 1.36E+5 5.45E+5 4.27E+4 1.73E+5
10−3 5.70E+4 2.29E+5 1.80E+4 7.27E+4
10−1 9.81E+3 3.95E+4 3.09E+3 1.25E+4

5. Entropy estimation

The previous section focused on distinguishing an honest
sampling with a fixed fidelity 𝜙1 from a malicious sam-
pling with a lower pseudo-fidelity 𝜙2, including 0. This
section focuses directly on the goal of entropy estimation
from a set of sampled strings, and on that basis deciding
parameters for a distinguishability test, and what adver-
saries to consider. For simplicity, the discussion hereafter
assumes a distinguishability test based on SQCs (as de-
scribed in Section 3). The use of different statistics could
change the estimated parameters.

This section is organized as follows: Section 5.1 gives an
informal overview of the analysis; Section 5.2 discusses
the client perspective; Section 5.3 defines the pseudo-

Page 12 of 35

https://dlmf.nist.gov/4.13
https://dlmf.nist.gov/4.13
https://dlmf.nist.gov/4.13

fidelity adversary, for when the sampling budget of the
adversary is not enough to observe collisions. Section 5.4
considers the collisional adversary, which takes into ac-
count the information obtained from observing collisions.
Section 5.5 considers the post-processing of the sample
and a possible hash-biasing attack.

5.1. Overview

The client. With respect to obtaining certifiable en-
tropy, we consider two possible perspectives of the client.
Either: (i) it knows how much entropy it wants, and
with which assurance it wants to obtain it (FN and FP),
and then defines corresponding parameters for a sam-
pling experiment (e.g., the number 𝑚 of strings to be
sampled) and for an acceptance/rejection test (e.g., an
SQC distinguishability threshold 𝑇); or (ii) it is given a
sample of distinct strings claimed to have been sampled
from a verifiably fresh circuit, and then, based on their
QC-values and on an intended FP rate, it decides a lower
bound for the entropy contained in the sample.

The adversary. For either of the above perspectives,
the adversary tries to minimize the entropy contained
in the published sample, conditioned on satisfying the
admissibility criterion of the client (an SQC threshold)
with a probability not smaller than FP. We denote the
latter as the FP goal (or FP constraint).

The adversary of interest is assumed to have a quantum
computer with fidelity 1. It produces a sample of 𝑚
strings where only a small number 𝑞 of them are actually
obtained from quantum evaluation. The sample gener-
ation includes adversarial actions of rejection sampling,
reordering and biasing, as ways to further reduce the
entropy. The 𝑚 − 𝑞 non-quantumly-generated strings
are obtained pseudo-randomly (with entropy 0) without
dependency on the circuit specification 𝒞.

A black-box model. The adversary is assumed to
not be able to take advantage of the knowledge of the
circuit specification, apart from being able to obtain
outputs from its evaluation. Therefore, we idealize the
adversary as having a black-box access to the circuit,
being able to request its evaluation a number (𝛽) of
times. This substantiates the assumption of not being
able to compute or estimate QC-values from the circuit
specification alone, nor of simulating an evaluation with
a correlated probability distribution. Nonetheless, this
still allows the adversary to gather some information
about QC-values, depending on the sampling budget 𝛽,
by considering the multiplicity of each occurring string.

Entropy estimation. For concrete parameters of an
experiment, we estimate the number of quantumly-
generated strings, possibly from various probability dis-
tributions. We consider that the strings may have inter-

dependencies, such as those related to sampling without
replacement, rejection sampling, and ordering.

5.2. The client

Timing assumption. The continuing discussion re-
tains the assumption that the adversary cannot compute
the QC-values of strings by the time deadline to pub-
lish them. This requires the circuit specification to not
be known in advance by the adversary. For example,
one may base this assumption on requiring that the cir-
cuit specification is pseudo-randomly generated from the
timely output of a public-randomness beacon, if it is
reasonable to assume that the beacon is not maliciously
colluding with the adversary.

Two perspectives. Using a statistic such as the SQC
or STQC described in the previous sections, we consider
how to parametrize an experiment and perform an esti-
mation of entropy. For simplicity, hereafter we focus on
the SQC statistic. We consider two perspectives:

1. Decidability problem. Given a goal of obtaining
at least 𝐻 bits of entropy, with a FP rate of at
most 𝜖2, and accepting a FN rate of up to 𝜖1 for
an honest quantum circuit operator with fidelity 𝜙1,
the client decides the number 𝑚 of strings to
request from the operator to publish as a sample, and
which SQC distinguishability threshold 𝑇 to use in
order to accept or reject the sample. The client
determines 𝑚 and 𝑇 assuming that an adversarial
operator (with quantum fidelity 1, for a conservative
estimate) will craft a sample with minimum entropy
subject to having a probability at least FP of having
an SQC greater than the threshold 𝑇. The estimate
depends on the sampling budget 𝛽 assumed to be
available to the adversary.

2. Estimation problem. Entropy can only be esti-
mated retrospectively. Given a circuit specification
𝒞 and a published sequence of 𝑚 strings, the client
starts by computing its SQC 𝑇. The individual QC-
values are either computed by the client or received
from an external trusted party that would have com-
puted them. The client also defines, based on the
time Δ assumed to have been available to the adver-
sary since learning the circuit specification 𝒞, what
is the assumed sampling budget 𝛽. The client has its
own requirements of FN and FP, and assumes that
the adversary may have performed a targeted attack
based on those parameters. Thus, the client assumes
the final sample includes only a “small” number of
quantumly generated strings, minimizing the overall
entropy while still attempting to ensure a probability
of at least FP of having an SQC at least T. The
client estimates this entropy 𝐻.

Page 13 of 35

Interesting adversaries. We consider that the client
is only interested in adversaries that publish samples
whose probability of being accepted by the client is at
least FP (𝜖2). Any adversary playing outside this con-
straint is ignored, since within the intended level of as-
surance the client will reject the sample. In particular,
we ignore adversaries that would publish only a sequence
of pseudo-random strings (with overall entropy 0) that
would lead to acceptance with probability less than FP.

Number of quantumly-sampled strings. A key
step of the analysis is determining the number 𝑞 of strings
that an optimal adversary has included (or will include)
in the final sample, and the corresponding expected QC-
values and entropies of those strings. The client also
assumes that the adversary chooses those strings when
knowing the goal/parameters set by the client. In both
perspectives, the estimates/parametrizations by the client
are based on the assumption that, before the deadline to
publish a sample, the adversary cannot compute anything
about the QC-values of concrete strings, apart from prob-
abilistic information based on the number of times each
string has appeared when quantumly sampling a large
(yet feasible) number 𝛽 of strings from the circuit. The
collisional adversary in Section 5.4 considers indeed such
information when selecting which quantumly-generated
strings to include in the final sample.

5.3. The pseudo-fidelity adversary

We focus first on a specific attack performed by what
we denote as the “pseudo-fidelity” adversary. This is
tailored to the case where the sampling budget of the
adversary is not large enough to enable finding many
collisions (repetition of strings) before having to publish
a sample. In this subsection we consider the decidability
perspective, where the client decides the size 𝑚 (number
of strings) of the sample to be published.

5.3.1. Algorithm

The pseudo-fidelity adversary (𝒜) operates as follows:

1. Input. 𝒜 receives four input parameters:
(a) 𝛽: (budget) # quantum evaluations of 𝒞;
(b) 𝑚: # strings to publish in a sample;
(c) 𝑇: SQC threshold of acceptance by the client;
(d) 𝜖: FP (maximum false-positive) rate.

2. Quantum over-sampling. 𝒜 quantumly eval-
uates the circuit 𝒞, with fidelity 1, in a black-box
manner, 𝛽 times. We call pre-sample to the set of
obtained distinct strings, which is expected to have
approximately 𝑀 ′

1 ≈ 𝑁 − 𝑁/(1 + 𝛽/𝑁) strings. See
auxiliary formulas in Section D.2.

3. Number of quantum strings. As a function
of the input parameters (𝑚, 𝑇, 𝜖), the adversary
𝒜 calculates the minimum number 𝑞 of quantumly-
generated strings (besides the 𝑚 − 𝑞 strings to be
pseudo-randomly generated) to include in the final
sample, such that the client accepts with probability
at least 𝜖 (the FP rate). Recalling, from Section 3,
the notation for the SQC random variable 𝑋 when
doing chosen-count sampling, the condition is:

𝑞 = min{𝑞′ ∶ Prob(𝑋𝐶,𝑚,𝑞′ ≥ 𝑇) ≥ 𝜖}. (18)

The simplifying assumption here is that the QC-
values of these 𝑞 strings are i.i.d., with expected
value 2/𝑁 and variance 2/𝑁2, whereas in fact the
budget 𝛽 and the observation of collisions would
enable inferring more detailed information.

4. Rejection sampling. Using a secret key known
apriori, 𝒜 seeds a [cryptographic] pseudo-random
permutation (PRP), thus defining a bijective map-
ping from the set of 𝑛-bit strings onto itself. To
reduce the expected entropy in the final sample,
𝒜 performs “rejection sampling” as follows: (i) 𝒜
computes the PRP-output of every string in the
pre-sample; (ii) 𝒜 orders the 𝑀 ′

1 distinct strings,
ascendingly, with respect to their PRP-output; (iii)
𝒜 selects, in the corresponding PRP-lexicographical
ordering, only the first 𝑞 strings.

5. Positioning of strings. 𝒜 initializes a sample
vector ⃗𝑆 of length 𝑚 (the sample size requested
by the client) and pseudo-randomly selects 𝑞 loca-
tions therein. 𝒜 then places there the 𝑞 quantumly-
obtained strings selected in the previous step, in the
respective devised order. Then, 𝒜 pseudo-randomly
generates 𝑚 − 𝑞 additional strings, distinct from the
𝑞 already quantumly-obtained strings. 𝒜 positions
them in the free 𝑚 − 𝑞 free positions of the sample.
This step adds no additional entropy.
Note: Section 5.5 mentions a possible additional step
of hash-biasing.

6. Output. 𝒜 outputs the sequence of 𝑚 strings.

5.3.2. Statistics

We now summarize how the client, with a goal of obtain-
ing a sample with 𝐻 bits of entropy (e.g., 1024), should
parametrize an experiment when assuming the quantum
computer operator is a pseudo-fidelity adversary (𝒜).

Pre-sample size. We assume that 𝒜 can sample the
quantum circuit at most 𝛽 times in the allotted time
window. For example, if one circuit evaluation counts as
one cycle, then sampling 𝛽 = 226 strings within a time
window of 60 seconds requires a quantum computer with

Page 14 of 35

a frequency of about 1.12 MHz. For 𝛽 <
√

𝑁, we assume
for simplicity that the the number 𝑀 ′

1 ≈ 𝑁−𝑁/(1+𝛽/𝑁)
of obtained distinct strings is 𝛽 (see Section D.2).

QC-values and pseudo-fidelity. With 𝛽 ≪ 𝑁, the
expected QC-value in the pre-sample is very close to what
was determined in (9), i.e., 𝐸 ≈ 2/𝑁. Since the client
wants to accept an honest sample with high-probability
(i.e., low FN rate), the corresponding SQC threshold nec-
essarily allows some probability of it also being achieved
with a pseudo-fidelity slightly lower than the honest fi-
delity. When the adversary does rejection sampling to
select 𝑞 strings, then by definition the pseudo-fidelity
is 𝜙2 = 𝑞/𝑚. The client assumes the adversary uses
the smallest pseudo-fidelity that will still pass the SQC
threshold test probability non-lower than the FP rate
𝜖. Section D.2 considers a more detailed approximation
(124) for 𝐸, obtaining 𝐸 = (1/𝑁) ⋅ (2 + 𝑏)/(1 + 𝑏), where
𝑏 = 𝛽/𝑁 is the budget factor. However, compared with
2/𝑁 the correction is only significant when it is already
relevant to consider the more sophisticated collisional
adversary from Section 5.4, which takes advantage of
collisions observed in the pre-sampling stage.

Entropy estimation. The original expected entropy
per each of the obtained distinct strings in the pre-sample
depends on the sampling budget 𝛽. Let ℎ𝛽 denote the
expected entropy for a thought experiment where the
adversary would now output a single string uniformly
selected from the pre-sample. This is ℎ𝛽 ≈ 𝑛 − (1 −
𝛾)/ log(2) ≈ 𝑛−0.61 (as determined in (9) in Section 2.3)
if 𝛽 <

√
𝑁, or up to ℎ𝛽 ≈ 𝑛 when 𝛽 is so large that the

pre-sample contains almost all 𝑁 strings. However, 𝒜 has
performed “rejection sampling” to reduce the expected
entropy per string (and thus of the final sample).

An initial intuition is that the rejection sampling induces
the selected PRP-outputs to start with about log2(𝑀 ′

1/𝑞)
zeros (meaning we can discount about log2(𝑀 ′

1/𝑞) bits of
entropy per string). Also, the ordered selection reduces
the space of possible vectors by a factor 𝑞!, increasing
the probability of each possible one by 𝑞!. This would
lead to approximating the expected entropy as follows:

𝑞 ⋅ (ℎ𝛽 − log2(𝑀 ′
1/𝑞)) + log2(𝑞!) (19)

However, a lower value is obtained if we consider an
iterated procedure, one string at a time (i.e., using 𝑞 = 1),
repeated the original 𝑞 times. In the iterated case, at
the 𝑖-th selection the entropy reduction from the above
formula would be log2(𝑀 ′

1 − 𝑖), leading to an apparent
overall reduction of log2 (𝑀 ′

1!/(𝑀 ′
1 − 𝑞)!).

The Shannon entropy of a sampling procedure is the
expected value of the negative logarithm (base 2) of
the probability of obtained samples. This logarithm
can be interpreted as a summation of logarithms, where

each new logarithm applies to the probability of a new
string being selected, conditioned on the strings already
selected. The logarithm for the probability of the overall
sample is itself a random variable, which has not only an
expected value (Shannon entropy) but also for example
a variance. In practice it may be relevant to measure
something like the minimum possible entropy, or a bound
for which there is a overwhelming probability of the
variable being larger than it. Some details about this
variable are considered in Section D.3.

For simplicity, and being conservative in the estimation of
Shannon entropy, in the subsequent discussion we focus
on the approximation obtained by iterating formula (19)
one string at a time. We also pug in a minor correction
(see Section D.3.1) to the apriori average entropy ℎ𝛽
per string (i.e., before rejection sampling), due to the
reduction of the set from which the 𝑖-th string is selected.
In summary, we consider the following approximation:

𝐻𝛽,𝑞 = log2 ((2ℎ𝛽)𝑞)⏟⏟⏟⏟⏟
≈𝑞⋅ℎ𝛽

− log2 ((𝑀 ′
1)𝑞) , (20)

where ℎ𝛽 is the average entropy per string expected for the
pre-sample of distinct strings obtained after 𝛽 quantum
evaluations of the circuit, and where log2 (𝑥𝑞) represents
the binary logarithm of the descending factorial of 𝑥 order
𝑞, i.e., of 𝑥 ⋅ (𝑥 − 1) ⋅ … ⋅ (𝑥 − 𝑞 + 1). A more accurate
estimate could be based on simulation, as mentioned in
Section D.3. For example, there we show that with fidelity
0 and 𝑞 = 1 both formulas are a non-tight lower-bound
of the expected entropy.

Parametrization. Solving for 𝑞 yields the (approxi-
mate) minimum number of quantumly-generated strings
that an interesting adversary will use. The client assumes
that the sample of 𝑚 strings will be produced by a chosen-
count method, using exactly ⌈𝑞⌉ quantumly generated
strings (i.e., pseudo-fidelity 𝜙2 = 𝑚/𝑞), selected (and or-
dered) upon rejection sampling from a set of ≈ 𝑀 ′

1 strings.
Thus, the client determines the parameters 𝑚, and 𝑇,
respectively using the approximated equations (51), and
(48) or (46), in Section C.1, as in the following examples.

5.3.3. Initial examples

Example 1. Let 𝑛 = 53 and 𝛽 = 226, which implies
ℎ𝛽 ≈ 52.39 and 𝑀 ′

1 ≈ 226.00. Instantiating this in equa-
tion (19) for a goal of 𝐻 = 210 bits of entropy and solving
for 𝑞 yields 𝑞 ≈ 38.80, which rounded up is ⌈𝑞⌉ = 39 (the
assumed number of quantumly-generated strings that the
adversary will include in the final sample).

When FN = FP = 𝜖 = 2−40, the needed sample size
𝑚 can, by the CLT, be approximated as in (51) in Ap-
pendix C.1, using 𝜙2 = ⌈𝑞⌉ /𝑚. Let 𝜙1 be the quantum

Page 15 of 35

fidelity claimed by the honest operator. Then:

• 𝑚 ≈ 2.014E+6 for 𝜙1 = 0.01

• 𝑚 ≈ 4.981E+7 for 𝜙1 = 0.002

The corresponding SQC thresholds can be obtained
from (48) in Section C.1, using 𝜇2 = (𝑚 + 𝑞)/𝑁 and
𝜎2 =

√
𝑚 + 𝑞/𝑁. Comparing against Table 8, the values

obtained for 𝑚 are only slightly higher than (but quite
close to) those obtained for 𝜖 = 2−40 and 𝜙2/𝜙1 = 0.
This is expected, since ⌈𝑞⌉ = 39 makes the ratio 𝜙2/𝜙1
very small, namely 1.94E-3 ≈ 39/(0.01 ⋅ 2.014E+6) and
3.92E-4 ≈ 39/(0.002 ⋅ 4.981E+7), respectively when 𝜙1
is 0.01 and 0.002. Therefore, it is expected that a small
factor increase in 𝑚 will yield a large factor increase in
estimated entropy.

Table 8: Number of strings for SQC distinguishability
(Selected entries from Table 14)

𝜙1 𝜖 𝑚 for
𝜙2 = 0

𝑚 for
𝜙2
𝜙1

= 1/100
𝑚 for

𝜙2
𝜙1

= 1/4
𝑚 for

𝜙2
𝜙1

= 1/2

0.002 2−40 4.98E+7 5.08E+7 8.85E+7 1.99E+8
10−1 1.65E+6 1.68E+6 2.93E+6 6.59E+6

0.01 2−40 2.01E+6 2.05E+6 3.57E+6 8.05E+6
10−1 6.63E+4 6.77E+4 1.18E+5 2.66E+5

Example 2. If the client wants 𝐻 = 220 bits of entropy,
then we get 𝑞 = 39 733.1. Using the same FN=FP rates
𝜖 = 2−40, and assuming that 𝒜 will use ⌈𝑞⌉ = 39 734
quantumly-generated strings, leads to:

• 𝑚 ≈ 7.980E+6 for 𝜙1 = 0.01

• 𝑚 ≈ 8.486E+7 for 𝜙1 = 0.002

We note that the last example for 𝑚 already exceeds the
considered budget 𝛽 = 226, meaning that such (𝛽, 𝑚)
parametrization would not be suitable for a real experi-
ment. The adversary client should then assume a higher
budget to the adversary (e.g., possibly by giving more
time for sampling). Consequently, the client should re-
estimate 𝑚 and possibly also start taking into account the
advantage that the adversary may obtain from observing
collisions in the over-sampling stage.

5.3.4. Other examples

We show now a few examples of deriving the parameter
𝑞 from Table 8 (which has a few selected entries from
Table 14), based on the sample size (total number 𝑚 of
strings) calculated with respect to the SQC statistic, for
several pseudo-fidelities 𝜙2 and FN=FP rates.

Example 3. Let (𝜙1, 𝜖, 𝜙2/𝜙1) = (0.002, 10−1, 1/100).
For FN=FP rates of 𝜖 = 1/10, one needs 𝑚 = 1.68E+6

sampled strings to distinguish between the honest
sampling 𝑋𝐹,𝑚,.002 with fidelity 𝜙1 = 0.002, and a
malicious chosen-count sampling 𝑋𝐶,𝑚,𝑚⋅𝜙1/100 with
pseudo-fidelity 𝜙2 equal to one hundredth of 𝜙1 (i.e.,
𝜙2/𝜙1 = 1/100). Such malicious case contains only
𝑞 = 34 (= ⌈𝑚 ⋅ 𝜙1/100⌉) strings generated from a correct
circuit evaluation.

Example 4. Let (𝜙1, 𝜖, 𝜙2/𝜙1) = (0.002, 10−1, 1/4).
Compared to Example 3, increasing 𝑚 by a factor of
about 78 %, to 𝑚 = 2.93E+6, provides the same FN=FP
rates (0.1) but when FP refers instead to a malicious
pseudo-fidelity 𝜙2 equal to 1/4 of the honest fidelity 𝜙1.
That corresponds to 1 464 quantumly generated strings,
which is 40 times more than in Example 3.

Example 5. The cost in sample size is about linear in
the 𝑙𝑜𝑔2 base of the FN=FP rates. Let (𝜙1, 𝜖, 𝜙2/𝜙1) =
(0.002, 2−40, 1/100). Consider an FP=FN goal of 𝜖 =
2−40, for cryptographic suitability. More than 49.7 million
strings need to be obtained for any amount of entropy to
be present in the malicious case, if supposing 𝜙1 = 0.002.
For example, for a pseudo-fidelity 𝜙2 = 𝜙1/100, the
total number of strings is about 𝑚 = 5.08E+7 strings,
meaning about 1 016 quantum-sampled strings. Overall
the sample size is about 30 times larger than in Example 3,
to increase the FP=FN rates from 10−1 to 2−40.

Example 6. Let 𝜙1 = 0.01. A substantial improvement
is possible by increasing the honest fidelity 𝜙1 reference.
For example, for 𝜙1 = 0.01 (five times larger than in
example 3), the needed total number 𝑚 of strings is
about 2 million (i.e., about 25 times less than) for the
same 𝜙2/𝜙1 ratio as in Example 5. However, to satisfy
the FP constraint the malicious adversary would (in this
example) also be using a higher pseudo-fidelity, equal to
0.01/100. One would then assume there are 205 quantum-
sampled strings present in the sampled string set.

5.4. The collisional adversary

We consider now how the observation of collisions during
over-sampling may give an advantage to the adversary.

Informal description. The adversary 𝒜 uses a quan-
tum computer with fidelity 1 to evaluate the circuit 𝒞
“many” times (𝛽), until obtaining “many” collisions. The
output strings with most collisions have a higher expected
QC-value (and lower expected entropy) than those with
fewer collisions. Based on this, fewer quantumly gener-
ated strings in the final sample can achieve a higher SQC.
𝒜 organizes the strings in bins, one for each multiplicity
of occurrence (i.e., bin 𝑖 becomes the set of strings that ap-
peared, each, exactly 𝑖 times). Depending on the tally of
multiplicities, i.e., the vector of numbers of strings across
bins, 𝒜 chooses from which sets of bins to select strings for
the final sample, along with applying rejection sampling.

Page 16 of 35

When a small sampling budget does not lead to colli-
sions, the collisional adversary corresponds to the pseudo-
fidelity adversary from Section 5.3.1. Conversely, in a the-
oretical extreme of a sampling budget being a very large
exponential in the number of qubits, each string would
get a multiplicity sufficiently apart from the multiplicities
of other strings. From those multiplicities the adversary
could estimate with high accuracy the QC-values of each
string. This would enable a straightforward simulation of
sampling from a circuit evaluation, while in fact only mak-
ing a pseudo-random selection with overall zero entropy.

5.4.1. Algorithm

The collisional adversary operates as follows:

1. Input. As in Section 5.3.1, 𝒜 receives the input
parameters: 𝛽; 𝑚; 𝑇; 𝜖.

2. Quantum over-sampling. 𝒜 uses its sampling
budget to obtain a sequence of 𝛽 strings, called
the pre-sample, which may have repetitions (i.e.,
collisions). 𝒜 organizes the strings into bins. Bin 𝑐
is the set of strings that appeared with multiplicity
𝑐 in the pre-sample.
Let 𝑀𝑐 denote the expected number of strings in bin
𝑐. For example, with 𝑛 = 53 qubits we have:
• 𝛽 = 228 ⇒ (𝑀1, 𝑀2) ≈ (𝛽 − 24, 23)

• 𝛽 = 232 ⇒ (𝑀1, 𝑀2) ≈ (𝛽 − 212, 211)

• 𝛽 = 236 ⇒ (𝑀1, 𝑀2, 𝑀3) ≈ (𝛽 − 2𝑀1 − 3𝑀2, 219 − 12, 4)

We abuse notation and also let 𝑀𝑐 denote the actual
number of strings obtained with each multiplicity in
a given experiment. We have:

𝛽 =
𝛽

∑
𝑐=1

𝑐 ⋅ 𝑀𝑐. (21)

We use a prime in superscript (e.g., as in 𝑀 ′
𝑐) to

indicate the union of bins of multiplicities larger or
equal to a certain value. For more general union of
bins we can simply use a set, instead of an integer,
as index. For example: 𝑀 ′

𝑐 ≡ 𝑀{𝑐,𝑐+1,...,𝛽}.
3. Number of quantum strings. The adversary de-

cides, from the pre-sample with 𝑀𝑐 distinct strings
in each bin 𝑐, totalling 𝑀 ′

1 distinct strings, how
many (𝑞) quantumly-obtained strings, and from
which unions of bins, to include in the final sam-
ple. An adversarially optimal selection takes into
account that the expected QC-value and entropy
of quantumly sampled strings also varies across the
bins. Tendentiously the strings with higher multi-
plicity are preferable in terms of having higher QC
value and lower entropy. However, an optimal deci-
sion can be more intricate considering the rejection

sampling step ahead, which depends on the number
𝑀𝑐 of strings available in each bin 𝑐, and on the SQC
threshold required by the client to accept a sample.
Concretely, as a function of the input parameters
(𝑚, 𝑇, 𝜖), and of the tally (𝑀1, 𝑀2, ...) of collisions
in the pre-sample, 𝒜 will determine a sequence
⟨𝑢1, 𝑢2, ...⟩ of subsets (possibly only one) of multi-
plicities, from whose corresponding unions-of-bins to
pseudo-randomly sample, and determine how many
strings to select from each such union. In other
words, 𝒜 needs to determine two (jointly optimal)
non-empty same-length sequences:

• �⃗� ≡ ⟨𝑢1, 𝑢2, ...⟩ (or simply ⟨𝑢1⟩), where each 𝑢𝑖
is a subset of possible multiplicities {1, ..., 𝛽}.

• ⃗𝑞 ≡ ⟨𝑞𝑢1
, 𝑞𝑢2

, ...⟩, where each 𝑞𝑢𝑗
is a posi-

tive integer, such that 𝑞 ≡ ∑𝑗=1,...,|�⃗�| 𝑞𝑢𝑗
is the

number of quantumly-obtained strings to be in-
cluded in the final sample (not counting strings
that, although obtained in the over-sampling
step but not selected in the rejection sampling
step, may in the subsequent step be, by coinci-
dence, pseudo-randomly selected.)

Note on various options: The pseudo-fidelity
adversary described in Section 5.3.1 uses �⃗� =
⟨{1, ..., 𝛽}⟩, i.e., all 𝑞 strings are selected from within
the set of all pre-sampled distinct strings (regardless
of multiplicity); conversely, the collisional adversary
is allowed a more intricate choice across different
unions of bins. We define that the optimal colli-
sional adversary is one that makes an optimal choice
of the vectors �⃗� and ⃗𝑞, for the purpose of minimizing
entropy while satisfying the FP goal.

4. Rejection sampling. From each union set 𝑢𝑗, the
adversary uses a differently seeded pseudo-random
number generator to obtain 𝑞𝑢𝑗

strings by rejection
sampling. Specifically, 𝒜 selects the lexicographi-
cally first 𝑞𝑢𝑗

strings upon application of the pseudo-
random permutation. See Section D.3.2 for a discus-
sion of other options.

5. Positioning of strings. 𝒜 initializes a sample
vector ⃗𝑆 of length 𝑚 (the sample size requested by
the client) and pseudo-randomly selects a vector
of 𝑞 ≡ | ⃗𝑞| distinct positioned therein. 𝒜 then se-
quentially places in those positions the 𝑞 quantumly
obtained strings selected in the previous step, which
possibly came from various bins, in the respective
devised order (namely, considering the lexicographic
ordering respective to the pseudo-random permu-
tation used for rejection sampling in each union of
bins). Then, 𝒜 pseudo-randomly selects 𝑚 − 𝑞 other
strings, distinct from the already selected 𝑞 strings,
to complete a final sample with overall 𝑚 strings.

6. Output. 𝒜 outputs the sequence of 𝑚 strings.

Page 17 of 35

5.4.2. Statistics per bins or unions of bins

Size of bins. Appendix D.2 shows experimentally ob-
tained formulas for 𝑀𝑐, as functions of the string space
size 𝑁 and the sampling budget factor 𝑏 = 𝛽/𝑁. One
case of interest is the union of bins whose multiplicity
is at least a certain value (𝑐). In those cases we use a
prime in superscript (e.g., as in 𝑀 ′

𝑐) to indicate that the
statistics refer to said union of bins. For example, the
expected number 𝑀 ′

𝑐 of distinct strings that appear with
multiplicity at least 𝑐 is approximately equal to:

𝑀 ′
𝑐 = ∑

𝑖∶𝑖≥𝑐
𝑀𝑖. (22)

QC-values. Appendix D.2 shows experimentally
obtained formulas for the expected QC-value (𝐸𝑐)
and variance (𝑉𝑐), for each bin 𝑐. When the budget
𝛽 is significantly smaller than the string space, the
expected QC-value and the variance remain very close,
respectively, to (𝑐 + 1)/𝑁 and 𝑐 ⋅ (𝑐 + 1)/𝑁2, within each
bin 𝑐. However, for larger sampling budgets those values
start to noticeably differ. It is also relevant to consider
the special case of the expected average QC-value 𝐴′

𝑐
in the union of bins with at least a certain multiplicity
𝑐. This is approximately equal to:

𝐴′
𝑐 ≡ (∑

𝑖∶𝑖≥𝑐
𝐴𝑖 ⋅ 𝑀𝑖) /𝑀 ′

𝑐 . (23)

Entropy. The expected entropy 𝐻𝑐 per string de-
creases with the multiplicity. However, the entropy
of each string in the pre-sample is indistinguishable
across the strings within the same bin, i.e., before
the deadline to publish a sample. Nonetheless, the
adversary will still affect the probability distribution
with which the strings will appear in the final sample, by
using rejection sampling. Technically, the entropy of a
string as measured in the pre-sample is not the same as
measured in the final sample. Particularly, depending on
the rejection sampling technique, the entropy in the final
sample will also depend on the number 𝑞𝑢 of strings to
select from each union 𝑢 of bins.

By definition, an optimal collisional adversary is the one
that optimally selects the sequence of unions of bins in
a way that minimizes the overall expected entropy in
the final sample, while subject to the FP goal. For the
purpose of these notes we find sufficient to highlight the
effect of a simple collisional choice — �⃗� = ⟨{2, ..., 𝛽}⟩ (i.e.,
selecting strings from those that appeared at least twice in
the pre-sample) — that already outperforms the pseudo-
fidelity attack when the sampling budget 𝛽 is sufficiently
large, such as 232 when considering 𝑛 = 53 qubits.

Using a logic similar to the one used for the analysis
of the pseudo-fidelity adversary, we can consider a first

approximation of the entropy contributed by the first
ordered sequence of 𝑞𝑢1

strings selected from the first
union of bins as being about:

𝑞𝑢𝑗
⋅ (ℎ𝑢𝑗

− log2(𝑀𝑢𝑗
) + log2(𝑞𝑢𝑗

)) − log2(𝑞𝑢𝑗
!) (24)

where ℎ𝑢1
is the expected apriori average entropy per

string in the union of bins in 𝑢1.

For a more conservative and still simple estimate we can
consider the result of iteratively applying the previous
formula, thus getting:

log2 ((2ℎ𝑢1)
𝑞𝑢1)⏟⏟⏟⏟⏟⏟⏟

≈𝑞𝑢1 ⋅ℎ𝑢1

− log2 ((𝑀𝑢1
)

𝑞𝑢1) , (25)

where and 𝑥𝑞 is the descending factorial of 𝑥 order 𝑞.
The expressions are similar in look to formulas (19) and
(20), which considered �⃗� = ⟨𝑢1⟩ = ⟨{1, 2, ...}⟩, but now
we consider separate bins.

The corrections discussed in Section D.3 also apply. The
entropy contributed by strings selected across several
unions of bins also depends on the previous selections
across other unions of bins. Concretely, the initial entropy
ℎ𝑢𝑗

considered for the first string in a union 𝑢𝑗 on bins
depends on the number of strings already selected, and
from which unions of bins.

Asymptotically large budget. It is instructive to
consider the asymptotic limit of large sampling budgets,
i.e., when 𝛽 is a large enough exponential in the number
of qubits. Each string 𝑠 will tend to appear in an
individual bin with multiplicity 𝑐𝑠 approximately equal
to 𝛽 ⋅ 𝑝𝑠, where 𝑝𝑠 ≡ Prob(𝑠 ← 𝐶) is the QC-value
of string 𝑠 with respect to the circuit 𝒞. Thus, the
adversary can estimate that the QC-value of each string
is approximately ̂𝑝𝑠 ≈ 𝛽/𝑐𝑠.

In fact, the asymptotically large 𝛽 would even allow an
exact simulation of the circuit evaluation, as follows.

1. Pseudo-randomly simulate a binomial number 𝑞 of
strings to obtain from quantum evaluation. The
binomial has parameters 𝑚 and 𝜙, to simulate how
many strings, out of 𝑚, would be from correct quan-
tum evaluation in an experiment with fidelity 𝜙.

2. Pseudo-randomly simulate 𝑞 uniform floating point
numbers between 0 and 1, as points in the inverse-
CDF of the QC-values, and determine what are the
correspondingly selected strings.

3. Output a sequence of 𝑚 strings, composed of a
pseudo-random positioning of the initial 𝑞 strings,
and then interleaved by other 𝑚−𝑞 pseudo-randomly
selected strings simulating a uniform selection of dis-
tinct strings.

Page 18 of 35

The above described sample would be cryptographically
indistinguishable from a honest sample, implying that
not only it would pass an SQC test with the same FP
rate as the FN rate set for the honest case, as well as it
would do so for any other practical statistical test.

5.4.3. Comparison of adversaries

The pseudo-fidelity adversary is a special case of the
collisional adversary, when using ⃗𝑠 = ⟨{1, ..., 𝛽}⟩ and then
selecting 𝑞 is as the minimum possible. We conjecture
that in the black-box evaluation model this is optimal
for a sampling budget of the order 𝛽 ≪

√
𝑁 since there

is no information gained from collisions. Obtaining a
few collisions is possible in practice by evaluating the
circuit a number of times of at least the order of the
square-root of the string space. However, for 𝑛 = 53
qubits, where a distinguishability from uniform with FP
rate 𝜖 = 2−40 and fidelity 𝜙1 = 0.002 already requires
sampling approximately 225.6 times, it is conceivable that
an adversary would in fact be able to sample more strings,
say, up to 232, within the allowed time for sampling.

The collisional adversary takes advantage of observed
collisions. Below, we show some examples comparing
the pseudo-fidelity adversary vs. a simple collisional
adversary that simply selects strings from those that
have collided twice, i.e., using ⃗𝑠 = ⟨{2}⟩. (For higher
budgets an optimal collisional adversary may be more
successful by using a variety of bins and their unions.)

Pseudo-fidelity vs. collisional. Consider parame-
ters (𝑚, 𝑇 ,FP) such that a pseudo-fidelity adversary
(𝑃) is compelled to include 𝑞𝑃

1 (e.g., 1024) quantumly-
generated strings, and then pseudo-randomly obtain the
remaining 𝑞𝑃

0 = 𝑚 − 𝑞𝑃
1 strings.

We now ask: how many quantumly-generated strings a
collisional adversary would actually include in the sample
if its budget induces a large enough number of collisions?
The answer depends on several quantities. For the given
budget (implicit, not shown in the indices), let:

• 𝐴𝑐 be the expected QC-value of strings in bin 𝑐, the
values of which are determined in Section D.2.1;

• 𝑞𝐶
𝑐 be the number of strings that the collisional
adversary will select from bin 𝑐;

• 𝐴PRG ≈ 1/𝑁 be as 𝐴𝑐, and 𝑞𝐶
PRG be as 𝑞𝐶

𝑐 , but with
respect to the set of all strings that the adversary
will not select from bins with positive multiplicity,
and of all strings not output by quantum evaluation.
This is the set from which the adversary will select
strings directly by pseudo-random generation.

Consider a simplified collisional adversary that will, for

the same final sample size 𝑚, use Δ fewer quantumly
generated strings, all from bin 𝑐. Then we have:

𝑞𝐶
𝑐 = 𝑞𝑃

1 − Δ (26)
SQC𝑃 = 𝑞𝑃

PRG ⋅ 𝐴PRG + 𝑞𝑃
1 ⋅ 𝐴1 (27)

SQC𝐶 = (𝑞𝑃
PRG + Δ) ⋅ 𝐴PRG + 𝑞𝐶

𝑐 ⋅ 𝐴𝑐, (28)

where SQC𝒜 denotes the expected sum of QC-values, and
𝒜 refers to either the pseudo-fidelity(𝑃) or the collisional
(𝐶) adversary. The above system yields:

𝑞𝐶
𝑐 = 𝑁 ⋅ 𝐴1 − 1

𝑁 ⋅ 𝐴𝑐 − 1
⋅ 𝑞𝑃

1 . (29)

Example 7. Consider a setting with 𝑛 = 53 qubits.
Table 9 shows, for two different budgets (232 and 236),
the estimated entropy for collisional attacks of various
degrees (i.e., various multiplicities 𝑐 they take advantage
of). The calculation is for a case with 𝑞𝑃

1 = 1024 (i.e.,
when the SQC threshold requires a contribution of
2 ⋅ 1024/𝑁 from strings quantumly-generated by a
pseudo-fidelity adversary).

The number 𝑀𝑐 of strings obtained with multiplicity 𝑐
depends on the budget 𝛽. For example, evaluating the
circuit 232 times yields about 211 collisions. The expected
entropy ℎ𝑐 per string also varies with the budget and
the multiplicity 𝑐, as determined in Section D.2.2. In the
table, the precision shown for 𝑀 and 𝑁 ⋅ 𝐴 was tailored
in each case to highlight how small is the correction com-
pared to the approximations 𝑀1 ≈ 𝛽 and 𝑁 ⋅ 𝐴𝑐 ≈ 1 + 𝑐.

Some observations:

1. For both budgets the expected QC-values of strings
are still very close to (𝑐 + 1)/𝑁, but they would
become noticeably different for high enough budget.

2. For 𝑞𝑃
1 = 1024, the attack with 𝑐 = 2 is not possible

if 𝛽 < 231, since then 𝑞𝐶
2 = 512 would be greater

than the expected number of collisions.

3. The higher the budget the lower the entropy.

Table 9: Comparison pseudo-fidelity vs. collisional

Assuming 𝑞𝑃
1 = 1024

𝛽 𝑐 𝑀𝑐 𝑁 ⋅ 𝐴𝑐 𝑞𝑐 ℎ𝑐 𝐻𝑐

232 1 231.9999999 1.999999 1024.0 ≈ 52.390 ≈ 20 879.4
2 210.999999 2.999999 512.0 ≈ 51.337 ≈ 20 753.5

236 1 235.99998 1.99998 1024.0 ≈ 52.390 ≈ 16 783.4
2 218.99997 2.99998 512.0 ≈ 51.337 ≈ 16 556.9

The approximation 𝐻𝑐 is based on (24), i.e., the iterated application
of (25) in each bin. The direct application (24), one string at a
time, would yield a higher estimate, by a factor of up to about
10 % in each case.

Page 19 of 35

A more relaxed estimation. We have considered an
adversary with a quantum computer with fidelity 𝜙′ = 1.
But a client may want to assume that the adversary can
only quantumly evaluate with a lower fidelity, e.g., 𝜙′ =
0.5. Then, in a model where any faulty evaluation yields
a uniformly random string, the previous formulas (9) for
expected entropy ℎ per string output by the quantum
computer would have to be adjusted. Then, to achieve
the entropy reduction the adversary would need to have
higher sampling budget.

5.5. Final randomness for applications

What use may a client make of a list of millions of strings
that may potentially include several hundreds or thou-
sands of bits of fresh entropy? We do not explore in these
notes the interesting use of information theoretic random-
ness extractors. However, from a practical standpoint
and considering cryptographic use, we recommend the
use of a cryptographic combination of the entropy, into a
bit-string with approximately full entropy. For example,
this can be a 512-bit string with about 511 or 512 bits of
entropy. (We propose to assume 511.37 bits, as expected
for a random function with 512 bits of output.) For practi-
cal purposes, this is enough as a seed of a pseudo-random
number generator that can then produce a much larger
string indistinguishable from random (by whoever does
not know the seed). A combination performed by direct
application of an efficient cryptographic hash function is
a candidate with merit but susceptible to a bias attack.

Hash bias attack. If the adversary 𝒜 anticipates that
the client will extract entropy from the sample by ap-
plying a fast-to-evaluate compressing function without
secrets, then it can induce a further reduction in entropy.
For example, consider that the client uses a cryptographic
hash function, such as the Secure Hash Algorithm 3 (SHA-
3) version with 512 bits of output, to hash the sample and
use it as the actual randomness output by the protocol.
In that case, 𝒜 can try many modifications of the one or
two of the last pseudo-random strings in order to bias
the hash of the sample, e.g., making it satisfy a secret
predicate with small positive probability (e.g., of about
2−64 if it can still perform 264 hash computations within
the deadline). This makes the hash output be from a set
of reduced size, e.g., about 2511.37−64 instead of 2511.37.
For example, the adversary could induce the first 64 bits
of the hash to be a certain secret known only to the
adversary. This would reduce the entropy of the output
by about 64 bits. In practice this is not problematic for
applications that intend to use a seed not required to
have more than, say, 400+ bits of entropy.

Nonetheless, we describe two possible mitigations:

• If the application allows the client to wait for the
calculation of QC-values, then the client can include

(at least a few of) the QC-values of the strings as part
of the hash input. This can be impractical for some
applications, due to the required delay in computing
the QC-values.

• Using a verifiable delay function for the hash, the
adversary does not have enough time to compute it
before it has to publish the sample of strings.

Alternative post-processing. Alternatively to hash-
ing, the client can instead include a secret key (if one
exists) as part of the hash input, to prevent the operator
from limiting the size of the image space. A standard
method for this approach is to use a hash-based message-
authentication code. But if it is a one-time use secret, it
is enough to prepend it to the rest of the sample before
hashing. Actually, the entropy is not lost if the client
reveals the secret at this stage, as long as it was unpre-
dictable by the adversary before it had to publish the
sample of strings. In an application setting where it is
preferable to also prevent the client from biasing the out-
put, then the secret can be committed in advance, before
the circuit is sent to the quantum computer operator.

5.6. Classes of adversaries

Let an adversary be called “optimal” within a class if,
while satisfying the FP constraint, it minimizes the en-
tropy of the sample.

Security reduction. These notes do not provide a
complexity-theoretic reduction. Such a reduction would
have to rule out the existence of adversaries much stronger
than those we consider here. Instead, we make the en-
tropy estimation for a concrete efficient adversary, ar-
guably optimal within an interesting class. We leave as
an open problem investigating how large this class is. A
reduction by Aaronson [Aar19] guarantees a minimum
of a few bits of entropy, in the setting of one string per
circuit. We consider, instead, repeated sampling from
the same circuit, as described in Section 2.4.

Class “A” of adversaries. We define class “A” as
the class of adversaries (parametrized by a sampling
budget 𝛽) for which the optimal adversary is a collisional
one. We hypothesize that this class captures the range of
adversaries of practical concern. We also hypothesize that
class A includes the set of efficient adversaries that only
access the quantum computer via a black-box interface.
While we do not know of any efficient adversary, outside
class A, that is better than the collisional adversary, we
do not rule out that possibility. We hypothesize that
any efficient adversary outside of this class would need
to use a non-trivial (currently unknown) mathematical
trick taking advantage of the circuit specification 𝒞. The
intuition for this hypothesis is conveyed below by an
analogy.

Page 20 of 35

An analogy. We do not prove how general or restrictive
the class A is with respect to affecting the distribution of
QC-values, nor do we attempt to relate it to a complexity
theoretic argument. However, we provide an intuitive
argument by making an analogy with the properties of
Carter-Wegman universal hashing [CW77].

• Universal hashing:

1. Member of a large class. The hash function
is uniformly selected from a large family of hash
functions, all with the same output range.

2. Equal distribution of output values. For each
hash function, each possible output has the same
number of pre-images.

3. Advantage in predicting or biasing the out-
put values. Until the hash function is defined, the
future hash output of any particular input cannot
be predicted any better than guessing the output
of a uniform selection over the range.

• Sampling from random quantum circuits:

1. Member of a large class. The random quantum
circuit is (pseudo-)uniformly selected from a large
class of circuits, all with the same output range.

2. Exponential distribution of QC-values. For
each circuit, the set of QC-values follows an expo-
nential model. Contrarily to universal hashing, the
adversary 𝒜 is given the circuit specification 𝒞, but
we assume 𝒜 has to publish a sample of strings
before being able to compute the corresponding
QC-values. Since the circuit class is very large (e.g.,
exponential in the square of 𝑛), we assume a com-
putationally bounded adversary cannot gain any
advantage from pre-computations.

3. Advantage in predicting or biasing the QC-
values. Within the time allowed for publishing a
sample, an adversary cannot:

– predict anything about the QC-value of any
string 𝑠, any better than a third party could
without the circuit specification and who is
only told: (i) how many times the string 𝑠 has
been output by quantum evaluation; and (ii)
a tally of the repetitions of all evaluations of
the circuit (i.e., like 𝑚1 single-time strings; 𝑚2
two-time strings; ...).

– induce any bias on the SQC, apart from the bias
resulting from deciding how many strings to
include from each bin (obtained from quantum-
sampling) and how many to include without
having been output by the circuit.

6. Concluding remarks

We analyzed the sum of probability values (SQC) of the
outputs of quantum circuits, and how they can support
a certified randomness protocol. The devised parameters
hinge on a number of assumptions, such as a computa-
tional gap making it infeasible to compute QC-values be-
fore the time to publish a sample, but feasible to compute
them a posteriori for verification purposes. Under these
assumptions, we have calculated, for the case of 𝑛 = 53
qubits, the number 𝑚 of strings necessary to achieve,
in an adversarial setting, various levels of security and
efficiency for the generation of certifiable randomness.
We have also described how to estimate the amount of
entropy that can be certified by these experiments.

The analysis identified some limitations of using the SQC
as the base statistic, namely by describing a range of
attacks available to an adversary. We have focused on
the case of 53 qubits, for which we argued being able
to ignore the adversarial advantage of observing colli-
sions. However, this effect would need to be suitably
measured for experiments based on fewer qubits. The
results obtained here do not directly apply to conceivable
approaches based on other statistics (such as Kolmogorov-
Smirnov and Chi Square) that take more into account
the shape of the distribution of QC values.

We hope these notes motivate the exploration of further
relevant aspects. We list here a few items:

1. Computational complexity. What are the com-
putational complexities of classically computing a
single QC-value vs. the QC-values of sampled strings,
vs. the QC-values of all 𝑁 strings?

2. Approximate QC-values. Are there methods to
compute approximated QC-values that may yield a
verifier speed-up or an adversarial advantage?

3. Computational gap. What are safe practical-and-
conservative estimates for the concrete complexity
gap between quantum evaluation of a random circuit
vs. classical evaluation of its QC-values?

4. Statistical approximations. We have argued/rec-
ommended that in cryptographic settings the false-
positive and false-negative rates be set to a very low
value, such as 2−40 for 40 bits of statistical security.
Is the non-exact approximation of the exponential
model accurate enough at the tails of the distribution
function? In what ranges of parameters can we safely
use the CLT and Gamma approximations, and/or
what error margins to use, and to which extent is
the sampling with replacement well approximated
by sampling without replacement?

5. Entropy estimation. We have made a few ap-

Page 21 of 35

proximations in the estimation of entropy. It would
be interesting to find analytical formulas and/or a
formal basis for a more accurate estimation.

6. Analytic formulas. We found some formulas by
pattern observation (Section D.2), such as for some
statistics per bin and per budget factor. They match
well our experimental results obtained discretized
probability density functions. It would be interest-
ing to obtain a formal derivation of these formulas,
and/or corresponding corrections. Some general for-
mulas are yet to be found, for example to include a
functional dependency on the fidelity.

7. Distinguishing statistics. Can better results of
distinguishability be obtained using different statis-
tics, such as Kolmogorov-Smirnov or Chi-Square?
(We believe so.) How can these also be applied to
the low-budget setting?

8. Protocols based on PCPs. Can probabilisti-
cally checkable proofs (PCPs) be used to reduce the
complexity of the verifier? It would be quite interest-
ing to devise a PCP strategy where the PCP itself
could be generated by the quantum computer.

9. Proofs of security. We are interested in a cryp-
tographic context and therefore should also aim for
corresponding proofs of security. In these notes we
have only given intuitive arguments about the classes
of adversaries and their capabilities. A more formal
analysis is required before actually deciding parame-
ters for real applications.

Apart from having conceived a low-budget method, these
notes do not address the issue of whether or not the
computational cost of the protocol is reasonable in prac-
tice for obtaining the needed assurance of fresh entropy.
In any case, this is a step tapping into the potential of
quantum randomness applications.

Acknowledgments

We are grateful to Sergio Boixo and Scott Aaronson
for explaining their ideas about certifiable randomness
using a quantum computer. We initiated this work as
a preparation for a presentation at a meeting, held at
NIST on December 12–13, 2019, between some members
of the “Google AI Quantum” team and the NIST’s
“Interoperable Randomness Beacons” team. We thank
the feedback by Ray Perlner and Paul Black as NIST
WERB reviewers. In an early draft where we considered
a predicate-based rejection sampling, Ray suggested we
mention the entropy reduction caused by subsequent
sorting. Ray also suggested we mention the hash bias
attack; we describe how to mitigate it in Section 5.5.

References

[Aar19] S. Aaronson. Certified Randomness from Quantum
Supremacy. Unpublished manuscript. 2019.

[AC16] S. Aaronson and L. Chen. Complexity-Theoretic
Foundations of Quantum Supremacy Experiments. 2016.
arXiv:1612.05903 [quant-ph].

[AABB+19] F. Arute, K. Arya, R. Babbush, D. Bacon,
J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L.
Brandao, D. A. Buell, and et al. “Quantum supremacy us-
ing a programmable superconducting processor”. In: Nature
574.7779 (Oct. 2019), pp. 505–510. doi:10.1038/s41586-019-
1666-5. arXiv:1910.11333 [quant-ph].

[BISB+18] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R.
Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis,
and H. Neven. “Characterizing Quantum Supremacy in Near-
Term Devices”. In: Nature Phys 14 (June 2018), pp. 595–600.
doi:10.1038/s41567-018-0124-x. arXiv:1608.00263 [quant-ph].

[CW77] J. L. Carter and M. N. Wegman. “Universal Classes
of Hash Functions (Extended Abstract)”. In: Proc. 9th Annual
ACM Symposium on Theory of Computing. STOC ’77. 1977,
pp. 106–112. doi:10.1145/800105.803400.

[KBPB19] J. Kelsey, L. T. A. N. Brandão, R. Peralta,
and H. Booth. A Reference for Randomness Beacons: For-
mat and Protocol Version 2. Draft NISTIR 8213. 2019.
doi:10.6028/NIST.IR.8213-draft.

[NIST] National Institute of Standards and Technology —
Computer Security Division. https://nist.gov/itl/csd.

[DLMF] NIST. NIST Digital Library of Mathematical Func-
tions. Version 1.0.25 (December 15). Online resource. 2019.

[PGNHW19] E. Pednault, J. A. Gunnels, G. Nannicini, L.
Horesh, and R. Wisnieff. Leveraging Secondary Storage to Sim-
ulate Deep 54-qubit Sycamore Circuits. 2019. arXiv:1910.09534
[quant-ph].

[NQIA] U.S.Congress. National Quantum Initiative Act —
Public Law No. 368. 115th Congress (2017-2018) of the United
States. 2018. https://www.congress.gov/bill/115th-congress/
house-bill/6227/text.

Appendix

A. Terminology

A.1. Abbreviations

• approx.: approximation
• Bin: Binomial (probability distribution)
• e.g.: exempli gratia (for example)
• Exp: Exponential (probability distribution)
• fid: fidelity
• Fig.: Figure

Page 22 of 35

https://arxiv.org/abs/1612.05903
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/1910.11333
https://doi.org/10.1038/s41567-018-0124-x
https://arxiv.org/abs/1608.00263
https://doi.org/10.1145/800105.803400
https://doi.org/10.6028/NIST.IR.8213-draft
https://nist.gov/itl/csd
https://arxiv.org/abs/1910.09534
https://www.congress.gov/bill/115th-congress/house-bill/6227/text
https://www.congress.gov/bill/115th-congress/house-bill/6227/text
https://www.congress.gov/bill/115th-congress/house-bill/6227/text

• i.e.: id est (that is)
• i.i.d: independently and identically distributed
• MHz: mega hertz (one million per second)
• min: minimum
• Ref.: (bibliographic) reference
• stdev: standard deviation
• vs.: versus (in contrast to)

A.2. Acronyms

• CDF: cumulative distribution function
• CLT: central limit theorem
• CSD: Computer Security Division (at NIST)
• FN: false negative rate
• FP: false positive rate
• MHz: Mega Hertz (1 million per second)
• NISQ: noise intermediate-scale quantum [device]
• NIST: National Institute of Standards and Technology
• ORCID: Open Researcher and Contributor ID[entifier]
• PCP: probabilistic checkable proof
• PDF: probability density function
• PRG: pseudo-random generator
• PRP: pseudo-random permutation
• QC-value: probability of a quantum-circuit output value
• SHA: secure hash algorithm
• SQC: (statistic) sum of QC-values
• STQC: (statistic) sum of TQC values
• TQC: (statistic) truncated QC-value
• U.S.: United States

A.3. Symbols

• #: number of
• ⋅!: factorial function (⋅! = Γ(⋅ + 1))
• ∘: composition of functions
• ≪: much smaller than
• ≈: approximate
• ≡: equality by definition
• ∼: equality of probabilistic distributions
• \: set exclusion (e.g., 𝑆1\𝑆2: elements in 𝑆1 but not in 𝑆2)
• 𝐴𝑏,𝑐,𝜙: expected average QC value of strings in bin 𝑐
• 𝑏: sampling budget factor (𝛽/𝑁)
• 𝛽: sampling budget (# evaluations by adversary)
• 𝑐: multiplicity (or count; # occurrences)
• 𝐶: chosen-count (sampling type)
• 𝒞: quantum circuit
• 𝑒: Euler’s number, Napier’s constant (≈ 2.7182818)
• E+⋅: (scientific notation) multiplication by power of 10
• 𝐸[⋅]: expected value of a random variable ⋅
• erf(⋅) (error function; integral of a Gaussian, from 0 to ⋅)
• 𝜖: FP or FN rate

• 𝑓: frequency density
• 𝐹: fidelity (sampling type)
• 𝜙: fidelity (or pseudo-fidelity) value
• Φ(⋅, ⋅, ⋅): Lerch transcendent function
• 𝛾: Euler-Mascheroni constant (≈ 0.5772157)
• 𝛾(⋅, ⋅): lower incomplete gamma non-regularized function
• Γ(⋅): [Complete] Gamma function
• ℎ: entropy of a string sampled from a distribution
• ℎ𝑏,𝑐,𝜙: expected average entropy of strings in bin 𝑐
• 𝐻: Entropy of a distribution or of a sample of strings
• ℋ: harmonic number function
• 𝐼𝑘: 𝑘-th moment of 𝑓
• log(⋅): natural logarithm (base 𝑒 ≈ 2.71828) of ⋅
• log2(⋅): logarithm base 2 of ⋅
• 𝑚: number of strings in published sample
• 𝑀𝑏,𝑐,𝜙: expected # strings with multiplicity 𝑐
• 𝜇: mean of a sample
• 𝜈: proportion (out of 𝑚) of client-side verified strings
• 𝑁: number (2𝑛) of 𝑛-bit strings
• 𝒩: Normal curve (Gaussian)
• 𝑝: probability (often as a mute variable in an integral)
• 𝑃(⋅): lower incomplete gamma regularized function
• 𝑞: # strings from correct quantum circuit evaluation
• 𝑄: pure quantum (sampling type)
• 𝑠: a string from within a set (e.g., from 𝑆𝑛)
• 𝑆𝑛: set of strings with 𝑛 bits, e.g., with 𝑛 = 53
• 𝜎: standard deviation of a sample
• ∑⋅: summation with respect to variable ⋅
• ∫ ⋅𝑑⋅: integral with respect to variable ⋅
• 𝑡 and 𝜏: trunctation threshold to count a QC-value
• 𝑇: distinguishability threshold (to accept vs. reject)
• 𝑢: union of several bins
• 𝑈: uniform (sampling type)
• 𝑉 [⋅]: variance of a random variable ⋅
• 𝑉𝐴, 𝑉ℎ, 𝑉𝑀: variances of 𝐴, ℎ and 𝑀, respectively
• 𝑋, 𝑌: random variables

B. Expected value and variance

B.1. Auxiliary primitives

Let 𝑓(𝑥) = 𝑁 ⋅ 𝑒−𝑁⋅𝑥 and 𝐼𝑘 ≡ ∫1
𝑥=0

(𝑓(𝑥) ⋅ 𝑥𝑘 𝑑𝑥), for positive
integers 𝑁 and 𝑘. Then:

𝐼0 = 1 − 𝑒−𝑁 ≈ 1 (30)
𝐼1 = (1 − 𝑒−𝑁(1 + 𝑁)) ≈ 1/𝑁 (31)
𝐼2 = (2 − 𝑒−𝑁(2 + 2𝑁 + 𝑁2)) ≈ 2/𝑁2 (32)
𝐼3 = (6 − 𝑒−𝑁(6 + 6𝑁 + 3𝑁2 + 𝑁3)) ≈ 6/𝑁3 (33)
More generally: 𝐼𝑘 ≈ (𝑘!)/𝑁𝑘 (34)

Page 23 of 35

https://dlmf.nist.gov/25.14
https://dlmf.nist.gov/8.2
https://dlmf.nist.gov/8.2

The approximations only ignore negligible terms (exponen-
tially decreasing) proportional to 𝑒−𝑁.

B.2. Expected values

𝐸[𝑋𝑈] = ∫
1

𝑥=0
(𝑁 ⋅ 𝑓(𝑥) ⋅ 𝑥 ⋅ (1/𝑁) 𝑑𝑥) = 𝐼1 ≈ 1/𝑁 (35)

𝐸[𝑋𝑄] = ∫
1

𝑥=0
(𝑁 ⋅ 𝑓(𝑥) ⋅ 𝑥 ⋅ 𝑥 𝑑𝑥) = 𝑁 ⋅ 𝐼2 ≈ 2/𝑁 (36)

𝐸[𝑋𝐹,𝜙] = ∫
1

𝑥=0
(𝑁 ⋅ 𝑓(𝑥) ⋅ 𝑥 ⋅ (𝜙 ⋅ 𝑥 + (1 − 𝜙) ⋅ (1/𝑁)) 𝑑𝑥)

= 𝜙 ⋅ 𝐸[𝑋𝑄] + (1 − 𝜙) ⋅ 𝐸[𝑋𝑈] ≈ (1 + 𝜙)/𝑁 (37)

When i.i.d. sampling 𝑚 strings, the expected value of the
SQC is simply multiplied by 𝑚:

𝐸[𝑋∗,𝑚] = 𝑚 ⋅ 𝐸[𝑋∗]. (38)

B.3. Variances

𝑉 [𝑋𝑈] = 𝐸[𝑋2
𝑈] − 𝐸[𝑋𝑈]2

= ∫
1

𝑥=0
(𝑁 ⋅ 𝑓(𝑥) ⋅ 𝑥2 ⋅ (1/𝑁) 𝑑𝑥) − 𝐸[𝑋𝑈]2

= 𝐼2 − 𝐸[𝑋𝑈]2 ≈ 2/𝑁2 − 1/𝑁2 = 1/𝑁2 (39)

𝑉 [𝑋𝑄] = 𝐸[𝑋2
𝑄] − 𝐸[𝑋𝑄]2

= ∫
1

𝑥=0
(𝑁 ⋅ 𝑓(𝑥) ⋅ 𝑥2 ⋅ 𝑥 𝑑𝑥) − 𝐸[𝑋𝑄]2

= 𝑁 ⋅ 𝐼3 − 𝐸[𝑋𝑄]2 ≈ 6/𝑁2 − (2/𝑁)2 = 2/𝑁2 (40)

𝑉 [𝑋𝐹,𝜙] = 𝐸[𝑋2
𝐹,𝜙] − 𝐸[𝑋𝐹𝑝ℎ𝑖]2

= ∫1
𝑥=0

(𝑁 ⋅ 𝑓(𝑥) ⋅ 𝑥2 ⋅ (𝜙 ⋅ 𝑥 + (1 − 𝜙) ⋅ (1/𝑁)) 𝑑𝑥) − 𝐸[𝑋𝐹,𝜙]2

= 𝜙 ⋅ 𝑁 ⋅ 𝐼3 + (1 − 𝜙) ⋅ 𝐼2 − 𝐸[𝑋𝐹𝑝ℎ𝑖]2

= 𝜙 ⋅ 6/𝑁2 + (1 − 𝜙) ⋅ 2/𝑁2 − (1 + 𝜙)2/𝑁2

= (1 + 𝜙 ⋅ (2 − 𝜙))/𝑁2 (41)

When i.i.d. sampling 𝑚 strings, the variance of the SQC is
simply multiplied by 𝑚:

𝐸[𝑉∗,𝑚] = 𝑚 ⋅ 𝑉 [𝑋∗]. (42)

B.4. The chosen-count sampling case

A malicious adversary with a quantum computer with fi-
delity 1 is able to choose the exact number 𝑞 of strings that
are sampled as a correct quantum-circuit evaluation, and
obtain the remaining 𝑚 − 𝑞 strings by uniform sampling.
The corresponding random variable can be represented as
𝑋𝐶,𝑚,𝑞 = 𝑋𝑈,𝑚−𝑞 + 𝑋𝑄,𝑞. Correspondingly, the statistics for
this experiment can be derived from those of the uniform and
the pure-quantum experiments, as follows:

𝐸[𝑋𝐶,𝑚,𝑞] = 𝐸[𝑋𝑈,𝑚−𝑞] + 𝐸[𝑋𝑄,𝑞] = (𝑚 + 𝑞)/𝑁 (43)
𝑉 [𝑋𝐶,𝑚,𝑞] = 𝑉 [𝑋𝑈,𝑚−𝑞] + 𝑉 [𝑋𝑄,𝑞] = (𝑚 + 𝑞)/𝑁2 (44)

For 𝜙 ∉ {0, 1}, it is worth noticing that 𝐸[𝑋𝐶,𝑚,𝑚⋅𝜙] =
𝐸[𝑋𝐹,𝑚,𝜙], but 𝑉 [𝑋𝐶,𝑚,𝑚⋅𝜙] < 𝑉 [𝑋𝐹,𝑚,𝜙] .

C. Sum of QC-Values (SQCs)

In this section we derive formulas for the CDF of the sum of
QC values (SQC). A main goal is to determine the number
of strings needed to sample to achieve defined goals of FN
(false negative) and FP (false positive) for distinguishability
experiments based on the SQC statistic.

C.1. CLT approximation

The distribution of SQCs (Sum of QC-values) can be
approximated as a normal distribution (𝒩) with mean 𝜇 and
standard deviation (stdev) 𝜎, when QC-values are i.i.d.

False Negatives (FN). Let us consider that the hon-
est/reference experiment follows a normal distribution with
mean 𝜇1 and stdev 𝜎1. Then, for any given threshold 𝑡 of
the SQC, the false negative rate (FN) 𝜖1 (i.e., that an honest
sample is rejected) is given by the integral (45) of the Normal
PDF from minus infinity up to the threshold value.

𝜖1 = ∫
𝑡

𝑥=−∞
𝒩[𝜇1, 𝜎1](𝑥) = 1

2
⋅ (1 + erf (𝑡 − 𝜇1√

2 ⋅ 𝜎1
)) (45)

Solving (45) with respect to the threshold gives:

𝑡 = 𝜇1 −
√

2 ⋅ 𝜎1 ⋅ erf−1 (1 − 2 ⋅ 𝜖1) , (46)

where 𝜇1 and 𝜎1 can be obtained, respectively as 𝐸(𝑋) and
√𝑉 (𝑋), from the “Fidelity 𝜙” row in Table 3 in Section 3.1.

False Positives (FP). Consider now a malicious sam-
pling characterized by a normal distribution with mean 𝜇2
and stdev 𝜎2. Then, for any given threshold 𝑡 of the SQCs,
the false positive rate (FP) 𝜖2 (i.e., that the malicious sample
is accepted) is given by the integral (47) from the threshold
value 𝑡 up to infinity.

𝜖2 = ∫
∞

𝑥=𝑡
𝒩[𝜇2, 𝜎2](𝑥) = 1

2
(1 − erf (𝑡 − 𝜇2√

2 ⋅ 𝜎2
)) (47)

Solving (47) in order or 𝑡 gives:

𝑡 = 𝜇2 +
√

2 ⋅ 𝜎2 ⋅ erf−1 (1 − 2 ⋅ 𝜖2) (48)

Needed number of strings. To simplify the notation,
consider the variables 𝜇′

𝑖 and 𝜎′
𝑖 defined by: 𝜇𝑖 = 𝜇′

𝑖 ⋅ (𝑚/𝑁)
and 𝜎𝑖 = 𝜎′

𝑖 ⋅ (
√

𝑚/𝑁).

Since the threshold 𝑡 is the same when measuring FN (𝜖1) and
FP (𝜖2), we can equate (46) and (48).

𝑚 ⋅ 𝜇′
1 −

√
2 ⋅

√
𝑚 ⋅ 𝜎′

1 ⋅ erf−1 (1 − 2 ⋅ 𝜖1) =

𝑚 ⋅ 𝜇′
2 +

√
2 ⋅

√
𝑚 ⋅ 𝜎′

2 ⋅ erf−1 (1 − 2 ⋅ 𝜖2) (49)

Page 24 of 35

Solving with respect to the number 𝑚 of strings gives:

𝑚 = 2 ⋅ (𝜎′
1 ⋅ erf−1(1 − 2 ⋅ 𝜖1) + 𝜎′

2 ⋅ erf−1(1 − 2 ⋅ 𝜖2)
𝜇′

1 − 𝜇′
2

)
2

(50)

The mean 𝜇 and the standard deviation 𝜎 are functions of
the number 𝑚 of samples, of the fidelity 𝜙 and of the string
space size 𝑁. When the acceptance criterion is to have the
SQC statistic greater than the defined threshold 𝑡, it follows
that the distinguishability only makes sense when 𝜙2 < 𝜙1
and 𝜖 ≤ 0.5.

Example 8. Let FN=FP and consider an arbitrary 𝜙2.
Consider the malicious pseudo-fidelity case, where the adver-
sary chooses the number 𝑞 = 𝑚⋅𝜙2 quantum evaluations of the
circuit, for some pseudo-fidelity 𝜙2. Then the expected SQC
satisfies 𝜇′

2 = (1 + 𝜙2) (the same as for 𝑋𝐹,𝑚,𝜙2
) and the nor-

malized stdev satisfies 𝜎′
2 = √1 + 𝜙2 (which is slightly smaller

than for 𝑋𝐹,𝑚,𝜙2
). The general honest case has 𝜇′

1 = 1 + 𝜙1

and 𝜎′
1 = √1 + 𝜙1 ⋅ (2 − 𝜙1). Consider also setting the FN

and FP rates to be equal to the same value 𝜖. Then replacing
the parameters in equation (50) yields:

𝑚 = 2 ⋅ (erf−1(1−2⋅𝜖)
𝜙1−𝜙2

)
2

⋅ (√1 + 𝜙1 ⋅ (2 − 𝜙1) + √1 + 𝜙2)
2 (51)

Example 9. Let FN=FP and consider 𝜙2 = 0. Set again
both false rates (FP and FN) to be equal (𝜖). Consider that
the honest case has fidelity 𝜙1 = 𝜙 and the malicious reference
uses 𝜙2 = 0 (uniform sampling), such that their means 𝜇 and
standard deviations 𝜎 respectively satisfy (𝜇′

1 = 1 + 𝜙, 𝜇′
2 = 1)

and (𝜎′
1 = √1 + 𝜙 ⋅ (2 − 𝜙), 𝜎′

2 = 1). Then equation (50) is
simplified to:

𝑚 = 2
𝜙2 ⋅ (1 + √1 + 𝜙 ⋅ (2 − 𝜙))

2
⋅ (erf−1(1 − 2 ⋅ 𝜖))2 (52)

Sometimes in this setting it can be useful to compute the
symmetric rates FN=FP from the number 𝑚 of strings and
from the honest fidelity 𝜙. The result is then:

𝜖 = 1
2 ⋅ (1 − erf (𝜙⋅

√
𝑚

1+√1+𝜙⋅(2−𝜙))) (53)

C.2. Exact Gamma distributions

In this section we find exact (albeit more complex) formu-
las for the distribution of sum of QC values. This enables
computing exact results in some cases, and to estimate error
margins in others, namely as compared to the CLT-Normal
approximation (Section C.1). We start with the simplest
cases: (i) uniform; (ii) pure quantum; (iii) exact proportions.

C.2.1. SQC under uniform string sampling

Under a uniform string sampling, the model of QC-values
postulates an exponential distribution with rate 𝑁. The
corresponding sum of 𝑚 i.i.d. variables 𝑋𝑈 is a new variable

𝑋𝑚,𝑈 with an Erlang distribution with shape 𝑚 and rate 𝑁.

PDF[𝑋𝑚,𝑈](𝑥𝑚) = 𝑁𝑚 ⋅ 𝑥𝑚−1
𝑚 ⋅ 𝑒−𝑁⋅𝑥𝑚/Γ(𝑚) (54)

CDF[𝑋𝑚,𝑈](𝑥𝑚) = 𝑃(𝑚, 𝑁 ⋅ 𝑥𝑚) (55)

Above, Γ is the [complete] Gamma function, satisfying Γ(𝑚) =
(𝑚 − 1)! (the “!” represents the factorial function) when 𝑚 is
a positive integer. The function 𝑃 is the [lower] incomplete
gamma regularized function, satisfying:

𝑃(𝑎, 𝑧) = 𝛾 (𝑎, 𝑧) /Γ(𝑎) (56)

𝛾(𝑎, 𝑧) = ∫𝑧
𝑡=0

𝑡𝑎−1 ⋅ 𝑒−𝑡𝑑𝑡 (57)

where 𝛾 is the [lower, non-regularized] incomplete gamma
function [DLMF].

C.2.2. SQC under quantum string sampling

Under the evaluation (with fidelity 1) of a random quantum
circuit, the model of QC-values of the obtained strings is an
Erlang distribution with shape 2 and rate 𝑁. The correspond-
ing sum of 𝑚 i.i.d. variables 𝑋𝑄 is a new variable 𝑋𝑚,𝑄 with
an Erlang distribution with shape 2𝑚 and rate 𝑁.

PDF[𝑋𝑚,𝑄](𝑥𝑚) = 𝑁2𝑚 ⋅ 𝑥2𝑚−1
𝑚 ⋅ 𝑒−𝑁⋅𝑥𝑚/Γ(2𝑚) (58)

CDF[𝑋𝑚,𝑄](𝑥𝑚) = 𝑃(2𝑚, 𝑁 ⋅ 𝑥𝑚) (59)

It is useful to notice that one quantum sampling contributes
to SQC exactly as two uniform samplings, so 𝑋𝑚,𝑄 ∼ 𝑋2𝑚,𝑈.

C.2.3. SQC under pseudo-fidelity sampling

In the pseudo-fidelity case, we assume that an adversary with
a quantum computer with fidelity 1 chooses in advance how
many (𝑞) strings to sample correctly (quantumly) and how
many (𝑚−𝑞) to sample uniformly. The pseudo-fidelity is then
the proportion 𝜙′ = 𝑚/𝑞 of quantumly obtained strings.

The sum of 𝑚 − 𝑞 i.i.d. variables 𝑋𝑈 from uniform sampling,
plus the sum of 𝑞 i.i.d. variables 𝑋𝑄 from quantum sampling,
is a new variable 𝑋𝐶,𝑚,𝑞. By the same argument as in Sec-
tion C.2.2, where a quantum sampling is like two uniform
samplings, we immediately deduce 𝑋𝐶,𝑚,𝑞 ∼ 𝑋𝑚+𝑞,𝑈. The
corresponding CDF, which will be useful ahead to determine
false positive rates, is:

PDF[𝑋𝐶,𝑚,𝑞](𝑥𝑚) = 𝑁𝑚+𝑞 ⋅ 𝑥𝑚+𝑞−1
𝑚 ⋅ 𝑒−𝑁⋅𝑥𝑚

Γ(𝑚 + 𝑞)
(60)

CDF[𝑋𝐶,𝑚,𝑞](𝑥𝑚) = 𝑃(𝑚 + 𝑞, 𝑁 ⋅ 𝑥𝑚) (61)

C.2.4. SQC under honest sampling with fidelity

The honest fidelity case is more contrived, since there is a
mix of probabilities of a string being obtained uniformly vs.
quantumly. Even for a single sample, the random variable

Page 25 of 35

https://dlmf.nist.gov/5.2
https://dlmf.nist.gov/8.2
https://dlmf.nist.gov/8.2
https://dlmf.nist.gov/8.2
https://dlmf.nist.gov/8.2
https://dlmf.nist.gov/8.2
https://dlmf.nist.gov/8.2

QC-value 𝑋𝐹,𝜙 has a PDF that depends on the fidelity 𝜙:

PDF[𝑋𝐹,𝜙] = (1 − 𝜙) ⋅ PDF[𝑋𝑈] + 𝜙 ⋅ PDF[𝑋𝑄] (62)
= (1 − 𝜙) ⋅ Exp[𝑁](𝑥) + 𝜙 ⋅ Erlang[2, 𝑁](𝑥) (63)
= (1 − 𝜙) ⋅ 𝑁 ⋅ 𝑒−𝑁⋅𝑥 + 𝜙 ⋅ 𝑁2 ⋅ 𝑥 ⋅ 𝑒−𝑁⋅𝑥 (64)
= ((1 − 𝜙) + 𝜙 ⋅ 𝑁 ⋅ 𝑥) ⋅ 𝑁 ⋅ 𝑒−𝑁⋅𝑥 (65)

Let 𝑍𝑚,𝜙 be the random variable denoting the number of
strings that are selected, out of 𝑚 trials, for quantum eval-
uation in a fidelity 𝜙 experiment. 𝑍𝑚,𝜙 has a Binomial dis-
tribution Bin[𝑚, 𝜙], with parameters 𝑚 (“number of trials”)
and 𝑝 (“probability of success per trial”). This is a discrete
distribution, with PDF:

PDF[𝑍𝑚,𝜙](𝑞) = (𝑚
𝑞

) ⋅ 𝜙𝑞 ⋅ (1 − 𝜙)𝑚−𝑞, (66)

where (𝑚
𝑞) is the binomial coefficient 𝑚 choose 𝑞, satisfying:

(𝑚
𝑞

) = 𝑚!
𝑞! ⋅ (𝑚 − 𝑞)!

, (67)

for any integer 𝑞 ∈ {0, ..., 𝑚}.

PDF of SQC. The SQC random variable 𝑋𝑚,𝐹,𝜙 can now
be represented as a mix of cases of pseudo-fidelity, when taking
in consideration the probabilities of each possible selected
number of quantum evaluations. More concretely:

PDF[𝑋𝑚,𝐹,𝜙](𝑥𝑚) =

=
𝑚

∑
𝑞=0

PDF[Bin[𝑚, 𝜙]](𝑞) ⋅ PDF[𝑋𝐸,𝑚,𝑞](𝑥𝑚) (68)

=
𝑚

∑
𝑞=0

(𝑚
𝑞

) ⋅ 𝜙𝑞 ⋅ (1 − 𝜙)𝑚−𝑞 ⋅ 𝑁𝑚+𝑞 ⋅ 𝑥𝑚+𝑞−1
𝑚

Γ(𝑚 + 𝑞) ⋅ 𝑒𝑁⋅𝑥𝑚
(69)

= [
𝑚

∑
𝑞=0

(𝑚
𝑞

) ⋅
(𝜙⋅𝑁

1−𝜙 ⋅𝑥𝑚)𝑞

Γ(𝑚+𝑞)] ⋅ (1−𝜙)𝑚⋅𝑁𝑚⋅𝑥𝑚−1
𝑚

𝑒𝑁⋅𝑥𝑚 (70)

= [
𝑚

∑
𝑞=0

(𝑚
𝑞

) (𝛼 ⋅ 𝑥𝑚)𝑞

Γ(𝑚 + 𝑞)
] ⋅

PDF[𝑋𝑚,𝑈](𝑥𝑚) ⋅ Γ(𝑚)
(1 − 𝜙)−𝑚 (71)

The sum can be expressed as a (non-regularized) Kummer
confluent hypergeometric function, but what we are really
interested in evaluating is the CDF and its inverse.

CDF of SQC. The CDF can be obtained by the integral
of the PDF, from 0 till the value 𝑥𝑚 of interest. Alternatively,
and analogously to how the PDF was defined as as a weighed
(Binomial) sum of PDFs (68), we can also obtain the CDF
as a sum (73) of regularized incomplete gamma functions.
This follows from the sum with respect 𝑞 being commutative
with the integral (transforming the PDF into the CDF) with
respect to 𝑥.

CDF[𝑋𝑚,𝐹,𝜙](𝑥𝑚) =

=
𝑚

∑
𝑞=0

PDF[Bin[𝑚, 𝜙]](𝑞) ⋅ CDF[𝑋𝐸,𝑚,𝑞](𝑥𝑚) (72)

= (1 − 𝜙)𝑚 ⋅
𝑚

∑
𝑞=0

(𝑚
𝑞

) ⋅ (𝜙
1 − 𝜙

)
𝑞

⋅ 𝑃 (𝑚 + 𝑞, 𝑁 ⋅ 𝑥𝑚) (73)

We can do some operations to move the gamma function
outside of the sum. Let 𝑡 ≡ 𝑁 ⋅𝑥𝑚. First we obtain 𝑃(𝑚+𝑞, 𝑡)
as a function of 𝑃(𝑚, 𝑡), by using a recurrence relation:

𝑃(𝑚 + 𝑞, 𝑡) = 𝑃(𝑚 + 𝑞 − 1, 𝑡) − 𝑒−𝑡 ⋅ 𝑡𝑚+𝑞−1

𝑚 + 𝑞 − 1
(74)

= 𝑃(𝑚, 𝑡) − 𝑒−𝑡 ⋅
𝑞

∑
𝑗=1

𝑡𝑚+𝑞−𝑗

𝑚 + 𝑞 − 𝑗
(75)

= 𝑃(𝑚, 𝑡) − 𝑒−𝑡 ⋅
𝑞−1

∑
𝑗=0

𝑡𝑚+𝑗

𝑚 + 𝑗
(76)

The last sum can be expressed in terms of the Lerch transcen-
dent function Φ (do not confuse with fidelity 𝜙), as follows:

𝑞−1

∑
𝑗=0

𝑡𝑚+𝑗

𝑚 + 𝑗
= 𝑡𝑚 ⋅ Φ(𝑡, 1, 𝑚) − 𝑡𝑞 ⋅ Φ(𝑡, 1, 𝑚 + 𝑞) (77)

Inserting the result into (73), and letting 𝛼 = 𝜙/(1 − 𝜙) gives:

CDF[𝑋𝑚,𝐹,𝜙](𝑥𝑚) =

𝑃(𝑚, 𝑡) − 𝑒−𝑡 ⋅ (𝑡𝑚⋅Φ(𝑡,1,𝑚)
(1−𝜙)𝑚 − ∑𝑚

𝑞=0 (𝑚
𝑞) ⋅ Φ(𝑡,1,𝑚+𝑞)

𝛼−𝑞). (78)

While (78) does not directly hint at an easier way to compute
the CDF of the general fidelity case, compared with (73), it
does however show the contribution that the quantum fidelity
𝜙 brings to the CDF of the SQC. Recall that the SQC of the
uniform experiment (fidelity 0) is equal to 𝑃(𝑚, 𝑡).

C.2.5. Needed sample size (number of strings)

False Negatives (FN). When measuring SQC values
of 𝑚 i.i.d. sampled strings from an honest distribution with
fidelity 𝜙, the false negative rate (FN) 𝜖1 is given by the CDF
of the distribution evaluated at the threshold 𝑡:

𝜖1 = CDF[𝑋𝑚,𝐹,𝜙] (𝑡) (79)

Solving with respect to 𝑡 gives:

𝑡 = CDF−1[𝑋𝑚,𝐹,𝜙](𝜖1) (80)

For practical purposes, we can sometimes use the approxima-
tion obtained in (93).

False Positives (FP). For a threshold 𝑡 of the SQC
values of 𝑚 i.i.d. maliciously sampled strings with pseudo-
fidelity 𝜙2, i.e., with exactly 𝑞 = 𝑚 ⋅ 𝜙2 quantum evaluations,
the false positive rate (FP) 𝜖2 is (based on (61)):

𝜖2 = CDF[𝑋𝐸,𝑚,𝜙2⋅𝑚] (𝑥𝑚) = 𝑃(𝑚 + 𝑞, 𝑁 ⋅ 𝑡) (81)

Solving with respect to 𝑡 gives:

𝑡 = 𝑁−1 ⋅ 𝑃 −1,1
(⋅,𝑚+𝑞) (𝜖2) , (82)

Page 26 of 35

https://dlmf.nist.gov/13.2
https://dlmf.nist.gov/13.2
https://dlmf.nist.gov/13.2

where 𝑃 −1,1
(⋅,𝑚+𝑞) denotes the inverse of 𝑃 with respect to the

first argument, when the second argument is 𝑚 + 𝑞. In the
simple uniform case (𝜙2 = 0) the equation becomes:

𝑡 = 𝑁−1 ⋅ 𝑃 −1,1
(⋅,𝑚) (𝜖2) (83)

Solving for the sample size. Given target FP and
FN rates (𝜖1 and 𝜖2) for a distinguishability experiment, the
needed number 𝑚 of strings is given by equating (80) and
(82), thus obtaining:

CDF−1[𝑋𝑚,𝐹,𝜙](𝜖1) = 𝑁−1 ⋅ 𝑃 −1,1
(⋅,𝑚⋅(1+𝜙2)) (𝜖2) (84)

and then solving in order of 𝑚.

C.3. A Gamma approximation

Since the exact CDF (73) for the honest fidelity case is compli-
cated (i.e., at least difficult to evaluate as an explicit Binomial
sum, for very large 𝑚), we consider an approximation obtained
by means of a pseudo-fidelity sampling (𝑋𝐶,𝑚,𝑚⋅𝜙′) with pa-
rameters (𝑁 ′, 𝜙′) adjusted to match the expected value and
the variance of the honest fidelity case (𝑋𝑚,𝐹,𝜙).

Recall here the two expected values and two variances:

𝐸[𝑋𝐶,𝑚,𝑚⋅𝜙′] = 𝑚 ⋅ (1 + 𝜙′)/𝑁 ′ (85)

𝑉 [𝑋𝐶,𝑚,𝑚⋅𝜙′] = 𝑚 ⋅ (1 + 𝜙′)/𝑁 ′2 (86)
𝐸[𝑋𝑚,𝐹,𝜙] = 𝑚 ⋅ (1 + 𝜙)/𝑁 (87)
𝑉 [𝑋𝑚,𝐹,𝜙] = 𝑚 ⋅ (1 + 𝜙 ⋅ (2 − 𝜙))/𝑁2 (88)

We can equate the statistics of interest:

𝑚 ⋅ (1 + 𝜙′)
𝑁 ′ =𝑚 ⋅ (1 + 𝜙)

𝑁
(89)

𝑚 ⋅ (1 + 𝜙′)
𝑁 ′2 =𝑚 ⋅ (1 + 𝜙 ⋅ (2 − 𝜙))

𝑁2 . (90)

Then, solving with respect to 𝑁 ′ and 𝜙′ gives:

𝑁 ′ = 𝑁 ⋅ 1 + 𝜙
1 + 𝜙 ⋅ (2 − 𝜙)

(91)

𝜙′ = 𝜙 ⋅ 2 ⋅ 𝜙
1 + 𝜙 ⋅ (2 − 𝜙)

. (92)

The SQC variable 𝑋[𝑁,]𝑚,𝐹,𝜙] of honest fidelity sampling is
approximately the same as the SQC variable 𝑋[𝑁′,]𝐶,𝑚,𝑚⋅𝜙′] of
pseudo-fidelity sampling with parameters 𝑁 ′ and 𝜙′ adjusted
as in (91) and (92), respectively. Correspondingly, the CDF
and PDF are as follows:

CDF[𝑋[𝑁′,]𝐹,𝑚,𝜙′] ≈ 𝑃(𝑚 ⋅ (1 + 𝜙′), 𝑁 ′ ⋅ 𝑥) (93)

PDF[𝑋[𝑁′,]𝐹,𝑚,𝜙′] ≈ 𝑁1+𝜙′ ⋅ 𝑥𝜙′ ⋅ 𝑒−𝑁′⋅𝑥/Γ(1 + 𝜙′) (94)

This provides a better approximation than the Normal-CLT,
while also allowing an easy formulation of the sum of i.i.d.
variables. Any discrepancy found between the CLT-Normal
and this case is on its own evidence of a lack of applicability
of the CLT, since the Gamma approximation has the same
mean and variance as the non-approximated case.

Table 10: Gamma vs. Normal (CLT) approximations

𝜙 𝑚 log2(FN𝜙1=𝜙) log2(FP𝜙2=0)

Gamma CLT Gamma CLT

0.002 106 -2.7 -2.7 -2.7 -2.7
107 -10.3 -10.3 -10.3 -10.3

4 ⋅ 107 -32.8 -32.8 -32.9 -32.9

0.01 105 -4.1 -4.1 -4.1 -4.1
106 -21.4 -21.4 -21.7 -21.7

2 ⋅ 106 -39.6 -39.5 -40.1 -40.2

0.05 104 -6.9 -6.9 -7.3 -7.3
5 ⋅ 104 -24.7 -24.3 -26.0 -26.4

105 -46.0 -45.3 -48.7 -49.4

0.25 103 -11.5 -11.0 -13.8 -14.7
2 ⋅ 103 -20.4 -19.3 -24.7 -26.4
4 ⋅ 103 -37.6 -35.4 -46.0 -49.4

1 10 -3.0 -2.9 -3.8 -4.1
102 -14.1 -12.3 -17.4 -21.7

3 ⋅ 102 -36.6 -31.0 -45.4 -58.6

Threshold: For illustration purposes, the SQC threshold for mea-
suring FN and FP is set to (1 + 0.5 ⋅ 𝜙) ⋅ 𝑚/𝑁, which is exactly in
between the expected values (1+𝜙)⋅𝑚/𝑁 of the SQC in the honest
case and 𝑚/𝑁 in the malicious uniform case. This is a a crude
(not optimal) approximation of a threshold providing FN ≈ FP.
Legend: 𝜙 (fidelity in the honest case); 𝑚 (number of sampled
strings used in the SQC); FN and FP (false positive and false
negative rates, respectively).

C.3.1. Accuracy analysis

It is instructive to compare results between the Gamma and
the CLT approximations. We expect the discrepancies to be
more noticeable for not-too-large sample sizes (e.g., 𝑚 < 103)
or in the tail of the distributions, i.e., when using thresholds
for very low FP and FN rates, e.g., of the order of 2−40.

In Section 3.2 we already compared curves for 𝑚 = 1 (Fig. 5)
and 𝑚 = 5 (Fig. 6). Table 10 shows other concrete results of
FN and FP rates between the exact/approximated gamma cal-
culation and the Normal-CLT approximation. In the Gamma
column for the FN case, when 𝑚 < 5 ⋅ 103 we use the exact
weighted binomial sum of Gamma CDFs (73), and otherwise
use the derived Gamma-approximation (93). The results in
the Gamma column for FP rates are calculated without ap-
proximation (i.e, apart from rounding precision), since for
pseudo-fidelity 0 the formula is already exact.

Since we do not yet report a numeric solving of (84) with
respect to 𝑚, we used an heuristic threshold — the middle
point SQC between the mean of the honest and the mean of
the malicious one. Some observations:

• For 𝜙 = 1 and 𝑚 = 102, the CLT-Normal FP ≈ 2−21.73 is
about 20 times lower than the Gamma FP 2−17.36. For
𝑚 = 3 ⋅ 102 the discrepancy is even larger, e.g., of about
48 times for the FN results. The Gamma results are
exact here, since they refer to fidelity either 0 (for FP) or
1 (for FN). This illustrates the need to obtain estimates
better than what the CLT-approximation allows.

• For 𝜙 = 0.25 and 𝑚 = 4 ⋅ 103, the CLT-Normal FP

Page 27 of 35

≈ 2−49.42 is about 11 times lower than the Gamma FP
2−45.98. The Gamma result is exact here, since it is
calculating the case of fidelity 0.

• For 𝜙 ∈ {0.002, 0.01}, the shown CLT rates are very
close to the Gamma ones, within one decimal of the log2.
This is expected, since these cases involve many sampled
strings (𝑚 ≥ 105).

D. Discretization of QC-values

D.1. Individual probabilities

Based on the exponential model, we consider how to dis-
cretize the QC values. First, we compute the 𝑛 sequential
intervals expected, each, to contain exactly one QC-value.
Recall that the CDF 𝐹(𝑝) of the frequency-density 𝑓 gives the
number of strings with QC-value up to the input. For exam-
ple, 𝐹(1/𝑁) ≈ 0.632 means that a factor of about 63.2 % of
the strings have QC-value up to 1/𝑁. Thus, we compute the
values 𝑥𝑖 such that 𝐹(𝑥𝑖) = 𝑖/𝑁, for all 𝑖 ∈ {0, 1, ..., 𝑁}. The
intuition is that between 𝑥𝑖−1 and 𝑥𝑖 we expect to encounter
the 𝑖th QC-value 𝑝𝑖. We get:

𝑥𝑖 = log(𝑁) − log(𝑁 − 𝑖)
𝑁

. (95)

The extremes of (95) are 𝑥0 = 0 and 𝑥𝑁 = ∞. The before-
last interval ends in 𝑥𝑁−1 = log(𝑁)/𝑁, which is thus a lower
approximation of the maximum QC-value.

If we position all 𝑁 QC-values to be the minimum value in
the interval, i.e., 𝑝𝑖 = 𝑥𝑖−1, then their sum becomes close to,
but not exactly, 1.

𝑁−1

∑
𝑖=0

𝑥𝑖 = log(𝑁) − log(Γ(𝑁 + 1))
𝑁

(96)

To enable the sum of QC-values to be 1, we let each 𝑝𝑖 be
at a more advanced position in the interval [𝑥𝑖−1, 𝑥𝑖]. Con-
cretely, we let 𝑝𝑖 = 𝑥𝑖−1 + Δ𝑖, such that the integral under
the frequency-density curve leads to a certain constant factor
𝑐, with 0 < 𝑐 < 1, of the total 1/𝑁, i.e.,

∫
𝑥𝑖+Δ𝑖

𝑥𝑖

𝑓(𝑥) 𝑑𝑥 = 𝑐
𝑁

(97)

Solving in order of Δ𝑖 yields

Δ𝑖 = − 1
𝑁

⋅ (log(𝑁 − 𝑖) − log(𝑁 − 𝑖 − 𝑐)) . (98)

The sum of QC-values is now given as:

(
𝑁−1

∑
𝑖=0

𝑥𝑖 + Δ𝑖) = log(𝑁) − 1
𝑁

⋅ log (Γ(𝑁 + 1 − 𝑐)
Γ(1 − 𝑐)

) . (99)

For each 𝑁, we set 𝑐 to the value that makes the sum of prob-
abilities be 1. This value 𝑐 gets closer to 1/2 as 𝑁 increases.
For example, for 𝑁 = 253 we have 𝑐 ≈ 0.50895.

A different criterion for discretization could be to let each

initial 𝑝𝑖 approximation enforce the Shannon entropy to be
equal to the differential entropy, i.e., satisfying:

∫
𝑥𝑖

𝑥𝑖−1

𝑁 ⋅ 𝑓(𝑥) ⋅ 𝑥 ⋅ log2(𝑥) 𝑑𝑥 = 𝑝𝑖 ⋅ log2(𝑝𝑖) (100)

And then adapt the 𝑝𝑖 values so that they all sum to 1.

D.2. Collisions

An adversary with a large quantum-sampling budget 𝛽 can
use the frequency of collisions of each quantumly-obtained
string as a hint about the high or low QC-value of the string.
Such capability can be used to affect the sum of QC-values.

When quantumly sampling 𝛽 = 𝑏 ⋅ 𝑁 strings (for some budget
factor 𝑏 > 0), with replacement, the adversary may obtain
repeated strings. The adversary partitions the set into bins
of different multiplicities. Each multiplicity 𝑐 denotes the
number of times a string appears (𝑐 = 1 means appearing
without repetition; higher 𝑐 values mean actual collisions). We
also consider the case of multiplicity 𝑐 = 0, denoting the bin
of strings that did not appear. For each bin, we are interested
in the expected values of the following measures:

• 𝑀: Number of strings

• 𝐴: Average of QC-values

• ℎ: Average entropy per string (as measured with respect
to an appropriate distribution — see Section D.2.2).

Note that the number of strings can also be seen as a normal-
ized (multiplied by 𝑁) average (across all strings) of the prob-
ability of occurrence in an bin. Besides averages, sometimes
it can also be useful to know the corresponding variances.

For the purpose of the rejection sampling in Section 5, we are
interested in uniform sampling across a bin or union of bins.

D.2.1. Initial statistics per bin

We start by considering the probabilities of a string appearing
with multiplicity 𝑐, when sampling with budget factor 𝑏. If a
string has QC-value 𝑝, then the probability that it is output
in an individual circuit evaluation with fidelity 𝜙 is 𝑝′ =
𝜙 ⋅ 𝑝 + (1 − 𝜙)/𝑁. When evaluating 𝛽 times, the probability
𝑝″ that the string appears exactly 𝑐 times is:

𝑝″ = (𝛽
𝑐
) ⋅ 𝑝′𝑐 ⋅ (1 − 𝑝′)𝛽−𝑐, (101)

(see (67) for an explanation of the Binomial notation).

Using 𝑝″ as an abbreviation for 𝑝𝑁,𝑏,𝑐,𝜙, letting 𝑘 = ∑ 𝑝″

be the normalization factor for a corresponding (discrete)
probability density function, and using 𝑝 as an abbreviation
of QC-value, we can present formulas for determining the
mentioned statistics of interest:

𝑀𝑁,𝑏,𝑐,𝜙 = ∑ 𝑝″ ≡ 𝑘 (102)

𝐴𝑁,𝑏,𝑐,𝜙 = ∑ 𝑝″

𝑘
⋅ 𝑝 = 1

𝑘
⋅ ∑ 𝑝″ ⋅ 𝑝 (103)

Page 28 of 35

ℎ𝑁,𝑏,𝑐,𝜙 = ∑ 𝑝″

𝑘
⋅ log2 (𝑝″

𝑘
)

= − (1
𝑘

⋅ ∑ 𝑝″ ⋅ log2(𝑝″)) + log2 (𝑘) (104)

(105)

where the summations are over all strings. The formulas
are meaningful for non-negative multiplicities. The bin 𝑐 = 0
contains the strings that do not appear while sampling.

Note: 𝑝″ is the probability that a string (the index remains
implicit) appears in bin 𝑐, rather that its probability density in
the PDF vector corresponding to bin 𝑐. The latter probability
density can be obtained by normalization, becoming 𝑝″/𝑘.
That is for example the reason for the term log2(𝑘) in the
formula for the entropy.

The list of formulas can be naturally extended to include
higher moments of 𝑀, 𝐴 and ℎ. For example, for the variances
we have:

𝑉𝑀,𝑁,𝑏,𝑐,𝜙 = ∑ 𝑝″2 − 𝑘2 (106)

𝑉𝐴,𝑁,𝑏,𝑐,𝜙 = 1
𝑘

⋅ ∑ 𝑝″ ⋅ 𝑝2 − 𝐴𝑁,𝑏,𝑐,𝜙
2 (107)

𝑉ℎ,𝑁,𝑏,𝑐,𝜙 = 1
𝑘

⋅ ∑ 𝑝″ ⋅ log2 (𝑝″

𝑘
)

2

− ℎ𝑁,𝑏,𝑐,𝜙
2 (108)

We can now analyze result for several concrete cases. We
have experimentally observed that the statistics 𝑀, 𝐴 and
𝑉𝐴 closely match what the following formulas predict. We
hypothesize that the formulas are correct approximations, but
present them here only as a heuristic result, since we obtained
them from observing patterns, and have not yet done a proper
derivation.

Concrete results for 𝑀, 𝐴, 𝑉𝐴

• For uniform sampling (fidelity 𝜙 = 0):

𝑀𝑁,𝑏,𝑐,𝜙=0 ≈ 𝑁 ⋅ 𝑏𝑐

𝑒𝑏 ⋅ 𝑐!
(109)

𝐴𝑁,𝑏,𝑐,𝜙=0 = 1
𝑁

(110)

𝑉𝐴,𝑁,𝑏,𝑐,𝜙=0 = 1
𝑁2 (111)

• For quantum evaluation with fidelity 𝜙 = 1:

𝑀𝑁,𝑏,𝑐,𝜙=1 = 𝑁 ⋅ 𝑏𝑐

(1 + 𝑏)1+𝑐 (112)

𝐴𝑁,𝑏,𝑐,𝜙=1 = 1
𝑁

⋅ 1 + 𝑐
1 + 𝑏

(113)

𝑉𝐴,𝑁,𝑏,𝑐,𝜙=1 = 1
𝑁2 ⋅ 1 + 𝑐

(1 + 𝑏)2 (114)

Two identities. Based on the semantics of the expected
number 𝑀𝑏,𝑐,𝜙 of strings for each multiplicity 𝑐, when sampling
with fidelity 𝜙 and a budget factor 𝑏, we can express two useful
and straightforward identities:

• String space size — it is equal to the sum of frequencies

across all non-negative multiplicities:
∞

∑
𝑐=0

𝑀𝑁,𝑏,𝑐,𝜙 = 𝑁 (115)

• Sampling budget — it is equal to the sum of the
frequencies times multiplicities:

∞

∑
𝑐=1

𝑐 ⋅ 𝑀𝑁,𝑏,𝑐,𝜙 = 𝑏 ⋅ 𝑁 (116)

It is straightforward to check that the formulas (112, 109)
presented for the frequencies 𝑀𝑏,𝑐,𝜙, when 𝜙 = 1 and 𝜙 = 0,
satisfy the mentioned identities.

D.2.2. Concrete results for entropy

By [apriori] entropy of a string in bin 𝑐 we mean the entropy
of the string conditioned on it being in bin 𝑐, before rejection
sampling. For fidelity 𝜙 = 0, strings are obtained uniformly,
implying that, within each bin, each string is equally likely
to appear. Therefore, regardless of the budget factor 𝑏,
the uniform distribution remains the basis to compute the
expected entropy per string in any bin 𝑐, yielding

ℎ𝑁,𝑏,𝑐,𝜙=0 = log2(𝑁). (117)

The case is more complex when considering a positive
fidelity. Table 16 shows, for several budget factors 𝑏, the
decrease (compared to 𝑛) in the apriory entropy in each bin
𝑐, as calculated numerically for the case of 28 qubits. The
entropy-decrease (𝑛 − ℎ) increases with the number 𝑛 of
qubits, but the shown values are reasonably close across a
wide range of values for 𝑛. For example, if using these values
for the case of 53 qubits, and assuming a sampling budget
of 232 = 2−21 ⋅ 𝑁, we can confidently say that an adversary
that uses a string from bin 𝑐 = 2 is effectively inducing an
expected entropy of no more than 51.34 ≈ 53 − 1.6626 bits
(before rejection sampling). This is already a noticeable
correction from the 52.39 bits determined for the sampling
of a single string from the QC-value distribution.

Note: The calculated entropy is, as expected, smaller than
what would be (incorrectly) obtained if measuring it directly
with respect to the distribution of QC-values. For example,
in the case 𝜙 = 1 then we would (incorrectly) compute the
average log2 of the QC-values in each bin 𝑐, yielding

ℎ∗
𝑁,𝑏,𝑐,𝜙=1 ≈ log2(𝑁) + log2(1 + 𝑏) + 𝛾 − ℋ(𝑐)

log(2)
, (118)

where 𝛾 is the Euler-Mascheroni constant (≈ 0.577) and ℋ(𝑐)
is the 𝑐-th harmonic number (∑𝑐

𝑖=1
1
𝑖).

As a clear example of unoptimality, for (𝑐, 𝑏) = (1, 1) the
formula yields a value larger than 𝑛, where 𝑛 is the value that
could already be obtained with a uniform sampling.

Page 29 of 35

D.2.3. Statistics in unions of bins

As an example, consider the union of all bins with positive
multiplicity, i.e., corresponding to the set of all obtained
distinct strings. Consider a sampling budget of 𝛽 = 𝑏⋅𝑁 circuit
evaluations. For simplicity of notation, we leave implicit the
indices 𝑁 and 𝑏. Consider the use of a prime (’) as an identifier
that a variable refers to the strings in the union of bins with
multiplicity equal to or larger than 𝑐 (which for 𝑐 = 1 means
the set of all distinct sampled strings). Then, the expected
number of distinct strings is about:

𝑀 ′
𝑐=1,𝜙 =

∞

∑
𝑐=1

𝑀𝑐,𝜙 (119)

𝑀 ′
𝑐=1,𝜙=0 = 𝑁 ⋅ (1 − 𝑒−𝑏) = 𝑁 ⋅ (1 − 𝑒−𝛽/𝑁) (120)

𝑀 ′
𝑐=1,𝜙=1 = 𝑁 ⋅ 𝑏

1 + 𝑏
= 𝑁 ⋅ 𝛽

𝑁 + 𝛽
. (121)

Often we also leave implicit the parameter 𝜙 when clear from
the context (e.g., using 𝑀 ′

1 to denote 𝑀 ′
𝑐=1,𝜙=1).

The expected QC value when uniformly selecting a string
from within the set of distinct strings is equal to the expected
mean QC-value from the set (namely ignoring the information
in the tally of collisions) and is equal to:

𝐴′
𝑐=1,𝜙 = 1

𝑀 ′
𝑐=1,𝜙

⋅
∞

∑
𝑐=1

𝐴𝑐,𝜙 ⋅ 𝑀𝑐,𝜙 (122)

𝐴′
𝑐=1,𝜙=0 = 1

𝑁
(123)

𝐴′
𝑐=1,𝜙=1 = 1

𝑁
⋅ 2 + 𝑏

1 + 𝑏
(124)

This shows that 𝐴′
𝑐=1,𝜙=1 is very close to 2/𝑁 for a budget

factor 𝑏 less than the square-root of the string space 𝑁), and
it approaches 1/𝑁 = 𝐴′

𝑐=1,𝜙=0 as 𝑏 tends to infinity (i.e., when
all strings are in the pre-sample).

D.3. Approximate sum of “entropies”

Section 5.3.2 provided an initial approximation formula (19)
for the expected entropy 𝐻 of a sample of 𝑞 strings output by
a pseudo-fidelity adversary with budget 𝛽, as follows:

𝑞 ⋅ ℎ𝛽⏟
Apriori
entropy

− (𝑞 ⋅ (log2(𝑀 ′
1/𝑞)) + log2(𝑞!)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

entropy reduction

) (125)

In this section, we consider corrections to both entropy
components: the apriori component; and the reduction
component. The second term is an approximation to the
entropy removed by rejection sampling; the first term is an
approximation to the entropy that would be assigned per
string in an experiment that would output the strings by
uniform sampling from within the pre-sample.

D.3.1. Apriori entropy

Let apriori entropy denote the initial average entropy ℎ𝛽 per
string in a pre-sample of size 𝑀 ′

1. Then, a first approximation

for 𝑞 strings uniformly selected from the sample is obtained
by summing 𝑞 times the average, yielding 𝑞 ⋅ℎ𝛽. However, this
does not account for the dependencies (that induce a smaller
entropy) related to sampling without replacement from the
set of 𝑀 ′

1 strings.

Asymptotic behavior. To illustrate the problem, con-
sider the limit when 𝛽 → ∞ (implying 𝑀 ′

1 → 𝑁). Then all
strings are obtained in the pre-sample, meaning that a subse-
quent uniform selection therefrom has ℎ∞ = log2(𝑁). In the
specific case 𝑞 = 𝑁, i.e., if sequentially sampling all strings,
then the overall entropy is 0, since the ordering of all strings is
a predictable output. However, 𝑁 ⋅ log2(𝑁) ≠ log2(𝑁!). Thus,
the first additive term 𝑞 ⋅ ℎ𝛽 needs to be an expression that in
the limit 𝛽 → ∞ and 𝑞 = 𝑀 ′

1 converges to log2(𝑁!)

Sequential correction. Let us say that ℎ𝛽1
≡ ℎ𝛽 is the

entropy of the first string whose entropy is accounted for.
Then the second string will require a correction based on the
conditional probability distribution that the first string can
no longer be selected. As an approximation, let us assume
that the entropy of each string in the pre-sample is equal to
the average entropy in the set of sampled strings. Then the
corrected entropy for the second string becomes:

ℎ𝛽,2 = ℎ𝛽 + log2(1 − 2−ℎ𝛽), (126)

where 1 − 2−ℎ𝛽 is the renormalization factor to be applied to
all probabilities, since 2−ℎ𝛽 was the probability of the string
that can no longer appear. Applying this recursively yields:

ℎ𝛽,𝑖 = ℎ𝛽,𝑖−1 + log2(1 − 2−ℎ𝛽,𝑖−1) (127)

A simpler form of the above recursion is:

2ℎ𝛽,𝑖 = 2ℎ𝛽,𝑖−1 − 1 = 2ℎ𝛽 − (𝑖 − 1) (128)

For the correction of entropy estimation we should now replace
𝑞 ⋅ ℎ𝛽 by ∑𝑖=1,...,𝑞 ℎ𝛽,𝑖, which yields:

∑
𝑖=1,...,𝑞

log2 (2ℎ𝛽 − (𝑖 − 1)) (129)

= log2 (Γ (1 + 2ℎ𝛽)) − log2 (Γ (1 + 2ℎ𝛽 − 𝑞)) (130)

= log2 ((2ℎ𝛽)𝑞) . (131)

where 𝑥𝑦𝑞 is the descending factorial 𝑥 ⋅ (𝑥 − 1) ⋅ ... ⋅ (𝑥 − 𝑞 + 1),
whose binary logarithm is calculatable as log2 (Γ(𝑥 + 1)) −
log2 (Γ(𝑥 − 𝑞 + 1)) / log(2).

Example. (𝑛, 𝛽, 𝑞) = (53, 232, 220) yields ℎ𝛽 ≈ 52.4 and
𝑞 ⋅ ℎ𝛽 ≈ 5.24E+7. The correction yields (5.24E+7) + Δ, with
Δ ≈ 1.3𝐸-4. The variation factor Δ/ (𝑞 ⋅ ℎ𝛽) ≈ 2.4E-12 is
very small. If using 𝑞 = 230 that factor is about 2.5E-9.

The effect is small and less notorious as the sampling budget
factor decreases, which is expected as the number of qubits in-
creases. As an example, consider the case of a collisional adver-
sary in a setting with parameters (𝑛, 𝛽, 𝑐, ℎ) = (28, 2𝑛, 16, 11)
(values from Table 16). Then, the bin 𝑐 = 16 is expected
to have about 𝑀𝑐 = 28.5 strings. If (for the sake of argu-
ment) the adversary would select all of these, then 𝑞 ⋅ ℎ
yields about 3982 bits of entropy, whereas the corrected
version (before sorting) gives 3933 bits of entropy, i.e., a
reduction factor of about Δ = 1.23%. If instead considering

Page 30 of 35

(𝑛, 𝛽, 𝑞, ℎ) = (53, 232, 220, 52.39), then the reduction factor is
of only about 2.4E-12.

D.3.2. Entropy upon rejection sampling

Consider the setup of obtaining a pre-sample with 𝑀 strings
from a string space of size 𝑁. We focus on rejection sampling
techniques that deterministically select a sequence of 𝑞 strings
from the pre-sample.

We look at techniques based on application of a pseudo-
random permutation (PRP), which is a bijection parametrized
by a secret key. Consider the following examples:

1. Predicate-based. Select the strings that upon applica-
tion of a PRP start with ⌊log2(𝑀) − log2(𝑞)⌋ zeros. We
make the simplifying assumption that this selects exactly
𝑞 strings.

2. Single-ordering-based. Apply to every string the
same PRP and then select only the lexicographically
first 𝑞 strings, in the corresponding order.

3. Multi-ordering-based. Apply a PRP as in the single-
ordering-based case, but select only the lexicographically
first string, hereafter denoted as 𝑠1; then specify another
(differently seeded) PRP, mapping the set 𝑆𝑛\{𝑠1} onto
itself, and again select the corresponding lexicographi-
cally first string 𝑠2; ... and so on until selecting 𝑞 strings.

Different entropy reductions. The distribution of
probabilities is distinct across the three cases. The first
procedure reduces the number of possible strings (i.e.,
those with positive probability of selection) by a factor of
about ≈ 𝑀/𝑞. The second case only prevents the 𝑀 − 𝑞
PRP-lexicographically higher strings from ever being output,
although many other strings have a very low (but not 0)
probability of occurrence. The third procedure gives a chance
to every string (depending on the sequence of PRPs), because
strings do not have a fixed lexicographical ranking when
considering a sequence of selections.

A toy example. For an illustration of entropy reduction,
we first consider a toy example where we can compute the
exact entropy reduction. Let (𝑁, 𝑀) = (210, 2𝑗) for some posi-
tive 𝑗, such that we intend to obtain a pre-sample with exactly
𝑀 strings by repeated uniform selection (without replacement)
from a set with 𝑁 strings. Then we do rejection sampling
on the 𝑀 strings in order to select the lexicographically first
string. The exact probability of the 𝑖-th string being the one
selected is

𝑝𝑁,𝑀(𝑖) =
(𝑁−𝑖

𝑀−1)
(𝑁

𝑀)
= 𝑀 ⋅ (𝑁 − 𝑖)! ⋅ (𝑁 − 𝑀)!

(𝑁 − 𝑖 − 𝑀)! ⋅ 𝑁!
(132)

= 𝑀 ⋅ (𝑁 − 𝑀)𝑖

𝑁 𝑖 , (133)

where 𝑖 in the exponent denotes the degree of a descending
factorial. In the right side of the first equality: the numerator
is the number of pre-samples whose lowest value is 𝑖; the
denominator is the total number of possible pre-samples.

From the corresponding PDF we can compute the Shannon
entropy of the distribution, as the sum of 𝑝 ⋅ log2(𝑝) of every

occurring probability 𝑝:

𝐻𝑁,𝑀 = ∑
𝑁

𝑖=1
𝑝𝑁,𝑀(𝑖) ⋅ log2(𝑝𝑁,𝑀(𝑖)) (134)

For example, we get 𝐻210,21 ≈ 9.72 and 𝐻210,29 ≈ 1.998. These
values are noticeably larger than what we would get by apply-
ing 𝐻 = ℎ − log2(𝑀) (the special case of 𝑞 = 1 from equation
(19)), which would respectively give 9 and 1.

Our approximation — first step (𝑞 = 1). We start
by estimating what is the sampling budget 𝛽 that induces
a pre-sample of size 𝑀. For the uniform case this means
resolving formula (120) for 𝑏, which yields 𝑏 = − log(1−𝑀/𝑁),
where 𝛽 = 𝑏 ⋅ 𝑁. For the case of quantum sampling we
would instead solve (121), yielding 𝑏 = 𝑀/(𝑁 − 𝑀). Now we
assume, as an approximation, that whenever 𝛽 strings are
independently sampled (uniformly or quantumly, depending
on the used formula), exactly 𝑀 distinct strings are obtained.
Assuming 𝛽 i.i.d. evaluations to obtain a pre-sample, we know
how to calculate the probability 𝑝(1)

𝑖 of the 𝑖-th string being
the lexicographically first:

𝑝(1)
𝑖 = (𝑝𝑖 + 𝑧𝑖)

𝛽 − (𝑧𝑖)
𝛽 , (135)

where 𝑧𝑖 = ∑𝑁
𝑘=𝑖+1 𝑝𝑘 satisfies 𝑧𝑖 = 𝑧𝑖−1 − 𝑝𝑖 with 𝑧0 = 1.

Table 11 compares, for the toy example with uniform selection
and 𝑁 = 1024, the exact entropy vs. the one obtained with
our proposed approximation vs. the rough approximation
obtained from (19).

Table 11: Entropy approximations: Uniform, 𝑞 = 1

Toy example with uniform selection and (𝑁, 𝑞) = (1024, 1)

𝑀 𝐻 (entropy upon rejection sampling

Exact Numeric
approx.

Formula
(19)

1 = 20 10 10 10
2 = 21 9.72064 9.72064 9
4 = 22 9.07990 9.07990 8
32 = 25 6.37554 6.37554 5

256 = 28 3.24025 3.24022 2
512 = 29 1.99805 1.99797 1
768 = ∑9

𝑖=82𝑖 1.08084 1.08070 0.41504
992 = ∑9

𝑖=52𝑖 0.20693 0.20679 0.04580
1020 = ∑9

𝑖=22𝑖 0.03699 0.03693 0.00565
1022 = ∑9

𝑖=12𝑖 0.02041 0.02038 0.00282
1023 = ∑9

𝑖=02𝑖 0.01117 0.01115 0.00141
1024 0 0 0

Our approximation — next steps. Then we proceed
with other 𝑞 − 1 similar steps, but in each one adjusting the
corresponding PDF. In each iteration, the new PDF vector
becomes 0 in all positions with index smaller or equal to the in-
dex of the selected string. To compute the expected Shannon
entropy, we could then update the PDF vector by calculating
the weighted contribution from each possibility of each string
having occurred in the previous iteration. To illustrate com-
parative results of Shannon entropy, we performed a Monte
Carlo simulation to generate Table 12 for the uniform case,

Page 31 of 35

and Table 13 for the quantum case. Each row corresponds to
a pair (𝑀, 𝑞), where 𝑀 is the pre-sample size and 𝑞 is the num-
ber of strings therefrom that are selected to the final sample.

The columns “Simulation” show several empirical statistics,
namely mean, standard deviation, minimum and maximum
values, of Shannon entropy. Each row was produced from
results of 1000 trials. Each trial consists of obtaining a
pre-sample, from the given PDF, and then doing 𝑞 iterations
of the following: (i) compute the budget 𝛽 of i.i.d. evaluations
that would likely yield 𝑀 distinct strings; (ii) compute
the probabilities of each element being the lowest to be
pre-sampled; (iii) increment the entropy counter based on
the probability of the lowest element in the pre-sample; (iii)
readjust the PDF to be 0 for its value and all lower values,
and renormalize the PDF to sum to 1.

Table 12: Entropy approximations: Uniform, 𝑞 ≥ 1

Uniform (fidelity 0) case with 𝑁 = 1024

𝑀 𝑞 Simulation (1000 trials) (19)
direct

(20)
iteratedmax mean ± stdev min

1 1 10.00 10.00 ± 0.0 10.00 10.00 10.00
2 2 19.00 19.00 ± 0.0 18.96 19.00 19.00
4 2 26.21 18.09 ± 1.3 16.44 17.00 16.41
4 4 35.41 35.41 ± 0.0 35.38 35.42 35.41
8 2 24.63 16.53 ± 1.6 14.25 15.00 14.19
8 4 42.80 33.03 ± 1.8 29.59 31.42 29.28
8 8 64.67 64.66 ± 0.0 64.40 64.70 64.66

32 2 22.54 12.89 ± 2.0 10.04 11.00 10.04
32 8 65.37 50.92 ± 3.5 43.95 48.70 41.33
32 24 166.51 152.90 ± 3.4 144.44 151.00 137.24
32 32 201.66 201.63 ± 0.0 201.22 202.34 201.63
512 8 36.24 16.16 ± 3.9 8.04 16.70 8.04
512 32 95.65 64.26 ± 8.0 45.24 74.34 32.72
512 256 566.43 511.07 ± 16.3 463.93 620.00 318.46
512 512 1019.33 1018.78 ± 0.2 1017.24 1244.83 1018.67

Legend: ± stdev (abbreviation for standard deviation)

Table 13: Entropy approximations: Quantum, 𝑞 ≥ 1

Quantum (fidelity 1) case with 𝑁 = 1024

𝑀 𝑞 Simulation (1000 trials) (19)
direct

(20)
iteratedmax mean ± stdev min

1 1 14.67 9.37 ± 1.1 7.05 9.39 9.39
2 2 24.78 17.75 ± 1.7 13.60 17.78 17.78
4 2 26.06 16.93 ± 2.0 12.42 15.78 15.19
4 4 41.39 32.90 ± 2.3 26.36 32.98 32.96
8 2 26.44 15.25 ± 2.3 9.87 13.78 12.97
8 4 43.99 30.38 ± 2.8 23.00 28.98 26.83
8 8 71.03 59.58 ± 3.2 49.45 59.82 59.76

32 2 27.53 11.42 ± 2.5 6.07 9.78 8.82
32 8 62.02 46.08 ± 4.8 33.76 43.82 36.43
32 24 161.98 138.04 ± 6.7 121.30 136.36 122.40
32 32 202.65 182.55 ± 6.3 164.42 182.82 181.73
512 8 27.96 11.45 ± 4.2 2.21 11.82 3.14
512 32 78.16 46.32 ± 8.1 21.25 54.82 12.83
512 256 443.12 368.15 ± 20.2 304.75 463.86 131.37
512 512 806.84 734.16 ± 21.4 675.63 932.54 525.15

The described simulation is intended only as a rough approxi-
mation. This allows us to check a degree of closeness to the
results provided by formula (19). The iterated application of
the formula (one string at a time) yields an entropy estimate

lower than with the direct application (using a generic 𝑞), but
it is still not a lower bound for the expected entropy. In the
simulated results, the rightmost column is a lower bound of
the empirically observed entropy.

E. Tables with more detail

Table 14 shows sample sizes needed for several levels of
FN=FP ratio in the SQC setting where the client verifies all
QC-values. Table 15 shows the expected number of truncated
QC-values to verify by a client, for several verification
proportion budgets, when a server can pre-compute a
corresponding larger amount. Table 16 shows statistics
measured per bin, for various sampling budgets.

Page 32 of 35

Table 14: Sample size for SQC distinguishability

𝜙1 𝜖 Sample size 𝑚 (number of strings)
when

𝜙2 = 0
when

𝜙2
𝜙1

= 10−2
when

𝜙2
𝜙1

= 10−1
when

𝜙2
𝜙1

= 1/4
when

𝜙2
𝜙1

= 1/2
when

𝜙2
𝜙1

= 3/4

0.002 2−40 4.977E+7 5.078E+7 6.146E+7 8.852E+7 1.993E+8 7.975E+8
2−30 3.618E+7 3.692E+7 4.468E+7 6.436E+7 1.449E+8 5.798E+8
2−20 2.273E+7 2.319E+7 2.807E+7 4.043E+7 9.102E+7 3.642E+8
10−3 9.569E+6 9.763E+6 1.182E+7 1.702E+7 3.831E+7 1.533E+8
10−2 5.423E+6 5.533E+6 6.696E+6 9.645E+6 2.171E+7 8.689E+7
10−1 1.646E+6 1.679E+6 2.032E+6 2.927E+6 6.589E+6 2.637E+7
1/4 4.558E+5 4.651E+5 5.629E+5 8.108E+5 1.825E+6 7.304E+6

0.01 2−40 2.007E+6 2.047E+6 2.480E+6 3.576E+6 8.066E+6 3.234E+7
2−30 1.459E+6 1.489E+6 1.803E+6 2.600E+6 5.864E+6 2.352E+7
2−20 9.165E+5 9.352E+5 1.133E+6 1.633E+6 3.684E+6 1.477E+7
10−3 3.858E+5 3.936E+5 4.767E+5 6.875E+5 1.551E+6 6.219E+6
10−2 2.186E+5 2.231E+5 2.702E+5 3.896E+5 8.789E+5 3.524E+6
10−1 6.635E+4 6.770E+4 8.199E+4 1.182E+5 2.667E+5 1.069E+6
1/4 1.838E+4 1.875E+4 2.271E+4 3.275E+4 7.388E+4 2.962E+5

0.05 2−40 8.330E+4 8.504E+4 1.033E+5 1.499E+5 3.414E+5 1.382E+6
2−30 6.056E+4 6.182E+4 7.514E+4 1.090E+5 2.482E+5 1.005E+6
2−20 3.805E+4 3.884E+4 4.720E+4 6.847E+4 1.559E+5 6.313E+5
10−3 1.602E+4 1.635E+4 1.987E+4 2.882E+4 6.564E+4 2.657E+5
10−2 9.077E+3 9.266E+3 1.126E+4 1.633E+4 3.720E+4 1.506E+5
10−1 2.755E+3 2.812E+3 3.418E+3 4.957E+3 1.129E+4 4.570E+4
1/4 7.630E+2 7.790E+2 9.470E+2 1.374E+3 3.127E+3 1.266E+4

0.2 2−40 5.827E+3 5.957E+3 7.327E+3 1.084E+4 2.551E+4 1.066E+5
2−30 4.237E+3 4.331E+3 5.328E+3 7.883E+3 1.855E+4 7.749E+4
2−20 2.662E+3 2.721E+3 3.347E+3 4.953E+3 1.165E+4 4.868E+4
10−3 1.121E+3 1.146E+3 1.409E+3 2.085E+3 4.905E+3 2.049E+4
10−2 6.350E+2 6.490E+2 7.990E+2 1.182E+3 2.780E+3 1.161E+4
10−1 1.930E+2 1.970E+2 2.430E+2 3.590E+2 8.440E+2 3.525E+3
1/4 5.400E+1 5.500E+1 6.800E+1 1.000E+2 2.340E+2 9.770E+2

1.0 2−40 2.900E+2 2.980E+2 3.880E+2 6.270E+2 1.688E+3 7.957E+3
2−30 2.110E+2 2.170E+2 2.820E+2 4.560E+2 1.227E+3 5.786E+3
2−20 1.330E+2 1.370E+2 1.780E+2 2.870E+2 7.710E+2 3.635E+3
10−3 5.600E+1 5.800E+1 7.500E+1 1.210E+2 3.250E+2 1.530E+3
10−2 3.200E+1 3.300E+1 4.300E+1 6.900E+1 1.840E+2 8.670E+2
10−1 1.000E+1 1.000E+1 1.300E+1 2.100E+1 5.600E+1 2.640E+2
1/4 3.000E+0 3.000E+0 4.000E+0 6.000E+0 1.600E+1 7.300E+1

Legend: 𝜖 (FN = FP); 𝜙1 (fidelity in the honest case 𝑋𝐹,𝑚,𝜙1
); 𝜙2 (pseudo-fidelity in the malicious case 𝑋𝑐,𝑚,𝜙2⋅𝑚,

i.e., proportion of quantum circuit evaluations, compared to the total number 𝑚 of sampled strings); FN (false
negative ratio for honest case, i.e., probability of rejection when sampling with fidelity 𝜙1); FP (false positive ratio
for malicious case, i.e., probability of acceptance when quantum sampling 𝑞 = 𝜙2 ⋅ 𝑚 strings, and uniformly sampling
𝑚 − 𝑞 strings); SQC (sum of QC-values). Values computed with the CLT approximation may yield some inaccuracies.

Page 33 of 35

Table 15: Sample size for STQC distinguishability

𝜙1 𝜖 Expected number 𝑚 ⋅ 𝜈 of TQC-values to be verified by the client

when 𝜈 = 10−1 when 𝜈 = 10−2 when 𝜈 = 10−3

when

𝜙2 = 0

when
𝜙2
𝜙1

= 10−1

when
𝜙2
𝜙1

= 1/2

when

𝜙2 = 0

when
𝜙2
𝜙1

= 10−1

when
𝜙2
𝜙1

= 1/2

when

𝜙2 = 0

when
𝜙2
𝜙1

= 10−1

when
𝜙2
𝜙1

= 1/2

0.002 2−40 7.289E+6 9.000E+6 2.918E+7 2.241E+6 2.768E+6 8.986E+6 1.036E+6 1.280E+6 4.160E+6

2−30 5.299E+6 6.543E+6 2.122E+7 1.629E+6 2.013E+6 6.533E+6 7.535E+5 9.309E+5 3.025E+6

2−20 3.329E+6 4.111E+6 1.333E+7 1.024E+6 1.264E+6 4.104E+6 4.734E+5 5.848E+5 1.900E+6

10−3 1.401E+6 1.730E+6 5.611E+6 4.309E+5 5.322E+5 1.728E+6 1.993E+5 2.462E+5 7.998E+5

10−2 7.941E+5 9.806E+5 3.180E+6 2.442E+5 3.016E+5 9.791E+5 1.129E+5 1.395E+5 4.533E+5

10−1 2.410E+5 2.976E+5 9.650E+5 7.411E+4 9.154E+4 2.971E+5 3.427E+4 4.234E+4 1.376E+5

1/4 6.676E+4 8.243E+4 2.673E+5 2.053E+4 2.536E+4 8.231E+4 9.493E+3 1.173E+4 3.811E+4

0.01 2−40 2.967E+5 3.667E+5 1.193E+6 9.343E+4 1.156E+5 3.781E+5 4.432E+4 5.490E+4 1.804E+5

2−30 2.157E+5 2.666E+5 8.675E+5 6.793E+4 8.406E+4 2.749E+5 3.222E+4 3.992E+4 1.311E+5

2−20 1.355E+5 1.675E+5 5.450E+5 4.267E+4 5.281E+4 1.727E+5 2.024E+4 2.508E+4 8.239E+4

10−3 5.705E+4 7.050E+4 2.294E+5 1.796E+4 2.223E+4 7.270E+4 8.520E+3 1.056E+4 3.468E+4

10−2 3.233E+4 3.996E+4 1.300E+5 1.018E+4 1.260E+4 4.120E+4 4.829E+3 5.983E+3 1.965E+4

10−1 9.811E+3 1.213E+4 3.945E+4 3.090E+3 3.823E+3 1.250E+4 1.466E+3 1.816E+3 5.965E+3

1/4 2.718E+3 3.359E+3 1.093E+4 8.560E+2 1.059E+3 3.464E+3 4.060E+2 5.030E+2 1.653E+3

0.05 2−40 1.295E+4 1.607E+4 5.318E+4 4.549E+3 5.681E+3 1.924E+4 2.403E+3 3.017E+3 1.042E+4

2−30 9.413E+3 1.168E+4 3.867E+4 3.307E+3 4.131E+3 1.399E+4 1.747E+3 2.194E+3 7.572E+3

2−20 5.913E+3 7.340E+3 2.429E+4 2.078E+3 2.595E+3 8.789E+3 1.098E+3 1.378E+3 4.757E+3

10−3 2.489E+3 3.090E+3 1.023E+4 8.750E+2 1.093E+3 3.700E+3 4.620E+2 5.810E+2 2.003E+3

10−2 1.411E+3 1.751E+3 5.795E+3 4.960E+2 6.190E+2 2.097E+3 2.620E+2 3.290E+2 1.135E+3

10−1 4.290E+2 5.320E+2 1.759E+3 1.510E+2 1.880E+2 6.370E+2 8.000E+1 1.000E+2 3.450E+2

1/4 1.190E+2 1.480E+2 4.880E+2 4.200E+1 5.300E+1 1.770E+2 2.300E+1 2.800E+1 9.600E+1

0.2 2−40 1.105E+3 1.396E+3 4.913E+3 5.260E+2 6.770E+2 2.542E+3 3.500E+2 4.580E+2 1.789E+3

2−30 8.040E+2 1.015E+3 3.572E+3 3.820E+2 4.930E+2 1.848E+3 2.540E+2 3.330E+2 1.301E+3

2−20 5.050E+2 6.380E+2 2.244E+3 2.400E+2 3.100E+2 1.161E+3 1.600E+2 2.090E+2 8.170E+2

10−3 2.130E+2 2.690E+2 9.450E+2 1.010E+2 1.310E+2 4.890E+2 6.800E+1 8.800E+1 3.440E+2

10−2 1.210E+2 1.530E+2 5.360E+2 5.800E+1 7.400E+1 2.770E+2 3.900E+1 5.000E+1 1.950E+2

10−1 3.700E+1 4.700E+1 1.630E+2 1.800E+1 2.300E+1 8.500E+1 1.200E+1 1.600E+1 6.000E+1

1/4 1.100E+1 1.300E+1 4.500E+1 5.000E+0 7.000E+0 2.400E+1 4.000E+0 5.000E+0 1.700E+1

Legend: 𝜖 (FN = FP); 𝜙1 (fidelity in the honest case 𝑌𝐹,𝑚,𝜙1
); 𝜙2 (pseudo-fidelity in the malicious case 𝑌𝐸,𝑚,𝜙2⋅𝑚, i.e.,

proportion of quantum circuit evaluations, compared to the total number 𝑚 of sampled strings); FN (false negative
rate for honest case, i.e., probability of rejection when sampling with fidelity 𝜙1); FP (false positive rate for malicious
case, i.e., probability of acceptance when quantum sampling 𝑞 = 𝜙2 ⋅ 𝑚 strings, and uniformly sampling 𝑚 − 𝑞 strings);
STQC (sum of truncated QC-values). Values computed with the CLT approximation may yield some inaccuracies.

Page 34 of 35

Table 16: Statistics per bin 𝑐 and budget factor 𝑏

Values obtained from direct measurement of (102), (103) and (105), for a discretized PDF for 28 qubits.

𝑏 = 𝛽/𝑁 2−21 2−17 2−13 2−9 2−5 2−2 2−1 20 21 22 24

𝑐 = 0 log2(𝑀/𝑁) -0.000 -0.000 -0.000 -0.003 -0.044 -0.322 -0.585 -1.000 -1.585 -2.322 -4.087
𝑁 ⋅ 𝐴 1.000 1.000 1.000 0.998 0.970 0.800 0.667 0.500 0.333 0.200 0.059
𝑛 − ℎ -0.000 0.000 0.000 0.000 0.001 0.033 0.104 0.279 0.623 1.168 2.730

𝑐 = 1 log2(𝑀/𝑁) -21.000 -17.000 -13.000 -9.006 -5.089 -2.644 -2.170 -2.000 -2.170 -2.644 -4.175
𝑁 ⋅ 𝐴 2.000 2.000 2.000 1.996 1.939 1.600 1.333 1.000 0.667 0.400 0.118
𝑛 − ℎ 0.610 0.610 0.610 0.607 0.567 0.355 0.233 0.167 0.271 0.624 1.982

𝑐 = 2 log2(𝑀/𝑁) -42.011 -34.001 -26.001 -18.008 -10.133 -4.966 -3.755 -3.000 -2.755 -2.966 -4.262
𝑁 ⋅ 𝐴 3.000 3.000 3.000 2.994 2.909 2.400 2.000 1.500 1.000 0.600 0.176
𝑛 − ℎ 1.663 1.663 1.662 1.657 1.576 1.119 0.805 0.499 0.362 0.522 1.677

𝑐 = 3 log2(𝑀/𝑁) — -51.002 -39.001 -27.011 -15.178 -7.288 -5.340 -4.000 -3.340 -3.288 -4.350
𝑁 ⋅ 𝐴 — 4.000 4.000 3.992 3.879 3.200 2.667 2.000 1.333 0.800 0.235
𝑛 − ℎ — 2.852 2.851 2.843 2.721 2.019 1.513 0.966 0.589 0.557 1.508

𝑐 = 4 log2(𝑀/𝑁) — — -52.001 -36.014 -20.222 -9.610 -6.925 -5.000 -3.925 -3.610 -4.437
𝑁 ⋅ 𝐴 — — 4.999 4.990 4.848 4.000 3.333 2.500 1.667 1.000 0.294
𝑛 − ℎ — — 4.106 4.095 3.932 2.986 2.287 1.500 0.882 0.658 1.405

𝑐 = 5 log2(𝑀/𝑁) — — — -45.017 -25.266 -11.932 -8.510 -6.000 -4.510 -3.932 -4.525
𝑁 ⋅ 𝐴 — — — 5.988 5.818 4.800 4.000 3.000 2.000 1.200 0.353
𝑛 − ℎ — — — 5.386 5.182 3.991 3.100 2.072 1.214 0.797 1.341

𝑐 = 6 log2(𝑀/𝑁) — — — — -30.311 -14.253 -10.095 -7.000 -5.095 -4.253 -4.612
𝑁 ⋅ 𝐴 — — — — 6.787 5.600 4.667 3.500 2.333 1.400 0.412
𝑛 − ℎ — — — — 6.457 5.021 3.938 2.670 1.572 0.962 1.302

𝑐 = 8 log2(𝑀/𝑁) — — — — -40.400 -18.897 -13.265 -9.000 -6.265 -4.897 -4.787
𝑁 ⋅ 𝐴 — — — — 8.722 7.200 6.000 4.500 3.000 1.800 0.529
𝑛 − ℎ — — — — 9.055 7.132 5.664 3.915 2.336 1.342 1.274

𝑐 = 16 log2(𝑀/𝑁) — — — — — -37.492 -25.945 -17.000 -10.944 -7.473 -5.487
𝑁 ⋅ 𝐴 — — — — — 13.453 11.325 8.500 5.667 3.400 1.000
𝑛 − ℎ — — — — — 15.759 12.869 9.201 5.698 3.165 1.468

𝑐 = 32 log2(𝑀/𝑁) — — — — — — -52.413 -33.057 -20.304 -12.624 -6.886
𝑁 ⋅ 𝐴 — — — — — — 18.609 16.185 11.000 6.600 1.941
𝑛 − ℎ — — — — — — 24.068 20.004 12.900 7.289 2.333

𝑐 = 64 log2(𝑀/𝑁) — — — — — — — — -40.088 -22.925 -9.685
𝑁 ⋅ 𝐴 — — — — — — — — 19.251 13.000 3.824
𝑛 − ℎ — — — — — — — — 25.418 16.026 4.553

𝑐 = 128 log2(𝑀/𝑁) — — — — — — — — — -49.796 -15.283
𝑁 ⋅ 𝐴 — — — — — — — — — 20.032 7.588
𝑛 − ℎ — — — — — — — — — 27.500 9.486

𝑐 = 256 log2(𝑀/𝑁) — — — — — — — — — — -26.478
𝑁 ⋅ 𝐴 — — — — — — — — — — 15.118
𝑛 − ℎ — — — — — — — — — — 19.850

𝑐 = 384 log2(𝑀/𝑁) — — — — — — — — — — -41.657
𝑁 ⋅ 𝐴 — — — — — — — — — — 20.112
𝑛 − ℎ — — — — — — — — — — 27.852

Legend: 𝐴 (expected QC-value of strings in bin 𝑐); 𝑏 (budget factor = 𝛽/𝑁); 𝛽 (sampling budget — number of
quantumly-sampled strings); 𝑐 (multiplicity); ℎ (average entropy per string in bin 𝑐); 𝑀 (expected number of strings in
bin 𝑐); 𝑛 (number of qubits); 𝑁 (string space size); 𝜙 (fidelity). Note: the values were obtained from the probability
distributions for 𝑛 = 28 qubits and 𝜙 = 1. Since we are actually interested in the case of 53 qubits, we redacted (—)
the entries corresponding to log2(𝑀/𝑁) ≤ 2−53. The entries for 𝑛 − ℎ are underlined when 2−53 < log2(𝑀/𝑁) < 2−28,
case in which the results may be inaccurate for the case of 53 qubits. The entries for log2(𝑀/𝑁) and 𝑁 ⋅ 𝐴 show
underlined the digits that differ from the result that would be obtained with formulas (112) for 𝑀 and (113) for 𝐴.

Page 35 of 35

	Notes on Interrogating Random Quantum Circuits
	Abstract
	Keywords

	Index of sections
	List of Figures
	List of Tables

	1. Introduction
	1.1. System model
	1.1.1. The operator
	1.1.2. Circuits and probabilities

	1.2. Entropy of a sample
	1.3. Organization

	2. Exponential model
	2.1. The frequency-density representation
	2.1.1. U: Uniform sampling
	2.1.2. Q: [pure] Quantum sampling
	2.1.3. F: Fidelity sampling (the practical case)

	2.2. Summary statistics
	2.3. Entropy per honest string
	2.4. Sampling with vs. without replacement

	3. Sums of QC-values
	3.1. Statistics of interest
	3.2. CDFs of sums of i.i.d. variables
	3.3. Testing honest sampling
	3.4. Threshold vs. probability
	3.5. Sample sizes vs. thresholds

	4. Low-budget clients
	4.1. Truncated QC-values
	4.2. Sum of truncated QC values (STQC)

	5. Entropy estimation
	5.1. Overview
	5.2. The client
	5.3. The pseudo-fidelity adversary
	5.3.1. Algorithm
	1. Input
	2. Quantum over-sampling
	3. Number of quantum strings
	4. Rejection sampling
	5. Positioning of strings
	6. Output

	5.3.2. Statistics
	Pre-sample size
	QC-values and pseudo-fidelity
	Entropy estimation
	Parametrization

	5.3.3. Initial examples
	Example 1
	Example 2

	5.3.4. Other examples
	Example 3
	Example 4
	Example 5
	Example 6

	5.4. The collisional adversary
	5.4.1. Algorithm
	1. Input
	2. Quantum over-sampling
	3. Number of quantum strings
	4. Rejection sampling
	5. Positioning of strings
	6. Output

	5.4.2. Statistics per bins or unions of bins
	Size of bins
	QC-values
	Entropy
	Asymptotically large budget

	5.4.3. Comparison of adversaries
	Example 7

	5.5. Final randomness for applications
	5.6. Classes of adversaries

	6. Concluding remarks
	Acknowledgments
	References
	A. Terminology
	A.1. Abbreviations
	A.2. Acronyms
	A.3. Symbols

	B. Expected value and variance
	B.1. Auxiliary primitives
	B.2. Expected values
	B.3. Variances
	B.4. The chosen-count sampling case

	C. Sum of QC-Values (SQCs)
	C.1. CLT approximation
	Example 8
	Example 9

	C.2. Exact Gamma distributions
	C.2.1. SQC under uniform string sampling
	C.2.2. SQC under quantum string sampling
	C.2.3. SQC under pseudo-fidelity sampling
	C.2.4. SQC under honest sampling with fidelity
	C.2.5. Needed sample size (number of strings)

	C.3. A Gamma approximation
	C.3.1. Accuracy analysis

	D. Discretization of QC-values
	D.1. Individual probabilities
	D.2. Collisions
	D.2.1. Initial statistics per bin
	D.2.2. Concrete results for entropy
	D.2.3. Statistics in unions of bins

	D.3. Approximate sum of ``entropies''
	D.3.1. Apriori entropy
	D.3.2. Entropy upon rejection sampling

	E. Tables with more detail

