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Abstract

In order to enable large-scale molecular simulations, algorithms must efficiently

utilize multi-core processors that continue to increase in total core count over time

with relatively stagnant clock speeds. Although parallelized molecular dynamics (MD)

software has taken advantage of this trend in computer hardware, single-particle per-

turbations with Monte Carlo (MC) are more difficult to parallelize than system-wide

updates in MD using domain decomposition. Instead, prefetching reconstructs the se-

rial Markov chain after computing multiple MC trials in parallel. Canonical ensemble

MC simulations of a Lennard-Jones fluid with prefetching resulted in up to a factor

of 1.7 speedup using 2 threads, and a factor of 3 speedup using 4 threads. Strategies

for maximizing efficiency of prefetching simulations are discussed, including the poten-

tially counter-intuitive benefit of reduced acceptance probabilities. Determination of

the optimal acceptance probability for a parallel simulation is simplified by theoretical

prediction from serial simulation data. Finally, complete open-source code for parallel

prefetch simulations was made available in the Free Energy and Advance Sampling

Simulation Toolkit (FEASST).
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1 Introduction

With the emergence of exascale high-performance computing and the increase in number

of processor cores over time, but a relatively stagnant central processing unit (CPU) clock

speed, development and distribution of parallel algorithms to the scientific community is

required to enable next-generation molecular simulations on a scale that is not currently

possible. But parallelization of Markov chain Monte Carlo (MC)1 is hindered by local

perturbations, as opposed to global molecular dynamics (MD) time steps, and the apparent

requirement to maintain detailed balance to ensure ergodicity,2,3 although strict detailed

balance may be unnecessary.4 While some are tempted to replace MC in favor of parallel

MD when possible, MC is capable of performing calculations that MD is not.3,5,6 Hybrid

MC/MD is a promising technique that simultaneously takes advantage of the parallelization

of MD and the unique MC statistical sampling algorithms; however, hybrid MC/MD must be

implemented carefully to ensure detailed balance.7–9 This work focuses upon parallelization

of MC for molecular simulations.10

Examples of MC parallelization include prefetching,11–14 domain decomposition15–20 and

order parameter decomposition.21,22 Monte Carlo algorithms that improve serial efficiency

but are also parallelizable include configurational bias,23–25 waste recycling,26 event-chain27,28

and efficient pair-interaction schemes6 including modified cell-linked list29 and k-d tree

search.30,31 To begin, prefetching is described. The advantages, disadvantages and potential

synergy between prefetching and the other parallelization methods are then discussed in the

above order.

Prefetching performs a parallel batch of simultaneous trial perturbations from the same

initial state, and then reconstructs the Markov chain as if the parallel batch of trials were

performed in serial.11–14 A long simulation is comprised of many parallel batches. During

reconstruction of the serial Markov chain, rejected trials revert back to the initial state.

Thus, if a trial is rejected, the next trial already computed in the parallel batch may be

considered. In contrast, accepted trials produce a new state. Thus, any subsequent trials
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already computed in the parallel batch based on the initial state cannot be used, and the

computational time spent on these trials is wasted. This wasted computational effort can

only be minimized by lowering the probability to observe an accepted trial in a given batch

of parallel threads. But lower acceptance probability reduces statistical sampling efficiency.

Thus, a disadvantage of prefetching is that trials with higher acceptance probability lower

the parallel efficiency.

Domain decomposition divides space into independent regions that can be perturbed in

parallel. This approach is efficient when interaction ranges are many times less than the

system size. On the other hand, reduced system sizes may be preferred in some applications.

For example, grand canonical ensemble simulations of self-assembly32,33 may minimize sys-

tem size effects compared to the canonical ensemble. Also note that domain decomposition

can be used in conjunction with prefetching. If prefetch batches are divided into indepen-

dent domains, then an accepted trial in one domain no longer invalidates other trials in

independent domains.

Order parameter decomposition in flat-histogram methods21,22,34 refers to dividing a large

order parameter range into a number of subintervals. For example, in a grand canonical

ensemble flat-histogram Monte Carlo simulation, where number of particles is the order

parameter, the particle range of [0, 600] could be decomposed into two simulations with

[0, 305] and [295, 600] particles, respectively. In this example, there are 11 overlapping order

parameter states. More overlap facilitates obtaining a smooth free energy curve over the

entire range, but at the expense of redundant simulation compared to the serial approach.

Scaling over many processors can be limited due to reduced statistical sampling when a single

simulation does not span the transition between two (meta)stable structures.35 For example,

temperature expanded ensembles of structural transitions between rounded squares and rods

were inefficient to decompose by order parameter, but serial simulations took up to a month

to converge (i.e., 15 Wang-Landau flatness conditions).36,37 The order parameter range can

also be decomposed into individual states. In this case, ghost insertions and deletions make
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the simulations embarrassingly parallel because the states are independent.22 The efficiency

with ghost trials would only lessen, in comparison to a serial grand canonical simulation,

when insertions and deletions contribute significantly to the statistical sampling efficiency.

This may lead to a trade-off between parallelization efficiency and sampling efficiency when

order parameter ranges are decomposed for increasing number of processors. Note that order

parameter decomposition can be used in conjunction with prefetching, domain decomposition

or both.

Configurational bias (CB) Monte Carlo is another technique that is parallelizable.23–25 CB

is often used to efficiently grow or move atoms in molecules by breaking a trial into serial

steps, with each step computing multiple, independent trial positions of an atom. Each

step in the CB algorithm may be parallelized by assigning the energy computation of the

independent trial positions to each thread. In addition, dual-cut CB increases the efficiency of

the simulations by considering only the fast, short-range part of the potential (e.g., excluded

volume) during these steps, and computing only the full, expensive potential (e.g., charges or

Lennard-Jones tails) at the end.38 But when dual-cut CB is utilized, parallelization efficiency

is diminished because the computational time spent on the full, expensive potential may not

be much less than the time spent on the fast, short-range potential. Parallel configurational

bias can also be used in conjunction with prefetching, domain decomposition and order

parameter decomposition.

Waste recycling26 utilizes the information of rejected states and is parallelizable with the

benefit of selecting the parallel trial by Boltzmann weight without the burden of computing

the weights of the old state, as in CB. However, users may be wary of the additional com-

plexity of computing ensemble averages and the violation of superdetailed balance. While

waste recycling may be more efficient than prefetching, the study of optimized acceptance

probabilities for prefetching are also applicable to parallel CB and waste recycling.

This work considers one variant of prefetching with a single-particle displacement trial in

the canonical ensemble. Cases where the computational time required to perform one trial is
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very different from another are not considered. Each parallel thread completes one trial and

waits for the other threads to complete their trials. In many ways, this prefetching variant

is similar to a parallel one-step CB algorithm for single-site spherical particles. However,

CB is more likely to select the most favorable of multiple perturbations that are likely

to be accepted, rather than the arbitrarily-assigned first accepted trial. But CB requires

computation of both the new and old configurations to obtain the acceptance criteria.3 While

approximately half the computer time is spent on the old configuration in canonical ensemble

CB, prefetching does not have this burden because it only considers new configurations.

Prefetching, parallel one-step CB and parallel waste recycling also suffer from a similar

parallel overhead. This overhead cost varies inversely with the computational time required

to calculate the energy change of the new perturbation, and varies directly with the com-

putational time required to perform the perturbations and synchronize the parallel threads.

The efficiency of prefetching is thus governed by the following three variables: the overhead,

the trial acceptance probability and the number of parallel threads. A range of all three

of these variables are studied so that others may more easily optimize their own parallel

prefetch simulations. The optimizations presented here are also relevant to parallel CB and

parallel waste recycling.

A single component Lennard-Jones fluid is a sufficient benchmark system to study the

efficiency of prefetching. This is because the efficiency is solely determined by the overhead,

acceptance and number of threads. With these three variables in mind, the potential func-

tion simply determines the CPU time required to compute the energy of a single particle.

Additional benchmarks with more complex models would increase the energy computation

time relative to the computation time required to perform the perturbation and synchronize

the threads (e.g., decrease overhead and increase efficiency). Potential optimizations such

as neighbor and cell lists are also not utilized in this work. These optimizations would only

affect the overhead, by reducing the energy computation time and possibly increasing the

time to synchronize threads. Strategies to reduce synchronization time will be discussed.
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An appropriate measure of efficiency depends upon the type of Monte Carlo simulation

and the resulting properties of interest. Energy fluctuations,39 mean squared displacement

and diffusion coefficients40 have been shown to be appropriate metrics for the efficiency of

Monte Carlo simulations in the canonical ensemble.41,42 In this work, efficiency is defined

based on the diffusion coefficient with the time scale of total real-time CPU-hours. The literal

interpretation of this efficiency metric is the rate at which a simulated particle diffuses from

its initial position as observed by the simulator, and is thus not only dependent on the

simulated material but also the computer hardware and software implementations. A more

simple efficiency metric based on the relative number of Monte Carlo trials performed per

real-time CPU-hours is also reported.

In this work, parallel prefetching in Monte Carlo molecular simulations is demonstrated

in the canonical ensemble. The one-component Lennard-Jones fluid is a sufficient case study

to demonstrate the efficiency of prefetching because it can be used to vary the acceptance

probability and the overhead. The former is varied by the maximum displacement of the trial,

and the latter is varied by potential cutoff distance. Implementation details are discussed

to reduce parallel overhead in a general, modular code via caching of random numbers and

potential energies. Source code is made available to the public in the prefetch plugin of the

Free Energy and Advanced Sampling Simulation Toolkit (FEASST).43

This manuscript is organized as follows. The prefetch algorithm for Monte Carlo sim-

ulations is described in more detail in Section 2.1. The main factors influencing prefetch

efficiency are discussed in Section 2.2. Benchmark simulations of a Lennard-Jones fluid and

the computed efficiency metric are defined in Section 2.3. The diffusion coefficients, optimal

acceptance probabilities and efficiency results are discussed in Section 3 and conclusions are

provided in Section 4.
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2 Computational Methods

2.1 A Prefetching Monte Carlo Algorithm for Molecular Simula-

tion

The prefetching parallelization algorithm for Monte Carlo molecular simulations performs a

number of trials in parallel and then reconstructs the Markov chain as if these trials were

performed in serial. Before fully describing prefetching, a Monte Carlo trial is first described.

In the canonical ensemble, a particle is selected randomly and displaced in each dimension by

a random direction and magnitude up to a maximum displacement, δ. The change in energy

due to the displacement is then computed to obtain the Metropolis acceptance probability for

acceptance of the trial, p.3 The average trial acceptance probability, p varies inversely with

δ. Finally, the trial attempt is accepted or rejected, and ensemble averages are accumulated.

One variant of prefetching, described in Algorithm 1 and illustrated in Figure 1, is sum-

marized as follows. At the beginning of a batch, there are n parallel threads containing

identical configurations but different pseudo-random number generator seeds. The order of

the trials is pre-assigned via the index of the thread, t. Each thread performs an independent,

randomly generated trial attempt in parallel and waits for all other threads to complete their

attempt. Any result of a call to a random number generator or potential energy is stored

to enable exact imitation of this attempt without computing interactions. The accepted

attempt, ta, is defined as the minimum t of all accepted attempts. For each thread, t, delete

the trial if t > ta. Deleting a trial means to return the configuration to the initial state as

if no trial was attempted, and is not the same as rejecting the trial. Then, for each thread,

j, imitate rejections for t < ta, where j 6= t. Imitation of rejected trials may be as simple as

updating the number of attempts for trial acceptance probability, although transition-matrix

Monte Carlo or other algorithms may require more information. If ta exists, for each thread,

t 6= ta, imitate accepted trial ta. To reduce overhead, a caching procedure for imitation of

accepted trials with stored random numbers and potential energies is described. Finally, an
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example of why ensemble averages must be computed at the end of any trial, and not only

at the end of a batch, is provided.

Algorithm 1 prefetching Monte Carlo.

for all threads, t, in parallel do
Create copies of self.
Assign unique random number seeds.

end for

for all batches do
for all threads, t, in parallel do

Perturb configuration.
end for

Determine first accepted thread, ta.
for all threads, t > ta, in parallel do

Delete t.
end for

for all threads, t < ta do

for all threads, j 6= t do
Imitate rejected t in j.

end for

Ensemble average t = 0.
end for

if ta exists then
for all threads, t, in parallel do

if t 6= ta then

Imitate accepted ta in t.
end if

end for

Ensemble average t = 0.
end if

end for

Each thread caches floating point numbers returned by the potential energy and random

number generator objects during the initial perturbation of all threads in a batch. When the

first accepted trial is determined, the other threads synchronize to the same final state by

imitating the first accepted trial. This was done by unloading the floating point numbers of

the cache object owned by the accepted thread in the correct order for the other threads to

use as input during the trial imitation. Thus, no additional energy calculations or random

numbers are required in trial imitation and synchronization. If the trials are only single-
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state B

 accept
t=2

state B

 imitate
t=1

state A

state C

 accept
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delete t=3
 imitate t=1,2

Figure 1: One example prefetching batch with n = 3 threads is shown. Each state represents
a configuration on an individual thread. Each row of states, starting from the top, must be
reached by all threads before proceeding to the next row. While the first thread, t = 1, is
rejected, the second and third threads, t = 2 and 3, are accepted. Thus, ta = 2 and not 3,
even if t = 3 happens to complete before t = 2 in real time. The last step is to synchronize
all threads as if the trials were performed in serial. Synchronization is the parallel overhead
cost. In addition, deletion of t = 3 is wasted computation and represents a limit to the
parallel efficiency for the case of negligible overhead.

particle displacements, trial imitation and synchronization refer to simply moving the same

particle that was perturbed in the first accepted trial to the same location in all other threads

so that all threads are in the same state to begin the next parallel batch. Thus, the following

caching procedure may seem more complex than necessary in a single component canonical

ensemble simulation. But the caching procedure remains the same for more complex sim-

ulations that may be considered in future work, such as configurational bias,23 collective

moves,44 alchemical transformations45 or particle insertion and deletion. Cache objects take

other Cache objects as input to begin unloading their stored values, as demonstrated in

FEASST.43 Both the random number generator object and Potential object contain Cache

objects, and they unload by input of the same type of object as themselves. Thus, unloading

the Cache of one thread into another is as simple as referencing the objects of the same type

from a different thread. To maintain modularity with more complex potential functions not

used in this work, such as stored Ewald vectors2 and cell-lists with dual-cut configurational

bias,38 synchronization may also be achieved efficiently by using a generalized data structure

accessible to base classes to avoid frequent copying of large quantities of data in memory.
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As in serial Monte Carlo simulations, ensemble averages must be computed every trial,

every fixed number of trials or with equal probability for each trial, regardless if the trial

was accepted or rejected. Ensemble averages should not be computed on a per batch ba-

sis. Erroneously accumulating the ensemble average only at the end of a batch would bias

states to those that were recently accepted. This is because prefetch batches may have a

variable number of trials, more likely ending with an accepted trial. To illustrate this point,

consider one particle that may exist in one of two states with unequal potential energy at

finite temperature. A Monte Carlo simulation with state change trials would erroneously

compute the ensemble average energy to be the average energy of the two states, regardless

of temperature, if energies were accumulated only when trials were accepted. Similarly, a

prefetch simulation with very large batches, each terminated after a trial is accepted, would

result in the same spurious ensemble average if only accumulated at the end of each batch.

In Algorithm 1, ensemble averages are arbitrarily chosen to be computed only on thread

t = 0 for simplicity because most ensemble average calculations are expected to use a negli-

gible amount of CPU time. More computationally expensive ensemble averages are typically

computed every fixed number of accepted or rejected trials, as was done in this work for the

mean squared displacement calculation described in Section 2.3.

2.2 The Ideal Maximum Efficiency

In order to maximize the efficiency of prefetching, there are two costs to consider, as il-

lustrated in Figure 1. The first cost is the ideal maximum efficiency that is the wasted

computational time spent on attempts not incorporated into the Markov chain due to a trial

accepted on a different thread. This ideal maximum efficiency approaches unity as the trial

acceptance probability decreases. The second cost is the parallel overhead, which is given

by both the time required for the processors to wait for the completion of the other proces-

sors as well as the time required to synchronize all of the threads back to the same state.

This overhead cost may become negligible for models with expensive energy calculations and
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reduces for algorithms with more efficient imitation of trials.

The ideal maximum efficiency is governed solely by p and n. To recover the serial Markov

chain, one must delete trials performed on threads, t, beyond the first thread accepted,

t > ta. This is illustrated in the second step of the third thread in Figure 1. This deletion

is required because all threads must begin a batch in the same initial state. Even rejected

trials for t > ta must be deleted and cannot contribute to the ensemble averages. Note that

deleted trials are distinguished from rejected trials. Deleted trials are treated as if they were

never performed, while rejected trials contribute to ensemble averages and algorithms such

as transition-matrix Monte Carlo. The number of deleted trials is directly related to the loss

of efficiency. Assuming negligible overhead, the ideal maximum efficiency, η, is defined as

the ratio of the number of trials, not including deleted trials, divided by the total number of

trials, including deleted trials, and is shown in Figure 2 and given by12

η =
1− (1− p)n

pn
. (1)

0.0 0.1 0.2 0.3 0.4 0.5
Acceptance

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

1

3

5

7

9

11

13

15

Nu
m
be

r o
f t
hr
ea

ds

Figure 2: The ideal maximum efficiency, η, assuming negligible parallel overhead, as a func-
tion of the acceptance probability, p, and the number of threads, n.
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2.3 Lennard-Jones Benchmark Simulations

A bulk, single-component Lennard-Jones liquid was chosen to benchmark the efficiency of

the prefetch algorithm using OpenMP (see disclaimer in Section 5). The choice of the

system is relatively inconsequential as long as the trial acceptance probability, p and the

overhead can be adjusted. For these simulations, p is controlled by δ, the random uniform

maximum displacement in each dimension. The relative parallel overhead is controlled by

rc/σ = L/2, the truncation distance of the Lennard-Jones 12-6 potential, where L = 6,

8 or 10 is the side length of a cubic periodic boundary. As used in previous studies of

efficiency,39,46 this study considered a state near the triple point with reduced number density,

ρσ3 = 0.85, and reduced temperature, T/ǫ = 0.88, where ǫ is the Lennard-Jones well depth.

An integer number of particles, ρL3 rounded down, were randomly added to the box while

rejecting large overlaps. This resulted in 183, 435 or 850 particles for L/σ = 6, 8 or 10,

respectively. Particle coordinates were not wrapped inside the cubic periodic boundary

conditions during the simulation in order to compute the mean squared displacements. A

target acceptance probability, p, was obtained by changing δ by 1% every 106 trials. The

following pairs, (p, δ/σ) were approximately obtained from short simulations and used as

initial conditions: (0.05, 0.35), (0.075, 0.29), (0.1, 0.26), (0.125, 0.2375), (0.15, 0.215), (0.175,

0.2), (0.2, 0.185), (0.225, 0.1725), (0.25, 0.16), (0.275, 0.15), (0.3, 0.14), (0.35, 0.125), (0.5,

0.085). Equilibration was performed for 107 trials and production for 108 trials.

Mean squared displacements were calculated every 105 trials and new origins were created

every 107 trials (i.e., 10 origins).3 The slope of the mean squared displacement, D/σ2, was

obtained by a least-squared fit up to 107 trials. The units for D were then converted from

inverse trials to inverse CPU-hours by multiplication with the total number of trials and

division by the total CPU-hours utilized by all threads. Thus, D is defined to be a real-time

diffusion coefficient based on the total CPU time and not Monte Carlo trials. A higher

diffusion coefficient means the particles moved further in the simulation domain for a given

combined real-time CPU-hours for all threads. Perfect parallel scaling would result in the
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same D as n increases, while overhead and other inefficiencies result in D decreasing with n.

Thus, an appropriate measure of the efficiency in the canonical ensemble is D(n)/D0 ≤ 1,

where D0 is the diffusion coefficient from a serial simulation at the same L.

Benchmark simulations were run on nodes with dual-socket Intel Xeon CPU E5-2640

processors with a total of 12 cores at a clock speed of 2.5 gigahertz (see disclaimer in Section

5). Multiple simulations of the same number of threads were run on a given node with

different random number generators in order to quantify uncertainty and facilitate simula-

tions ending at nearly the same time. This limits boosted clock speeds of under-utilized

nodes, which could falsely reduce the run time of the longest simulations. Thus, nodes with

n = 1 contained 12 independent simulations, n = 2 contained 6, n = 3 contained 4, n = 4

contained 3, n = 6 contained 2 and nodes with n = 12 contained 1 independent simulation.

For n = 1, both serial and prefetching simulations were benchmarked to quantify overhead.

Each condition was run with 36 independent replicas, resulting in over 3 000 simulations.

Error bars where obtained by multiplying the standard deviation of the mean by 2.0281 to

correspond with 95% confidence.

3 Results and Discussion

In this section, prefetch scaling with number of threads is demonstrated, as well as the

importance of the trial acceptance probability in determining the efficiency of the prefetch

algorithm. While acceptance probabilities of p ≈ 0.225 are optimal for serial canonical en-

semble simulations, as reported previously,39 lower acceptance probabilities become optimal

as the number of parallel threads, n, increases. The maximum efficiency is approached and

the effect of various parallel overhead costs are demonstrated by variation in the computa-

tional time required to compute the potential energy. Also note that many of the results

depend upon the implementation details and code optimization. To improve reproducibility,

the source code is available in the prefetch plugin of FEASST version 0.11.43
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The real-time diffusion coefficient, D, is shown in Figure 3 over a range of p, n and L. This

direct measure of the amount the particles move per total time spent by the CPU(s) during

the simulation is a natural choice for a measure of efficiency in the canonical ensemble.39,40 For

the serial simulations (black solid lines), D reaches a maximum as a function of p, as shown

previously,39 which indicates that canonical simulations should strike an optimal balance

between maximum displacement per trial, δ, and the trial acceptance, p. This value of p at

which D is a maximum is defined as pm. The single-thread prefetch simulation (red line,

n = 1) is not the same as the traditional serial simulation (black) due to parallel overhead,

although the Markov chains are exactly the same given the same pseudo-random number

seed. Thus, the difference between n = 1 and traditional serial simulations diminish as rc

increases because the energy computation time becomes much greater than the overhead

computation time. The real-time diffusion coefficient, D, decreases with increasing rc as

expected by scaling with the number of pair interactions (e.g., r−6
c

for rc = L/2). The error

estimates also decrease with increasing L because more particles lead to more mean-squared

displacement samples. The optimal pm may also depend on the overhead cost and how the

trial is implemented (e.g., the relative computational cost of acceptance versus rejection of

a trial).

Now that the p− and L−dependence of the serial simulations have been discussed, con-

sider the dependence on the number of parallel threads, n. The acceptance probability at

maximum real-time diffusion, pm, decreases with increasing n. For example, in Figure 3,

pm ≈ 0.225 for n = 1 (black solid line) while pm ≈ 0.15 for n = 4 (green solid line). This

is because the ideal max efficiency, η, increases with decreasing p (e.g., Eq. 1). The lower

values of p reduce the probability that more than one of the n prefetched trials would be

accepted, leading to less deleted trials. Thus, by increasing the maximum displacement, δ,

a single trial can displace further (increasing D), and the reduction in p also increases the

ideal efficiency, η, but at the cost of more rejected trials. To demonstrate that the (p, n)-

dependence of η fully explains decreasing pm as n increases, D is predicted for n > 1 by
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Figure 3: The diffusion coefficient, D, based upon total real-time CPU-hours is shown as a
function of the trial acceptance probability, p. The line colors are labeled with the number of
threads, n, ranging from a serial simulation, shown in black, to 12 threads, shown in purple.
The solid lines are the computed values, while the dashed lines are the ideal efficiency
predictions based on the serial simulation (e.g., multiplication of the serial D by η). Figures
from top to bottom show decreasing potential cutoff distances, rc. Error bars are for 95%
confidence.
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multiplying the serial D by η (e.g., dashed lines in Figure 3). When the overhead cost is

relatively small (e.g., rc = 5σ), the predictions of D and pm using the ideal max efficiency

are accurate. When the overhead cost increases (e.g, rc = 3σ), the predictions for D are

off by a proportional factor, but the predictions for pm are still accurate. New users of this

algorithm may predict the optimal pm for a given n using serial data and the ideal maximum

efficiency, η, without having to perform a series of parallel simulations. The top of Figure 4

also shows that pm has little dependence on L within error bars, as expected.

Now that variations in pm have been fully described, the efficiency as a function of n and

rc is shown in the bottom of Figure 4. This efficiency is defined by the ratio of the diffusion

coefficient, D(pm), and D0, the maximum D from serial simulations at the same value of L.

The ratio D/D0 is thus the measure of efficiency of prefetching as a function of n and energy

computation time (varied indirectly via rc). The prefetch simulations have D < D0 due to

overhead and the ideal maximum efficiency. Note that D is defined by total CPU-hours,

and thus a simulation with D/D0 = 0.75 for n = 4 will have approximately 3 times larger

mean squared displacement as the serial simulation when both are run for the same elapsed

time. For example, an n = 4 simulation run for 1 hour of elapsed time used a total of

4 CPU-hours. Thus, when the mean squared displacement, 3 times larger than the serial

simulation, is divided by 4 total CPU-hours to obtain D with n = 4, D/D0 = 0.75. In the

limit of negligible overhead, the ideal maximum efficiency is shown by the solid lines which

intersect the arrow in the bottom of Figure 4. The observed efficiency, D/D0, approaches

the ideal efficiency as the overhead diminishes with increased energy computation time (via

L). For rc = 5σ, a factor of 1.7 increase in speed by parallelization over 2 threads, and

a factor of 3 over 4 threads, is observed. Note that a factor of 3 increase in speed over 4

threads (e.g., 0.75 efficiency) is greater than the ideal maximum efficiency, η(pm = 0.225,

n = 4) = 0.71, if the pm from the serial simulation was used. While pm ≈ 0.225 for n = 1,

pm ≈ 0.15 for n = 4. Thus, optimization of p allows for greater efficiency than holding p

constant, with further improvements possible by reducing overhead.
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Figure 4: (Top) The optimal trial acceptance probability, pm that results in the maximum
real-time diffusion coefficient, D, as a function of the potential cutoff distance, rc. The line
colors are labeled with the number of parallel threads, n, as described in the caption of Figure
3. (Bottom) The efficiency, as measured by the ratio of the maximum real-time diffusion
coefficient, D, to the serial real-time diffusion coefficient, D0. The solid lines intersecting
the arrow to the right side show the ideal maximum efficiency, η from Equation 1 at the
approximate pm. The dotted lines show the efficiency from an alternative measure based
on the number of trials per second. Error bars are for 95% confidence. When applying
the variance formula to obtain error bars for D/D0, correlations between D and D0 were
neglected.
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If efficiency were simply measured based on the number of Monte Carlo trials performed

per CPU time, then one would obtain the dotted lines shown in the bottom of Figure 4. This

alternate measure of efficiency shown by the dotted lines also does not rely upon calculation of

the mean squared displacement. In this case, the acceptance probability, pm is not optimized

but rather arbitrarily selected to be pm = 0.2 for all n. Failure to optimize pm leads to the

largest decreases in efficiency for the larger n = 6 and 12 simulations. The largest difference

observed for n = 12 and L/σ = 10 shows nearly doubled efficiency when pm is optimized.

But for n < 4, the efficiency computed by this simple metric is approximately the same as

that computed via mean squared displacement.

4 Conclusions

Factors of 1.7 speedup by parallelization over 2 threads and 3 speedup over 4 threads were

observed using prefetching Monte Carlo simulations of a Lennard-Jones fluid in the canon-

ical ensemble. The highest efficiencies are obtained by optimization of the trial acceptance

probability as a function of the number of parallel threads, which is conveniently and accu-

rately predicted using data from traditional serial simulations only. The single-component

Lennard-Jones fluid is a sufficient benchmark system because it allows independent varia-

tion of the following two most important factors for efficiency: trial acceptance probability

and parallel overhead relative to energy computation time. Although rc = 5 is larger than

typically used in Lennard-Jones simulations, the increase in computational expense from

rc = 3 to 5 affects the benchmark in a similar way to using a multi-site or charged model.

The implementation of the prefetching parallel algorithm used in this work is available as

open-source software via the prefetch plugin of FEASST.43

Many variations to the prefetch algorithm are beyond the scope of this work. If there

were trials with different expected computational times, one could allow individual threads

to attempt multiple fast trials while waiting. Optimizations could include automatic termi-
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nation of a thread if an lower-indexed thread was already accepted. And if the expected trial

CPU times are approximately known, the trials could be load balanced on each thread. More

efficient implementations of Monte Carlo may also affect these results. For example, cell lists

or spatial heterogeneity could affect the overhead if some threads spend more computational

time than others. The prefetch efficiency with configurational bias, as well as heterogeneous

trials (e.g., cluster moves, grand canonical insertions and deletions, alchemical transforma-

tions) are also of interest. In particular, parallelization of grand canonical insertion47 and

deletion is promising when their acceptance probabilities are low. These algorithmic varia-

tions are planned to be the subject of a future manuscript. While the focus of this work is

upon efficiency, the number of Monte Carlo trials required to obtain the desired convergence

of a property is not investigated.
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