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Abstract
In 2019, the U.S. National Institute of Standards and Tech-
nology (NIST) conducted a leaderboard style speaker recog-
nition challenge using conversational telephone speech (CTS)
data extracted from the unexposed portion of the Call My Net
2 (CMN2) corpus previously used in the 2018 Speaker Recog-
nition Evaluation (SRE). The SRE19 CTS Challenge was or-
ganized in a similar manner to SRE18, except it offered only
the open training condition. In addition, similar to the NIST i-
vector challenge, the evaluation set consisted of two subsets:
a progress subset, and a test subset. Trials for the progress
subset comprised 30% of the target speakers from the unex-
posed portion of the CMN2 corpus and was used to monitor
progress on the leaderboard, while trials from the remaining
70% of the speakers were allocated for the test subset, which
was used to generate the official final results determined at the
end of the challenge. Which subset (i.e., progress or test) a
trial belonged to was unknown to challenge participants, and
each system submission had to contain outputs for all of the
trials. The SRE19 CTS Challenge also served as a prerequi-
site for entrance to the main SRE19 whose primary task was
audio-visual person recognition. A total of 67 organizations
(forming 51 teams) from academia and industry participated
in the CTS Challenge and submitted 1347 valid system out-
puts. This paper presents an overview of the evaluation and
several analyses of system performance for all primary con-
ditions in the CTS Challenge. Compared to the CTS track of
SRE18, the SRE19 CTS Challenge results indicate remarkable
improvements in performance which are mainly attributed to 1)
the availability of large amounts of in-domain development data
(publicly available and/or proprietary) from a large number of
labeled speakers, 2) speaker representations (aka embeddings)
extracted using extended and more complex end-to-end neural
network frameworks, and 3) effective use of the provided large
development set.

1. Introduction
The United States National Institute of Standards and Technol-
ogy (NIST) organized the 2019 Speaker Recognition Evaluation
(SRE19) in the summer–fall of 2019. It was the latest in the
ongoing series of speaker recognition technology evaluations
conducted by NIST since 1996 [1, 2]. The objectives of the
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evaluation series are 1) for NIST to effectively measure system-
calibrated performance of the current state of technology, 2) to
provide a common test bed that enables the research to explore
promising new ideas in speaker recognition, and 3) to support
the community in their development of advanced technology
incorporating these ideas. The basic task in the NIST SREs is
speaker detection, that is, determining whether a specified target
speaker is talking in a given test speech recording.

SRE19 consisted of two separate activities: 1) a
leaderboard-style challenge using conversational telephone
speech (CTS) extracted from the unexposed portions of the
Call My Net 2 (CMN2) corpus collected by the Linguistic Data
Consortium (LDC), which was also previously used to extract
the SRE18 CTS development and test sets, and 2) a regular
evaluation using audio-visual material extracted from the un-
exposed portions of the Video Annotation for Speech Technol-
ogy (VAST) corpus [3], also collected by the LDC. This paper
describes the task, the performance metric, data, and the eval-
uation protocol as well as results and performance analyses of
submissions for the SRE19 CTS Challenge. The Audio-Visual
SRE19 overview and results is described in another paper [4]. It
is worth noting here that the CTS challenge also served as a pre-
requisite for the audio-visual evaluation, meaning that in order
to participate in the regular evaluation, one must have first com-
pleted the challenge (i.e., submitted to NIST valid system out-
puts along with sufficiently detailed system description reports).
SRE19 was coordinated entirely online using a freshly designed
web platform1 deployed on Amazon Web Services (AWS)2 that
supported a variety of evaluation-related services such as regis-
tration, data license agreement management, data distribution,
system output submission and validation/scoring, and system
description/presentation uploads.

The SRE19 CTS Challenge was organized in a similar man-
ner to the CTS track of SRE18 [5], except it only offered the
open training condition in which participants were allowed to
use any publicly available and/or proprietary data for system
training and development purposes. In addition, a much larger
development set was released for the SRE19 CTS Challenge
which contained the entire SRE18 development and test sets in-
cluding segments from 213 labeled speakers as well as segments
from more than 1000 unlabeled speakers. Furthermore, similar
to the NIST i-vector speaker recognition challenge [6], the eval-
uation set consisted of two subsets: a progress subset, and a test
subset. Trials for the progress subset comprised 30% of the tar-
get speakers from the unexposed portion of the CMN2 corpus

1https://sre.nist.gov
2see Disclaimer.



Figure 1: Heat map of the world countries showing the number
of SRE19 CTS Challenge participating sites per country.

and was used to monitor progress on the leaderboard, while tri-
als from the remaining 70% of the speakers were allocated for
the test subset, which was used to generate the official final re-
sults determined at the end of the challenge. Which subset (i.e.,
progress or test) a trial belonged to was unknown to challenge
participants, and each system submission had to contain outputs
for all of the trials. The participants could make multiple sub-
missions (up to 3 per day), and the leaderboard displayed the
best submission performance results thus far received and pro-
cessed. Over the course of the challenge, which ran from July
15 through October 7, 2019, a total of 51 teams, 23 of which
were led by industrial institutions, from 67 sites made 1347
valid submissions (note that the participants processed the data
locally and submitted only the output of their systems to NIST
for scoring and analysis purposes). Figure 1 displays a heatmap
representing the number of participating sites per country. It
should be noted that all participant information, including coun-
try, was self-reported. The number of submissions per team in
the SRE19 CTS Challenge is shown in Figure 2.

Finally, as in SRE18, and in an effort to provide a repro-
ducible state-of-the-art baseline for the SRE19 CTS Challenge,
NIST released well in advance of the evaluation period a report
[7] containing the baseline speaker recognition system descrip-
tion and results obtained using a state-of-the-art (as of SRE18)
deep neural network (DNN) embedding based system (see Sec-
tion 5 for more details).

2. Task Description
The task for the SRE19 CTS Challenge was speaker detec-
tion, meaning given a segment of speech and the target speaker
enrollment data, automatically determine whether the target
speaker is speaking in the segment. A segment of speech (test
segment) along with the enrollment speech segment(s) from a
designated target speaker constitute a trial. The system is re-
quired to process each trial independently and to output a log-
likelihood ratio (LLR), using natural (base e) logarithm, for that

Figure 2: Submission statistics for the SRE19 CTS Challenge.

trial. The LLR for a given trial including a test segment s is de-
fined as follows

LLR(s) = log

(
P (s|H0)

P (s|H1)

)
, (1)

where P (·) denotes the probability distribution function (pdf),
and H0 and H1 represent the null (i.e., s is spoken by the en-
rollment speaker) and alternative (i.e., s is not spoken by the
enrollment speaker) hypotheses, respectively.

3. Data
In this section we provide a brief description of the data released
in the SRE19 CTS Challenge for system training, development,
and test.

3.1. Training set

As noted previously, unlike in SRE18 which offered fixed and
open training conditions, the SRE19 CTS Challenge only of-
fered the open training condition that allowed the use of any
publicly available and/or proprietary data for system training
and development purposes. The motivation behind this decision
was twofold. First, results from the most recent NIST SREs
(i.e., SRE16 [8] and SRE18) indicated limited performance
improvements, if any, from unconstrained training compared
to fixed training, although participants had cited lack of time
and/or resources during the evaluation period for not demon-
strating significant improvement with open versus fixed train-
ing. Second, the number of publicly available large-scale data
resources for speaker recognition has dramatically increased
over the past few years (e.g., see VoxCeleb3). Therefore, re-
moving the fixed training condition would allow more in-depth
exploration into the gains that could be achieved with the avail-
ability of unconstrained resources given the success of data-
hungry Neural Network based approaches in the most recent
evaluation (i.e. SRE18 [5]). Nevertheless, it is worth noting
here that during the discussion sessions at the post-evaluation
workshop, which was held in December 2019 in Singapore,
several participating teams requested the re-introduction of the
fixed training condition to facilitate meaningful and fair cross-
system comparisons in terms of core speaker recognition algo-
rithms/approaches (as opposed to particular data) used to de-
velop the systems.

Although SRE19 allowed unconstrained system training
and development, participating teams were required to provide
a sufficient description of speech and non-speech (e.g., noise
samples, room impulse responses, and filters) data resources as
well as pre-trained models used during the training and devel-
opment of their systems.

3.2. Development and evaluation sets

For the sake of convenience, in particular for new SRE partici-
pants, NIST provided an in-domain development set that could
be used for both system training and development purposes.
This Development set simply combined the SRE18 CTS devel-
opment and test sets into one package (i.e. LDC2019E59). Par-
ticipants could obtain this dataset through the evaluation web
platform (https://sre.nist.gov) after signing the LDC
data license agreement. The first three rows in Table 1 summa-
rize the statistics for this development set.

3http://www.robots.ox.ac.uk/˜vgg/data/
voxceleb/



Table 1: Statistics for the SRE19 CTS Challenge development (DEV) and evaluation (EVAL), i.e., progress and test sets

Set Dev/Test #speakers #1-segment #3-segment #Test #target/non-target
(M / F) enrollment enrollment segments trials

CTS’18 (DEV)
Dev-labeled 9 / 16 100 25 1566 7830 / 100,265
Dev-unlabeled – – – 2332 –
Test 70 / 118 752 188 12,135 19,298 / 2,002,332

CTS’19 (EVAL)
Progress 21 / 37 232 58 4066 20,330 / 618,360
Test 49 / 88 547 137 9515 47,518 / 2,000,000

Table 2: Primary partitions in the CTS Challenge progress set

Partition Elements #target #non-target

Gender male 7095 141,900
female 13,235 476,460

#enrollment 1 16,264 494,688
segments 3 4066 123,672

Phone# match Y 9452 0
N 10,878 618,320

CTS type PSTN 15,935 484,700
VoIP 4395 133,660

The speech segments in the SRE19 CTS Challenge devel-
opment (DEV) and evaluation (EVAL) sets were extracted from
the CMN2 corpus collected by the LDC to support speech tech-
nology evaluations. The CMN2 corpus consists of CTS record-
ings spoken in Tunisian Arabic, which were collected over the
traditional Public Switched Telephone Network (PSTN) and
the more recent Voice over IP (VOIP) platforms outside North
America. For CMN2 data collection, the LDC recruited a few
hundred speakers called claques who made multiple calls to
people in their social network (e.g., family, friends). Claques
were encouraged to use different telephone instruments (e.g.,
cell phone, landline) in a variety of settings (e.g., noisy cafe,
quiet office) for their initiated calls and were instructed to talk
for at least 8–10 minutes on a topic of their choice. All CMN2
recordings are encoded as a-law sampled at 8 kHz in SPHERE
[9] formatted files.

Similar to the most recent SREs (i.e., SRE16 and SRE18),
there were two enrollment scenarios for the SRE19 CTS Chal-
lenge, namely 1-segment and 3-segment conditions. As the
names imply, in the 1-segment condition only one approxi-
mately 60 s speech segment was given for enrollment, while in
the 3-segment condition three approximately 60 s speech seg-
ments (from the same phone number) were provided to build
the model of the target speaker. It is worth noting that the 3-
segment condition only involved the PSTN data, because the
number of VoIP calls per claque was limited. As part of the
dev set for the SRE19 CTS Challenge, an unlabeled set of 2332
segments (with speech duration uniformly distributed in 10 s
to 60 s range) was also made available by NIST. The unla-
beled segments were extracted from the non-claque side of the
PSTN/VoIP calls.

For the SRE19 CTS Challenge, the evaluation trials were
divided into two subsets: a progress subset, and a test sub-
set. Trials for the progress subset comprised 30% of the target
speakers from the unexposed portion of the CMN2 corpus and
was used to monitor progress on the leaderboard, while trials
from the remaining 70% of the speakers were allocated for the

Table 3: Primary partitions in the CTS Challenge test set

Partition Elements #target #non-target

Gender male 15,843 433,078
female 31,675 1,569,090

#enrollment 1 38,003 1,600,661
segments 3 9515 401,507

Phone# match Y 24,456 0
N 23,062 2,000,000

CTS type PSTN 36,308 1,536,768
VoIP 11,210 465,400

test subset which was used to generate the official final results
determined at the end of the challenge. The challenge test con-
ditions were as follows:

• The speech durations of the test segments were uni-
formly sampled ranging approximately from 10 seconds
to 60 seconds.

• Trials were conducted with test segments from both
same and different phone numbers as the enrollment seg-
ment(s).

• There were no cross-gender trials.

The last two rows of Table 1 show the statistics for the
SRE19 CTS Challenge progress and test subsets.

4. Performance Measurement
Similar to the past SREs, the primary performance measure
for the SRE19 CTS Challenge was a detection cost defined as
a weighted sum of false-reject (miss) and false-accept (false-
alarm) error probabilities. Equation (2) specifies the CTS
Challenge primary normalized cost function for some decision
threshold θ,

Cnorm (θ) = Pmiss (θ) + β × Pfa (θ) , (2)

where β is defined as

β =
Cfa

Cmiss
× 1− Ptarget

Ptarget
. (3)

The parameters Cmiss and Cfa are the cost of a missed detec-
tion and cost of a false-alarm, respectively, and Ptarget is the
a priori probability that the test segment speaker is the spec-
ified target speaker. The primary cost metric, Cprimary for
the CTS Challenge was the average of normalized costs cal-
culated at two points along the detection error trade-off (DET)
curve [10], with Cmiss = Cfa = 1, Ptarget = 0.01 and
Ptarget = 0.005. Here, log(β) was applied as the detection



Figure 3: A simplified block diagram of the baseline speaker
recognition system for the SRE19 CTS Challenge.

threshold θ for computing the actual detection costs. Additional
details can be found in the SRE19 CTS Challenge evaluation
plan [11].

Similar to the recent SREs (i.e., SRE16 and SRE18), the
test data was divided into 16 partitions. Each partition is defined
as a combination of: speaker gender (male vs female), number
of enrollment segments (1 vs 3), enrollment-test phone number
match (Yes vs No), and CTS source type (PSTN vs VoIP). How-
ever, because no actual “phone number” metadata was avail-
able for either enrollment or test segments extracted from the
VoIP calls, the phone number match field only contained “N”
for those calls, thereby reducing the effective number of parti-
tions to 12. Also, all non-target trials are from the different (as
opposed to the same) phone number partition, assuming each
phone number would be only used by one individual. More in-
formation about the various partitions in the SRE19 CTS Chal-
lenge progress and test subsets can be found in Tables 2 and 3.
Cprimary was calculated for each partition, and the final result
was the average of all the partitions’ Cprimary’s.

Also, a minimum detection cost was computed by using the
detection thresholds that minimized the detection cost. Note
that for minimum cost calculations, the counts for each condi-
tion set was equalized before pooling and cost calculation, that
is, the minimum cost was computed using a single threshold not
one per condition set.

5. Baseline system
In this section, we describe the x-vector baseline system setup
including speech and non-speech data used for training the sys-
tem components as well as the hyper-parameter configurations
used in our evaluations. Figure 3 shows a block diagram of the
x-vector baseline system. The x-vector system is built using
Kaldi [12] (for x-vector extractor training) and the NIST SLRE
toolkit for back-end scoring.

5.1. Data

The x-vector baseline system was developed using the data
recipes available at https://github.com/kaldi-asr/
kaldi/tree/master/egs/sre16/v2 as well as
https://github.com/kaldi-asr/kaldi/tree/
master/egs/voxceleb/v2. The x-vector extractor for
the progress set was trained entirely using speech data extracted
from combined VoxCeleb 1 and 2 corpora, while the x-vector
extractor for the test set used the prior SRE data (i.e., SRE04-10
as in the Kaldi sre16 recipe) in addition to the combined
VoxCeleb. This was done to ensure the baseline results would
serve as a fair comparison point for the first time participants
who might only have access to the VoxCeleb data, but not to
the prior SRE data. In order to increase the diversity of the
acoustic conditions in the training set, a 5-fold augmentation
strategy was used that added four corrupted copies of the
original recordings to the training list. The recordings were
corrupted by either digitally adding noise (i.e., babble, general
noise, music) or convolving with simulated and measured room

impulse responses (RIR). The noise and RIR samples are freely
available from http://www.openslr.org (see [13] for
more details).

All recordings are downsampled to 8 kHz using sox.

5.2. Configuration

For speech parameterization, we extracted 23-dimensional
MFCCs (including c0) from 25 ms frames every 10 ms using
a 23-channel mel-scale filterbank spanning the frequency range
20 Hz–3700 Hz. Before dropping the non-speech frames using
an energy based SAD, a short-time cepstral mean subtraction
was applied over a 3-second sliding window.

For x-vector extraction, an extended TDNN with 12 hid-
den layers and rectified linear unit (RELU) non-linearities was
trained to discriminate among the speakers in the training
set. After training, embeddings were extracted from the 512-
dimensional affine component of the 11th layer (i.e., the first
segment-level layer). More details regarding the DNN architec-
ture (e.g., the number of hidden units per layer) and the training
process can be found in [14].

Prior to dimensionality reduction through LDA (to 250),
512-dimensional x-vectors were centered, whitened, and unit-
length normalized. The centering and whitening statistics
were computed using the in-domain development data (i.e.,
LDC2019E59). For backend scoring, a Gaussian PLDA model
with a full-rank Eigenvoice subspace was trained using the x-
vectors extracted from either 170 k concatenated speech seg-
ments from the combined VoxCeleb sets (for the progress set),
or 50 k speech segments from prior SRE data (for the test set), as
well as one corrupted version randomly selected from {babble,
noise, music, reverb}. The PLDA parameters were then adapted
on the in-domain development data (i.e., LDC2019E59) using
Bayesian maximum a posteriori (MAP) estimation.

Finally, the PLDA verification scores were post-processed
using an adaptive score normalization (AS-Norm) scheme pro-
posed in [15]. We used LDC2019E59 as the cohort set, and
selected the top 10% of sorted cohort scores for calculating the
normalization statistics.

It is worth emphasizing that the configuration parameters
employed to build the baseline system are commonly used by
the speaker recognition community, and no attempt was made
to tune the hyperparameters or data lists utilized to train the
models.

6. Results and Discussion
In this section we present some key results and analyses for
SRE19 CTS Challenge submissions, in terms of minimum and
actual costs as well as DET performance curves.

Figure 4 shows performance of the best submissions per
team per subset as well as performance of the baseline sys-
tems [7] in terms of the actual and minimum costs, for the
SRE19 CTS Challenge progress and test subsets, respectively.
Baseline 1 and 2 denote the baseline speaker recognition sys-
tems trained without and with prior SRE data, respectively (see
Section 5 for more details). Here, the y-axis limit is set to 0.5
to facilitate cross-system comparisons in the lower cost region.
Several observations can be made from the two plots. First,
performance trends on the two subsets are generally similar, al-
though slightly better results are observed on the progress sub-
set compared to the test subset, a phenomenon which is specu-
lated to primarily result from overtuning/overfitting of the sub-
mission systems on the progress set. Second, nearly half of



Figure 4: Performance of the SRE19 CTS Challenge submis-
sions in terms of actual (red) and minimum (blue) costs for the
progress (top) and test (bottom) subsets.

the submissions outperform the baseline system trained on Vox-
Celeb (i.e., baseline 1), while the number is smaller when com-
pared to the baseline that utilizes the prior SRE data. Third, a
majority of the systems achieve relatively small calibration er-
rors, in particular on the progress subset. This is in line with the
calibration performance of the submitted systems observed for
the SRE18 CTS domain. Finally, it can be seen from the fig-
ures that, except for the top performing team, the performance
gap among the next top-5 teams is not remarkable. A statistical
analysis of performance (e.g., confidence intervals for the cost
estimates) that sheds more light on actual performance differ-
ences among the top performing systems follows later in this
section.

Compared to the most recent SRE (i.e., SRE18), there is a
notable improvement in speaker recognition performance. Fig-
ure 5 presents a performance comparison of SRE18 versus
SRE19 CTS submissions for several top performing systems,
in terms of actual and minimum detection costs. Performance
improvements as large as 70% are achieved by some leading
systems, while for others more moderate, but consistent, im-
provements are observed. These performance improvements
are largely attributed to 1) the availability of large amounts of
in-domain development data from a large number of labeled
speakers (e.g., the entire SRE18 CTS development and test data,
or other proprietary in-domain data), and 2) the use of extended
and more complex end-to-end neural network frameworks for
speaker embedding extraction that can effectively exploit vast

Figure 5: Performance comparison of SRE18 vs SRE19 CTS
submissions for several top performing systems.

Figure 6: Performance confidence intervals (95%) of the SRE19
CTS Challenge submissions for the progress (top) and test (bot-
tom) subsets.

amounts of training data made available through data augmen-
tation and/or large-scale datasets such as VoxCeleb3.

It is common practice in the machine learning commu-
nity to perform statistical significance tests to facilitate a more
meaningful cross-system performance comparison. Accord-
ingly, to encourage the speaker recognition community to con-
sider significance testing while comparing systems or perform-
ing model selection, we computed bootstrapping-based 95%
confidence intervals using the approach described in [16]. To
achieve this, we sampled, with repetition, the unique speaker
model space along with the associated test segments 1000 times,
which resulted in 1000 actual detection costs, based on which
we calculated the quantiles corresponding to the 95% confi-
dence margin. Figure 6 shows the performance confidence in-
tervals (around the actual detection costs) for each submission
for both the progress (top) and test (bottom) subsets. It can be
seen that, in general, the progress subset exhibits a wider con-
fidence margin than the test subset, which is expected because
it has a relatively smaller number of trials. Also, notice that
a majority of the top systems may perform comparably under
different samplings of the trial space. Another interesting ob-
servation that can be made from the figure is that systems with
larger error bars may be less robust than systems with roughly
comparable performance but smaller error bars. For instance,
although T18 achieves the lowest detection cost, it exhibits a
much wider confidence margin compared to the second top sys-
tem. These observations further highlight the importance of sta-
tistical significance tests while reporting performance results or
in the model selection stage during system development, in par-
ticular when the number of trials is relatively small.

Figures 7a, 7b, and 7c show speaker recognition perfor-
mance for the top performing submission in terms of DET
curves as a function of: evaluation subset (i.e., progress vs test),
CTS type (i.e., PSTN vs VoIP), and enrollment-test phone num-
ber match for PSTN calls (same vs different), respectively. The
solid black curves in Figures 7a, 7b, and 7c represent equi-
cost contours, meaning that all points on a given contour corre-
spond to the same detection cost value. Firstly, consistent with
our observations from Figure 4, the detection errors (i.e., false-
alarm and false-reject errors) across the operating points of in-
terest (i.e., the low false-alarm region) for the test subset are



(a) (b) (c)
Figure 7: DET performance curves for the leading system by (a) data source (progress vs test), (b) CTS type (PSTN vs VoIP), and (c)
enrollment-test phone number match (same vs different). Filled circles and crosses represent minimum and actual costs, respectively.

Figure 8: DET curve performances of a top performing system
for the various segment speech durations (10 s–60 s) in the test
set.

greater than those for the progress subset. In addition, the cal-
ibration error for the test subset is relatively larger. As noted
previously, we speculate that these primarily result from over-
tuning/overfitting of the submission systems on the progress set.
Secondly, contrary to the results observed on the SRE18 CTS
domain where performance on the PSTN data was better than
that on the VOIP data across all operating points, it seems from
Figure 7b that for the operating points of interest (i.e., the low
false-alarm region) the performance on the PSTN data is com-
parable to that on the VoIP data. We speculate this is due to
the large amounts of VOIP data available for system develop-
ment in SRE19 compared to SRE18 where only a small amount
of VOIP development data was supplied. Finally, as expected,
better performance is observed when speech segments from the
same phone number are used in trials. Nevertheless, the error
rates still remain relatively high even for the same phone num-
ber condition. This indicates that there are factors other than the
channel (phone microphone) that may adversely impact speaker
recognition performance. These include both intrinsic (varia-
tions in speaker’s voice) and extrinsic (variations in background
acoustic environment) variabilities.

Figure 8 shows DET curves for the various test segment
speech durations (10 s–60 s) in the SRE19 CTS Challenge. Re-
sults are shown for a top performing submission. Limited per-
formance difference is observed for durations longer than 40 s.

However, there is a rapid drop in performance when the speech
duration decreases from 30 s to 20 s, and similarly from 20 s to
10 s. This indicates that additional speech in the test recording
helps improve the performance when the test segment speech
duration is relatively short (below 30 seconds), but does not
make a noticeable difference when there is at least 30 seconds of
speech in the test segment. It is also worth noting that the cal-
ibration error (i.e., the gap between filled circles and crosses)
increases as the test segment duration decreases.

7. Conclusion
In 2019, NIST organized the first leaderboard style SRE activity
where raw CTS data (as opposed to embeddings) were provided
as input to the systems. In this paper, we presented a sum-
mary of the SRE19 CTS Challenge (including the task, data,
performance metric, the baseline system, as well as results and
performance analyses) whose primary objectives were to sys-
tematically measure the recent progress in speaker recognition
technology, in particular in the CTS domain, and to stimulate
new ideas and collaborations. In addition, the CTS Challenge
served as a prerequisite for the Audio-Visual SRE19. Results
and analyses presented in this paper indicate great progress in
speaker recognition technology compared to SRE18, with rela-
tive performance improvements as large as 70% for the leading
system. Nevertheless, the performance gap on certain data par-
titions (e.g., PSTN vs VOIP or same vs different phone number)
remains relatively large, at least for certain operating regions.
This motivates further research towards developing a more ro-
bust technology that can maintain performance across a wide
range of operating points and conditions (e.g., new data sources,
languages, and channels).

8. Disclaimer
The results presented in this paper are not to be construed or
represented as endorsements of any participant’s system, meth-
ods, or commercial product, or as official findings on the part of
NIST or the U.S. Government.

Certain commercial equipment, instruments, software, or
materials are identified in this paper in order to specify the ex-
perimental procedure adequately. Such identification is not in-
tended to imply recommendation or endorsement by NIST, nor
is it intended to imply that the equipment, instruments, software
or materials are necessarily the best available for the purpose.
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