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Managing manufacturing data remains challenging despite the growth of the Industrial Internet of Things (IIoT). While various standards 
and technologies enable greater access to data, scaling data processing and distribution can be difficult given the increasing variety of data 
from an increasing variety of sources in global production networks. This paper proposes an architecture for a scalable pipeline to process 
and distribute data from a mix of shop-floor sources. The feasibility of this approach is explored by implementing the architecture to bring 
together MTConnect-compliant machine and ad-hoc power data to support analytics applications. 
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1. Introduction 
 

The Industrial Internet of Things (IIoT) concept (or the 
Industrial Internet) describes a network of objects in an industrial 
environment (e.g., machine tools) that enables information 
sharing, interaction, and collaboration between the things 
themselves [1-3]. It provides an infrastructure for the related 
concepts of Smart Manufacturing, Industry 4.0, and Cyber-
Physical Systems (CPSs) by allowing data collection and 
distribution for data-driven applications that support decision 
making and control [3-6]. Such applications are essential in 
helping manufacturers address the challenges associated with 
increasingly distributed global production systems [5,7,8]. 
However, the increasing variety of data and number of systems in 
a global production environment that support IIoT applications 
requires an architectural approach where the management of data 
does not presuppose its use so that this data can be used many 
applications to maximize value. 

Generating value from IIoT data requires transforming raw 
data to semantically-rich data that can be curated to create the 
context needed for different viewpoints [9]. This process starts on 
the shop floor by collecting data from devices using Application 
Programming Interfaces (APIs) and data access protocols (e.g., 
EtherNet/IP, Modbus). Standards can be used to normalize, 
classify, and contextualize data in a consistent and interoperable 
way across many devices and applications. For example, 
MTConnect (ANSI/MTC1.5-2019) enables semantic 
interoperability by defining a vocabulary for manufacturing 
systems to provide structured, contextualized data [10]. 

Solutions to transform, process, and organize data have 
evolved quickly in many domains as industries have matured to 

take advantage of the larger Internet of Things (IoT) concept. As 
the IIoT matures, global production networks may benefit from 
these solutions, but research is needed to develop appropriate 
architectures that help all manufacturers select, configure, and 
deploy proven data transport and processing solutions developed 
in non-manufacturing domains. Such work enables shop-floor 
ecosystems where new data sources and consumers can be easily 
plugged in, data can be processed and distributed at scale, and 
constraints of operational environments with existing 
heterogeneous technologies can be respected. 

This paper proposes an architecture to address shop floor 
connectivity and distributed data management concerns using 
enterprise-grade middleware. To do so, we divide the data pipeline 
into two functional components that (1) collect and move data 
away from the shop floor and (2) scale the distribution of that data. 
Finally, we explore the feasibility of this approach by using it to 
bring together MTConnect-compliant and ad-hoc power data to 
support analytics applications. 

 
2. Background 
 

Figure 1 shows how to transform IIoT data to maximize its 
value across multiple applications. We give structure and meaning 
to collected raw data using standardized domain information 
models. The data can be curated for different viewpoints before 
distribution to an application ecosystem where it can be integrated 
with other production systems or other purposes (e.g., analytics). 

When deploying new technologies for this data 
transformation pipeline into legacy environments (e.g., the shop 
floor), system architects must maintain existing interfaces while 
improving functionality at scale (i.e., support more data from more 
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sources for more clients). Developing such solutions requires that 
we first assess the sources (i.e., MTConnect-compliant devices) 
and clients (i.e., analytics applications) for the data pipeline. 

 
2.1. Typical MTConnect Implementation 
 

MTConnect provides a standard domain model that ascribes 
meaning to data from shop-floor equipment through a controlled 
vocabulary, typing system, and relationships between data 
elements [10]. The standard also describes minimum infrastructure 
to access and transform data collected from shop-floor equipment 
through a uniform interface. Figure 1 shows the architecture of this 
infrastructure. The Adapter interfaces with the equipment API and 
works with the Agent to translate data from proprietary structures 
and representations to the MTConnect controlled vocabularies, 
units, and types. The Agent also provides metadata 
contextualization, relationships between the elements, and 
formatting of the data into response documents for client requests. 
These requests are handled through a lightweight Representational 
State Transfer (REST)ful interface. Alternatively, the MTConnect-
OPC Unified Architecture (UA) Companion Specification 
describes methods for providing MTConnect semantics with the 
OPC-UA information model and protocol [11]. 

Many MTConnect-based ecosystems start by collecting data 
from Agents and storing this data in a database to serve to 
applications or filtering or synthesizing the data stream into a 
dashboard and discarding the excess data. In a semi-decentralized 
application ecosystem where there is no single central data 
repository, each application collects the data it needs from a set of 
Agents. This data does not need to be complete nor does the 
application need to store it any longer than it requires. 

 
2.2. Analytics Applications in Manufacturing 
 

Analytics is the process of transforming data into actionable 
information using systematic analysis [12]. Analytics in 
manufacturing (or Industrial Analytics) has been extensively 
reviewed [13-16]. Industrial analytics applications include 
prognosis and Prognostics and Health Management (PHM) [3,4], 
management and control of production systems [8,17,18] and CPS 
[6], and human-robot collaboration [19]. Despite increasing 
interest in industrial analytics, most literature focuses on applying 
analysis methods to relatively large datasets pre-stored in curated 
databases rather than the timely transformation and distribution of 
streaming data for multiple applications [20,21]. 

The growth of industrial analytics has lagged developments in 
other data-rich domains, such as finance and online platforms. In 
these domains, data management has evolved from database-
centric (e.g., see Section 2.1) to distributed data-science pipelines 
[12,22]. While the fundamental objectives of these approaches 
have remained consistent (i.e., derive insight from data), system 
architectures have had to handle larger quantities of streaming data 
with acceptable latency response times. So, lambda architectures 
have become a common pattern of most analytical systems, 
including some used in manufacturing [23,24]. 

The lambda architecture has two layers of parallel information 
flows: (1) speed and (2) batch [22]. Components in the speed layer 
continuously process events and use trained machine learning 
models to classify and react to events in industrial processes. Speed 
systems must provide feedback before the analysis results become 
irrelevant and value is lost. Conversely, batch systems provide a 
periodic or on-demand analysis using historical data to create and 
refine learning models or perform more complex contextual 

analysis where the resulting latency of the insights is not as time-
critical as the speed systems. This separation of concerns allows 
each system to better address its objectives, which is why a lambda 
pattern has been suggested for IIoT applications [12]. 

 
2.3. Architectural Concerns 
 

Industrial analytics typically assumes that data is readily-
consumable, error-free, and traceable to its source. However, we 
intuitively understand that this is not true, which drives the primary 
architectural concerns underlying data transformation. While 
compute and storage technologies evolve quickly, these changes 
should not significantly affect the architectural concerns derived 
from the requirements of the use case. Important architectural 
concerns for transforming data from the shop floor include 

 
• Format data into standardized data types, 
• Synchronize timestamps to assert causality of events from 

multiple sources, 
• Use Original Equipment Manufacturer (OEM) knowledge to 

translate programmable logic controller (PLC) tags and units 
into standardized controlled vocabularies and data formats, 

• Enable deployment on embedded or legacy systems, 
• Manage continuity of data stream and recovery, 
• Ensure data provenance can be asserted by applications, 
• Ensure security of equipment from external incursions, 
• Route information flows to multiple endpoints, and 
• Enable data persistence in a permanent immutable store. 
 

A key concern in manufacturing is the mix of Information 
Technology (IT) and Operational Technology (OT) systems on the 
shop floor. When selecting technologies to address each 
architectural concern, the placement of these solutions in IT or OT 
systems requires trade-offs between the criticality of response time 
and the ease of maintenance since solutions become harder to patch 
and maintain once you cross the OT boundary. When data is 
collected for less time-sensitive applications, such as operations 
management functions, IT solutions for routing data to multiple 
endpoints may better address the following additional concerns, 
which are in the focus of the middleware described in this paper: 

 
• Merge heterogeneous data streams, including MTConnect-

compliant and other ad-hoc data sources;  
• Ensure scalability and elasticity with respect to memory, 

processing power, and bandwidth;  
• Maintain existing or comparable interfaces at scale; and 
• Provide high availability of critical components. 

 
Figure 1. General data transformation process mapped to MTConnect 



3. Proposed Architecture 
 

The proposed architecture (Figure 2) has been designed to 
address the concerns identified in Section 2.3. This architecture 
leverages middleware, which is an architectural pattern that 
integrates hardware and software components to support 
communication between distributed systems. It provides a set of 
design attributes realized using the elements described in this 
section to enable two separate functions: moving data from the 
shop floor and distributing this data at scale. 

 
3.1. Moving Data from the Shop Floor 
 

In ecosystems of distributed applications, each application is 
responsible for requesting the data they need, leading to the same 
data being requested repeatedly. Because MTConnect Agents are 
often deployed on the machine (i.e., an OT system), it can be 
challenging to scale the Agent's capacity to respond to large or 
complex data requests from multiple applications. Offloading this 
functionality to a dedicated message broker enables the data 
service to be scaled with available resources rather than 
constrained to the capacity of legacy hardware with limited 
memory and computing resources.  

Message Queuing Telemetry Transport (MQTT) (ISO/IEC 
20922) is a publish-subscribe network protocol that transports 
messages between devices [25]. It is lightweight with respect to 
processing, bandwidth, and power consumption, and it supports 
connections over Transport Layer Security (TLS) for security. 
Like many message brokers, MQTT brokers offer Quality of 
Service (QoS) levels so that, when required, they can guarantee 
that any subscriber will receive every piece of data published from 
a machine. Other protocols can provide similar functionality, but 
we prioritize lightweight, easily-deployable solutions to move data 
from the shop floor. 

One substantial limitation to message brokers on the shop 
floor is their limited short-term retention. Message brokers delete 
messages after all subscribers have received their data. In cases 
where there are no subscribers to a topic, the message may be 
discarded immediately, which presents a challenge when 
applications are instantiated intermittently to answer questions 
since they will not have access to recent data. Addressing this 
challenges requires dedicated technology for storing, scaling, and 
distributing data. 

 
3.2. Distributing Data at Scale 
 

Apache Kafka is a high-throughput, low-latency software 
platform for streaming data with infrastructure designed for 
efficiently consuming, storing, recalling, and producing data. Its 
ability to consume and produce data efficiently relies on defining 
units of work called tasks, e.g., “get data from MTConnect agent” 

or “write values to relational database.” Given a set of 
heterogeneous tasks, Kafka organizes the task execution to 
complete tasks as quickly as possible. Kafka stores the resulting 
data in an append-only, immutable log store until the server runs 
out of space or per retention policy. Client applications that get 
disconnected or new application subscribers can recreate a 
significant portion of the recent data stream history, which allows 
applications to trust that they are accessing the original data. 

The architecture of Kafka's interface and data storage enables 
servers and memory to be added dynamically to support additional 
workload. Other features, such as immutable logs and strong 
replication across data storage partitions, enable robust, traceable 
shop-floor data collection. Thus, Kafka provides a dedicated 
technology to hold data, respond to requests, and scale to meet 
storage and processing demands so that IIoT data can be made 
accessible to many applications that each use this data differently. 

 
4. Implementation 
 

The architecture shown in Figure 2 is based on (1) Eclipse 
Mosquitto (an MQTT broker), (2) Apache Kafka (including 
Apache Kafka Connect) to collect data from the REST API of 
MTConnect-compliant sources, (3) MongoDB (a NoSQL 
database) to provide persistent data storage, and (4) Docker (a 
container service) to simplify deployment. Many of these 
components can be found in deployable containers and represent 
commercial-off-the-shelf (COTS) tool that simply need to be 
instantiated, configured, and connected together. Apache Kafka 
and its accompanying Kafka Connect API enable easy connections 
to upstream and downstream data producers and consumers. For 
example, we used existing Kakfa connectors to deploy an Eclipse 
Mosquitto broker to publish to Apache Kafka and MongoDB to 
consume from Kafka. In each case, the configuration specifies 
topics that messages will be produced to or consumed from. 

Our work first focused on connecting generic data pipeline 
components to shop-floor data sources, specifically, a Hurco 
VMX24 machine tool in the National Institute of Standards and 
Technology (NIST) Smart Manufacturing Systems (SMS) Test 
Bed. Traditional approaches gather data from MTConnect Agents 
using Hypertext Transfer Protocol (HTTP) requests. As a first step, 
we integrated the traditional approach with proposed pipeline by 
publishing the response document to the Mosquitto broker rather 
than writing it directly to a database. We next developed a Kafka 
Connector that structured the HTTP requests into tasks. When 
executed, each task requests an interval of data from the Agent, 
stores the sequence number (i.e., index) of the last collected item, 
and puts the data into a Kafka topic (see “MTC via REST API” in 
Figure 2). Given a list of devices, Kafka optimizes its use of system 
resources to collect data from those devices. 

The second portion of our research focused on integrating a 
non-MTConnect compliant data source into the same pipeline. A 

 
Figure 2. The proposed architecture for processing and distributing data from the shop floor 



Beckhoff PLC was used to collect power data from the Hurco 
VMX24 and publish the data using MQTT (see “MTC via MQTT” 
in Figure 2). The data was organized in the MQTT broker under 
the same parent topic used for the MTConnect-compliant data 
collected from the Hurco, allowing it to be requested as a part of 
the Hurco’s data. The same storage approach was used in Apache 
Kafka. Using our proposed pipeline, the power data from the 
Beckhoff PLC was brought into the same environment as the 
MTConnect-compliant data from the Hurco VMX24 so that it 
could then be aligned and synchronized to support further analysis. 
This approach reflects the need to identify, store, and transport the 
data identically regardless of its source. This demonstration also 
evaluated the feasibility of putting an MQTT client in the 
MTConnect Agent itself, potentially enabling MTConnect data be 
published natively as MQTT messages. 

 
5. Summary 
 

The proposed architecture and implementation accommodate 
shop-floor use cases for processing and distributing data from a 
mix of sensors and devices. It provides a framework to explore 
other implementations for collecting and serving MTConnect-
compliant data supported by an IIoT ecosystem of dedicated 
applications providing other functions. Data streaming from these 
shop-floor devices can be processed during the streaming or from 
persistent storage (i.e., MongoDB). Apache Kafka and the Apache 
Foundation’s “Big Data” ecosystem contain tools that can be 
connected to the Kafka backbone, implementing variants on the 
lambda architecture.  

While the maturity of shop-floor connectivity and distributed 
data management solutions has lagged other data-rich domains, 
adapting and deploying proven architectures and technologies 
from these industries is an effective solution. For example, the 
performance of proposed components, in terms of reliability, 
latency, and throughput, has been proven in demanding 
environments. Industrial state of art is streaming analytics 
platforms supported by lambda architectures that analyze and 
transform data before storing results in long-term storage. 

The proposed data pipeline architecture satisfies integration 
requirements by leveraging widely supported technologies to 
flexibly gather information from heterogenous sources, not 
limiting the solution to connecting only MTConnect-based 
ecosystems. Both the Asset Administration Shell of RAMI4.0 and 
OPC-UA provide guidance on deploying MQTT as part of the 
architecture to transport data from the shop floor to data processing 
and storage capabilities. These sources of information and other 
IoT devices can be connected seamlessly, via MQTT, to the data 
pipeline proposed in this paper. Information standards may vary. 

While the technologies selected to implement the architecture 
have been proven in non-manufacturing environments; additional 
research is needed to quantify the ability of the proposed 
architecture to scale across hundreds to thousands of 
manufacturing data sources. To do so, these data sources can be 
simulated in a computer-cluster test environment to assess the 
latency response times that may be achieved. Additional high-
bandwidth data sources can also be incorporated into the pipeline 
to explore the amount of data that may be successfully managed. 
Finally, there are opportunities to connect the proposed 
architecture to on-going industrial analytics research exploring 
data alignment and post-processing requirements. Such research 
may help identify other technologies that can be integrated into this 
implementation so that more applications can leverage the growing 
availability of IIoT data from the shop floor. 

Disclaimer 
 
This work represents an official contribution of NIST and thus 

is not subject to copyright protection in the United States. 
Identification of commercial systems in this paper are for 
demonstration purposes only and does not imply recommendation 
or endorsement by NIST. 
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