
Extracting electron densities in n-type GaAs from
Raman spectra: Comparisons with Hall
measurements

Cite as: J. Appl. Phys. 128, 075703 (2020); doi: 10.1063/5.0011247

View Online Export Citation CrossMark
Submitted: 20 April 2020 · Accepted: 4 August 2020 ·
Published Online: 20 August 2020

Maicol A. Ochoa,1,2,a) James E. Maslar,1 and Herbert S. Bennett1,3

AFFILIATIONS
1National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
2Institute for Research in Electronics and Applied Physics and Maryland Nanocenter, University of Maryland, College Park,
Maryland 20742, USA
3AltaTech Strategies LLC, Kensington, Maryland, 20891, USA

a)Author to whom correspondence should be addressed: maicol.ochoa@nist.gov

ABSTRACT

We demonstrate quantitatively how values of electron densities in GaAs extracted from Raman spectra of two samples depend on models
used to describe electric susceptibility and band structure. We, therefore, developed a theory that is valid for any temperature, doping level,
and energy ratio proportional to q2=(ωþ iγ) (where q is the magnitude of wave vector, ω is Raman frequency, and γ is plasmon damping).
We use a full Mermin–Lindhard description of Raman line shape and compare n-type GaAs spectra obtained from epilayers with our
simulated spectra. Our method is unique in two ways: (1) we do a sensitivity analysis by employing four different descriptions of the GaAs
band structure to give electron densities as functions of Fermi energies and (2) one of the four band structure descriptions includes bandgap
narrowing that treats self-consistently the many-body effects of exchange and correlation in distorted-electron densities of states and solves
the charge neutrality equation for a two-band model of GaAs at 300 K. We apply these results to obtain electron densities from line shapes
of Raman spectra and thereby demonstrate quantitatively how the values of electron densities extracted from Raman spectra of n-type GaAs
depend of various models for susceptibility and band structure.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011247

I. INTRODUCTION

The semiconductor and chemical industries require equipment
that more accurately, non-destructively, and cost-effectively measures
carrier densities.1–3 The carrier density characterization relates to
device performance and to process control and is critical for deter-
mining whether compound semiconductor materials meet specifica-
tions and are worthy of further processing. Such measurements
enable manufacturers to produce next-generation devices with
improved figures of merit such as switching speeds, low power, and
other operating efficiencies to reduce the cost per unit area and the
cost per function, and to increase yield and productivity. The carrier
concentration is a key figure of merit associated with a go–no–go
decision for determining whether a wafer meets specifications
and should undergo further processing. Non-destructive, optical
measurements of carrier densities are crucial in the characterization
of nanoscale semiconductors.4–10

As devices shrink in size to nanometers, performing experi-
mental measurements becomes more costly and time-consuming.
This trend means that computer simulations will be more essential
for advances in future nanotechnologies.

Raman spectroscopy is an attractive non-destructive method
for material acceptance tests and process validation. Our proposed
Raman technique11 will allow process engineers in the semiconduc-
tor industry to

1. Go from what they can measure to what they need to know for
process control, even though they cannot measure directly what
they need to know.

2. Extract transport properties from Raman spectra of compound
semiconductors. Raman spectroscopy requires minimal sample
preparation and is particularly useful as a non-destructive
technique.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 075703 (2020); doi: 10.1063/5.0011247 128, 075703-1

Published under license by AIP Publishing.

https://doi.org/10.1063/5.0011247
https://doi.org/10.1063/5.0011247
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0011247
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0011247&domain=pdf&date_stamp=2020-08-20
http://orcid.org/0000-0003-2056-7736
http://orcid.org/0000-0003-4241-9283
http://orcid.org/0000-0003-1492-7838
mailto:maicol.ochoa@nist.gov
https://doi.org/10.1063/5.0011247
https://aip.scitation.org/journal/jap


The interpretation of Raman spectra to determine the electron
density in n-type semiconductors is an interdisciplinary effort
involving Raman experiments, theory, and computer-based simula-
tions. Because most of the necessary input data for GaAs exist and
the physics of the phonon–plasmon coupled modes in this system
is well understood,12,13 we implement numerically here the
theory11 for the calculation of Raman spectra and investigate how
the Raman spectra vary as functions of the Fermi energy, plasmon
damping, and temperature in zinc blende, n-type GaAs for donor
densities between 1016 cm"3 and 1019 cm"3. We demonstrate
quantitatively as illustrative examples how the values of electron
densities in GaAs extracted from the Raman spectra of two samples
depend on the models used to describe the electric susceptibility
and band structure. Our goal is not to compare quantitatively the
electron densities extracted from interpreting Raman spectra with
those values extracted from interpreting Hall effect measurements.
The numerical implementation of the algorithm, previously
published in Ref. 11, enables the practical extraction of electron
densities non-destructively from Raman spectra of very thin layers,
e.g., epilayers, of compound semiconductors. The algorithm com-
bines numerical results from validated, robust theoretical models
that are based upon detailed quantum mechanical calculations and
Raman spectra to give a method for determining electron densities
in n-type compound semiconductors.

The algorithm has two independent input parameters, namely,
the Raman excitation energy or frequency and the temperature and
consists of the following four steps:

1. Simulation of Raman Spectra. Calculate the shapes of peaks in
Raman spectra due to the coupling between longitudinal optic
phonons and plasmons from the real and imaginary parts of the
electric susceptibility as a function of the Fermi energy.

2. Determination of Fermi energy. Model Raman spectra for dif-
ferent Fermi energies. From among the many calculated Raman
spectra, determine the Fermi energy for which the calculated
Raman spectra agree best with the measured Raman spectra.

3. Computation of carrier density as a function of the Fermi
energy. Solve the charge neutrality equation self-consistently
with one of the four band structure models to calculate the
carrier density as a function of the Fermi energy at a given
temperature.

4. Determination of electron density. Obtain the carrier density
from the Fermi energy identified in step 2 and the result in step 3.

The theory assumes that a sufficient number of atoms exists to
define an appropriate wave vector space in two- or three-
dimensions for the material of interest and for performing the
foregoing steps 1 and 3. The present algorithm uses for illustrative
purposes a three-dimensional wave vector space appropriate for
the zinc blende lattice to describe the band structure models and
perturbed–distorted densities of states due to many-body effects
in n-type GaAs.

Unlike many models for step 3 that are based on using varia-
tions in parameters to fit experimental data, the Bandgap
Narrowing (BGN) model, one of the four band structure models
presented below in Sec. III, is based on quantum mechanical calcu-
lations with no fitting parameters to account for dopant ion effects

and many-body physics effects. The calculations for the BGN
model include the effects of high carrier concentrations and dopant
densities on the distorted–perturbed densities of states used to cal-
culate the Fermi energy as a function of temperature, bandgap nar-
rowing due to dopant ion carrier interactions, and the many-body
quantum effects due to both carrier exchange and correlation inter-
actions. The algorithm given here for the BGN model is unique
because all other reported treatments for the electric susceptibility
do not treat these many-body effects self-consistently. Several of
the reported treatments for the electric susceptibility in compound
semiconductors consider approximate forms that result from
expansions in either q or the ratio q2=(ωþ iγ), where q is the mag-
nitude of the wave vector, ω is the Raman frequency, and γ is the
plasmon damping. For instance, the treatment for the electric sus-
ceptibility of GaInAsSb reported in Ref. 14 considers the hydrody-
namic and the Lindhard–Mermin (LM) models, and the authors
note that the latter leads to a simplified Drude-like model, with a
wave-vector-dependent plasma frequency, when expansions in
small q are considered. We will adopt the Lindhard–Mermin model
in our calculations.

We describe in Sec. II the experimental measurements for the
Raman spectra. We present in Sec. III the theoretical models used
to calculate Raman line shapes. Finally, we show quantitatively in
Sec. IV a proof-of-concept for extracting electron densities from
Raman line shapes.

II. EXPERIMENTAL MEASUREMENTS

We measured Raman spectra on three samples of n-type GaAs.
Samples A and B were 2 μm thick epilayers doped with silicon and
grown by metal organic chemical vapor deposition. Sample C was a
bulk single crystal. Samples A and B had electron concentrations of
nHall"A ¼ 1:4$ 1018 cm"3 and nHall"B ¼ 5:8$ 1018 cm"3, respec-
tively, as determined from the Hall effect measurements performed by
the supplier. Sample C was doped as-grown with a reported electron
concentration between 5.2 and 8:4$ 106 cm"3 and was used as a ref-
erence sample for the purposes of this investigation. Uncertainity in
the electron densities were not reported by the manufacturer.

We performed Raman spectroscopic measurements at room
temperature in a backscattering geometry described by z(x, y)!z,
where x, y, z, and !z denote the [100], [010], [001], and [00!1] direc-
tions, respectively, and using 514.5 nm excitation radiation.
We used a single-grating imaging spectrograph equipped with a
back-illuminated charge coupled device camera system to collect
the scattered radiation. The instrumental bandpass (FWHM) was
approximately 4:7 cm"1. We corrected the Raman scattering
intensities for the wavelength-dependent response of the optical
system using a white-light source of known relative irradiance.
Figures 1(a)–1(c) contain, respectively, the measured Raman
spectra for samples A, B, and C that we obtained in a dark labora-
tory with no ambient lighting.

III. THEORY

A. Step 1—Raman spectra

In the relaxation time approximation, the full longitudinal
dielectric response function ε(q, ω) at an angular frequency ω and
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scattering wave vector q is

ε(q, ω) ¼ 1þ 4πχVE þ 4πχL(ω)þ 4πχe(q, ω), (1)

where the dielectric susceptibility χVE is the contribution from valence
electrons, χL (ω) is the contribution from the polar lattice phonons,
and χe(q, ω) is the contribution from the conduction electrons. We
define the high frequency dielectric constant by ε1 ¼ 1þ 4πχVE
such that for a binary semiconductor, Eq. (1) becomes

ε(q, ω) ¼ ε1 þ 4πχL(ω)þ 4πχe(q, ω): (2)

The contribution of the polar lattice phonons is15

4πχL(ω) ¼ ε1
ω2
LO " ω2

TO

ω2
TO " ω2

! "
, (3)

where we neglect the phonon damping and ωLO and ωTO are the lon-
gitudinal (LO) and transverse (TO) phonon angular frequencies.

Utilizing the relaxation time approximation, the Lindhard
expression16 gives the electronic contribution to the zero order17

dielectric response function 4πχ0e (q, ω) that describes light scatter-
ing by the conduction electrons in doped semiconductors,

4πχ0e (q, ωþ iγ) ¼ e2

π2q2

$
ð
f (E(k))

!h2q2

2mcmo
þ !h2q % k

mcmo
" !h(ωþ iγ)

! ""1
"

þ !h2q2

2mcmo
" !h2q % k

mcmo
þ !h(ωþ iγ)

! ""1
#
d3k,

(4)

where f (E) ¼ (1þ exp{β(E " EF)})
"1 is the Fermi–Dirac distribu-

tion function, E(k) is the energy dispersion of the conduction
band, EF is the Fermi energy, β ¼ (kBT)

"1 and T is the absolute
temperature. To account for the losses associated with electron–
phonon and electron–dopant interactions, we introduce the colli-
sion relaxation time τ and the corresponding angular collision
frequency γ ¼ τ"1. Mermim18 demonstrated that within the relaxa-
tion time approximation, the electron–dopant and electron–
phonon interactions relax the electron density matrix to a local
equilibrium density matrix18–20 and derived the following expres-
sion for the electronic susceptibility χe(q, ω) that incorporates γ:

χe(q, ω) ¼
(ωþ iγ)χ0e (q, 0)χ

0
e (q, ωþ iγ)

ωχ0e (q, 0)þ iγχ0e (q, ωþ iγ)
: (5)

Equation (5) constitutes the Lindhard–Mermin (LM) model
for the electronic susceptibility.

Next, we obtain a simplified form for the LM model in
Eq. (5). First, note that the integrand in Eq. (4) is independent of
the azimuthal angle f. We, therefore, integrate with respect to this
degree of freedom and introduce a new variable μ ¼ cos θ in terms
of the polar angle θ such that the integral element transforms as

FIG. 1. Experimental Raman line shapes measured on samples of GaAs with
nominal values on the electron densities Ne. (a) Ne ¼ 1:4$ 1018 cm"3. (b)
Ne ¼ 5:8$ 1018 cm"3. (c) Ne ¼ 5:2" 8:4$ 106 cm"3 The line shape in (c),
corresponding to a sample with low electron density, reveals a single peak for
the longitudinal optical mode ωLO in GaAs. As the electron density increases,
local plasmons develop, which couple to the LO mode. The resulting coupled
states appear as two additional peaks in the Raman spectra ω" and ωþ in (a)
and (b). We notice that the frequencies ω" and ωþ, as well as their broadening,
are sensitive to the dopant concentration of the sample. The intensity is normal-
ized to the maximum signal in ωLO for (c) and ω" in (a) and (b).
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Ð π
0 sin θdθ

Ð 2π
0 df ! 2π

Ð 1
"1 dμ, and q % k ¼ qkμ. Also, we introduce

the following dimensionless normalized quantities: Q ¼ qaB,

K ¼ kaB, K(E) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2momCa2B=!h

2)E
q

, and Ω2 ¼ !h(ωþ iγ)mC=R1,

where R1 ¼ (e2=2aB) ¼ !h2=(2moa2B) ¼ 13:6 eV is the Rydberg
energy. As a result, Eq. (4) takes the form

4πχ0e (q, ωþ iγ) ¼ 4mc

πQ2

ð1

0
dKK2

ð1

"1
dμf (R1K2=mC)

$ 1
Q2 þ 2QKμ" Ω2 þ

1
Q2 " 2QKμþ Ω2

! "
:

(6)

The longitudinal optical (LO) phonons and plasmons interact
in GaAs, a polar semiconductor, to form LO phonon–plasmon
hybrid modes. The line shape function LA(q, ω) of the Raman
spectrum that contains longitudinal optical (LO) phonon–plasmon
hybrid modes present in GaAs is15

LA(q, ω) ¼
1

1" e"β!hω

ω2
0 " ω2

ω2
TO " ω2

! "2

Im " 1
ε(q, ω)

! "
, (7)

where ω0 ¼ ωTO
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ CFH

p
is a parameter with angular frequency

units, and CFH is the dimensionless Faust–Henry coefficient that
accounts for the longitudinal/transverse optical phonon scattering
ratio. Equation (7) includes the deformation potential and the
electro-optic mechanisms.

Here, we use the command NIntegrate from Mathematica21 to
numerically evaluate the double integral in Eq. (6) at room temper-
ature and obtain the exact result. The function LA(q, ω) in Raman
spectra then becomes

LA(q, ω) ¼
1

1" e"β!hω

$ ω2
0 " ω2

ω2
TO " ω2

! "2 εi(q, ω)
εr(q, ω)

2 þ εi(q, ω)
2

! "
, (8)

where

εr(q, ω) ¼ Re[ε(q, ω)]

¼ ε1 þ ε1
ω2
LO " ω2

TO

ω2
TO " ω2

! "
þ 4πRe[χe(q, ωþ iγ)] (9)

and

εi(q, ω) ¼ Im[ε(q, ω)] ¼ 4πIm[χe(q, ωþ iγ)]: (10)

We note that approximate analytical forms, similar to the
Drude model, can be derived as expansions in terms of the ratio
R ¼ (a2BR1=!hmC)(q2=(ωþ iγ)) of Eqs. (4) and (5). See the
supplementary material section for further details.

B. Step 3—Charge neutrality: Relate electron density to
Fermi energy

The interpretations of Raman measurements on compound
semiconductors such as GaAs require physical models and associated
input parameters that describe how carrier densities vary with dopant
concentrations and Fermi energies. We introduce two main classes of
models that relate carrier concentrations to the Fermi energy for a
given temperature and donor dopant density: Bandgap narrowing
(BGN) models and Parabolic densities of states (PDOS) models.

Because the Fermi energy EF and the damping γ are the vari-
ables for calculating the Raman spectra, we have to select from
among those band structure models in the charge neutrality equa-
tion appropriate to the system of interest, those models that are
amenable to numerical solutions. The charge neutrality equation
connects the electron density and its Fermi energy. Reference 11
contains, for illustrative purposes, self-consistent solutions for the
charge neutrality equation utilizing an iterative procedure with
carrier densities of states (DOS) for the conduction subbands and
the valence subbands at high symmetry points in the wave-vector
space. We present here the charge neutrality solutions for the BGN
and the PDOS models of n-type GaAs for donor densities between
1016 cm"3 and 1019 cm"3 at 300 K.

1. BGN model

The bandgap narrowing (BGN) model is a two-band model
with one equivalent conduction band and one equivalent valence
band at the Γ point in the Brillouin space. The BGN model is
related to the earlier work (Ref. 22) on n-type GaAs and incorporates
modifications to the densities of states due to high concentrations of
dopants, bandgap narrowing, and many-body effects associated with
carrier–carrier interactions (carrier–carrier exchange and correla-
tion). This model has the following characteristics:

1. Fermi–Dirac statistics for the electron distribution at any
temperature,

2. Many-body quantum effects such as carrier–carrier and carrier–
dopant–ion interactions, bandgap narrowing, and distorted–
perturbed DOS for the carriers,

3. Iterative and self-consistent solutions of the coupled charge
neutrality equation and Klauder’s fifth level of approximation
for the renormalized self-energy propagator from which we
obtain the distorted–perturbed DOS, and

4. Statistical analyses to obtain analytic expressions from large simu-
lated data for carrier densities as a functions of the Fermi energy.

Tables S2 and S3 in the supplementary material contain the input
parameters for the BGN calculations in Ref. 22 and for the BGN
model given here.

In the thermal equilibrium, the corresponding electron n and
hole h concentrations in units of cm"3 are

n ¼
ð1

"1
f (E)ρC(E) dE, (11)

h ¼
ð1

"1
[1" f (E)]ρV(E) dE, (12)
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where ρC(E) and ρV (E) are the corresponding electron DOS for the
equivalent conduction band and the hole DOS for the equivalent
valence band. The BGN model invokes the charge neutrality condi-
tion NI ¼ n" h and implements the Thomas–Fermi expression for
the screen radius rs to compute in a self-consistent form the Fermi
energy EF and rs for given values of the ionized dopant concentra-
tion NI at any temperature. The results reported here are for the
n-type material (NI positive), when that each dopant is ionized. We
do not report the results for the screening radius rs here because
they are not needed to extract carrier concentrations from Raman
scattering measurements.

The BGN model for extracting electron densities from Raman
spectra is unique in two respects. First, we include the many-body
effects from Ref. 22. That is, the BGN model used here includes self-
consistently the many-body effects of carrier–dopant–ion interac-
tions on the conduction and valence bands and their densities of
states and the effects of carrier–carrier interactions (majority-carrier
exchange and minority-carrier correlation). Second, the BGN as well
as the PDOS models are valid at room temperature. Reference 23
included the bandgap narrowing effect due only to the electron–
electron exchange interaction for k%p calculations of n-type InP.

We compare our methods with the methods reported in
Ref. 24 for GaSb and in Ref. 23 for InP. Reference 24 for GaSb
treats conduction band minimum as a nonparabolic band with
spherical constant energy surfaces and an isotropic effective mass,
while the L conduction band minimum is treated as a parabolic
band with four equivalent ellipsoidal constant energy surfaces and
an anisotropic effective mass; but it does not include any bandgap
narrowing because it assumes that Γ and L are independent of the
doping level.

Reference 23 for InP includes the nonparabolicity of the con-
duction band from a 14$ 14 k%p model that accounts for interac-
tions among the Γ7 split-off valence band, the Γ8 valence band,
and the Γ6, Γ7, and Γ8 conducting bands, as well as the bandgap
narrowing due to the carrier–carrier exchange interactions given by
Ref. 25.

2. PDOS models

All three PDOS models (PDOS2, PDOS2NPG, and PDOS4)
incorporate an equivalent valence band with heavy hole mass mhh

and light hole mass mlh for the two degenerate subbands at the top of
the valence band. mhh and mlh are combined into an effective mass

mνΓ ¼ m3=2
hh þm3=2

lh

& '2=3
, (13)

for the valence top most subband, which then becomes the
equivalent valence band with a hole energy dispersion
EνΓ(k) & "EG " !h2k2=(2mνΓmo).

These PDOS models use parabolic densities of states for all
equivalent bands and subbands. In contrast with the BGN model
introduced above, the PDOS models do not include modifications
to the DOS due to many-body effects and high concentrations of
dopants and carriers. This is, in part, due to the computational cost
associated with treating a four-band model in the context of the
Klauder self-energy method.

PDOS2 model. The PDOS2 model uses one equivalent con-
duction band and one equivalent valence band at the Γ symmetry
point in the Brillouin space. The electron energy dispersion for the
equivalent conduction band is EcΓ(k) & EcΓ0 þ !h2k2=(2mCmo).

PDOS2NPG model. The PDOS2NPG model is a two-band
model with one equivalent conduction band and one equivalent
valence band at the Γ point in the Brillouin space. This model does
not include bandgap narrowing, but it includes the non-
parabolicity for the electron energy dispersion in the equivalent
conduction band at Γ. Following Ref. 26, we can add non-quadratic
terms jkjl to the electron energy dispersion EcΓ(k) for the conduc-
tion Γ subband in GaAs if k is small, that is,

EcΓ(k) & EcΓ0 þ
!h2k2

2mCmo
þ (ζ=EG)

!h2k2

2mCmo

! "2

, (14)

where ζ is the non-parabolicity factor. In this work, we implement
the Kane three level k % p model,27 which does not consider the
conduction subbands at L and X , and include quartic terms in
E(k) (i.e., we set l ¼ 4).

PDOS4 model. The PDOS4 model incorporates three conduc-
tion subbands at the respective Γ, L, and X symmetry points in the
Brillouin space and one equivalent valence band at the Γ symmetry
point. For the PDOS4, we modify here the PDOS model for GaSb
in Ref. 28 so that it is valid for GaAs. It uses the parabolic electron
energy dispersion EcΓ(k) for the conduction Γ subband in GaAs
when k is small, namely, EcΓ(k) & EcΓ0 þ !h2k2=(2mCmo).

We adopt the following form29 for the temperature depen-
dence of conduction subband minima relative to the top of the
valence band at Γ:

Ei ¼ Ei0 "
AiT2

T þ Bi
, (15)

where i ¼ Γ, L, or X. The coefficients Ei0, Ai, and Bi are listed in
Table S4 in the supplementary material. Since there are eight equiv-
alent permutations of the wave vector in the (111) direction, we
find eight L subband ellipsoids with centers located near the boun-
dary of the first Brillouin zone. The six equivalent permutations of
the wave vector in the (100) direction imply that the system has six
X subband ellipsoids with centers located close to the boundary of
the first Brillouin zone. Since half of each ellipsoid is in the neigh-
boring zone, the number of equivalent subbands NcL for the EcL is
four, and the number of equivalent subbands NcX for the X
subband is three.

The full DOS ρc(E) in the four-band PDOS4 model for the
majority-carrier electrons in n-type GaAs is, therefore,

ρc(E) ¼ ρcΓ(E)þ ρcL(E)þ ρcX(E), (16)

where ρcΓ(E), ρcL(E), and ρcX(E) are the DOS for the conduction Γ,
L, and X subbands with corresponding effective masses of mcΓ,
mcL, and mcX . On the other hand, the DOS for the minority-carrier

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 075703 (2020); doi: 10.1063/5.0011247 128, 075703-5

Published under license by AIP Publishing.

https://doi.org/10.1063/5.0011247%23suppl
https://aip.scitation.org/journal/jap


holes with an effective mass of mνΓ is

ρν(E) ¼ ρνΓ(E): (17)

The quantitative significances that the relative effects of elec-
trons in the upper level sub-conduction bands have on the Fermi
energy vary with the particular n-type semiconductor. For example,
the few electrons in L and X sub-conduction bands of n-type GaAs
have a negligible effect on the Fermi energy. However, this is not
the case for some other zinc blende, semiconductors such as n-type
GaSb and InP as discussed in many papers such as Refs. 23, 28, 30,
31 and 32.

Interpreting experiments for GaSb and InP requires at least a
three-band model and under some conditions may require a
four-band model (see Ref. 28), even though GaSb and InP are

intrinsically direct semiconductors, electrons for n-type GaSb and
InP in the vicinity of their Fermi surfaces will have some character-
istics that are similar to those for electrons in indirect
semiconductors.

IV. NUMERICAL IMPLEMENTATIONS

Step 1. Simulation of Raman spectra

We iterate the calculated Raman line shape function Eq. (8)
with the Fermi energy EF and the plasmon damping γ as variation
parameters to give the best self-consistent fit to the measured
Raman line shape (peaks). Then, after selecting an appropriate
band structure model from among various band structure models,
such as those suggested in Sec. III B, we determine the carrier
density from the Fermi energy. Numerical Raman line shapes that

FIG. 2. Raman scattering line shapes obtained from Eq. (8) for model systems. (a) Line shape as a function of the incident frequency ω for three different values of the
Fermi energy EF at a fix damping rate of γ ¼ 7meV, EF ¼ 0 eV (black, solid), EF ¼ 0:05 eV (red, dashed), and EF ¼ 0:10 eV (blue, dotted). (b) line shape for different
values in the damping energy γ at a fix value Fermi energy EF ¼ 0:05 eV, γ ¼ 3:5 meV (black, solid), γ ¼ 7 meV (red, dashed), and γ ¼ 10:5 meV (blue, dotted). (c)
and (d) present, respectively, in the logarithmic and normal scale, contour plots for the Raman Spectra I, in atomic units, as a function of the Raman frequency ω and the
Fermi energy EF. (c) Reveals the formation of hybrid plasmon–phonon states with characteristic frequencies ω" and ωþ. Due to thermal broadening and the plasmon
damping, the avoided crossing in the dispersion curve is shadowed. (d) shows how the frequency ωþ shifts with Fermi energy EF. Although the intensity of the ωþ branch
increases with EF , in real Raman scattering measurements the intensity of this branch decreases as the electron density increases due to the increase of plasmon
damping arising from ionized impurity scattering. Other parameters are CFH ¼ "0:28, ωLO ¼ 284:7 cm"1 , ωTO ¼ 267:8 cm"1 , meff ¼ 0:067mo, ε1 ¼ 10:9.
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we obtain from Eq. (8) with parameters representative of n-type
GaAs are presented in Fig. 2. The line shape reveals two peaks,
corresponding to two coupled phonon–plasmon states with
corresponding frequencies ω" and ωþ, which differ from the fre-
quency of the uncoupled (longitudinal) phonon ωLO such that
ω" , ωLO , ωþ. The frequencies for the coupled modes are sensi-
tive to the Fermi energy and, therefore, to the carrier concentration.
Figure 2(a) shows the line shape for three values in EF (EF ¼ 0,
0:05, and 0:10 eV) and a significant change in the frequency for the
second peak ωþ. The peak for the ωþ mode shows a significant
linewidth increase with γ [see Fig. 2(b)]. The dispersion curve in
Fig. 2(c) confirms that these peaks correspond to coupled states.
Figure 2(d) displays in a contour plot on how the frequency ωþ
drifts for larger values with increasing Fermi energy EF .

We report experimental Raman measurements in Fig. 1 for
three samples with different carrier concentrations. The intensity is
normalized to the maximum of the ωLO in Fig. 1(c), and ω" peak
in Figs. 1(a) and 1(b). For low carrier concentrations the Raman
peaks display a single peak, corresponding to the free longitudinal
phonon. For larger electron densities, the Raman line shape con-
sists of three peaks that we identify with the two coupled phonon–
plasmon modes, and the uncoupled longitudinal phonon in the
depletion region. The anticipated shift in the position of the second
peak ωþ as a function of carrier densities is experimentally
observed in Figs. 1(a) and 1(b).

Step 2. Determination of Fermi energy

We fit the measured line shapes in Figs. 1(a) and 1(b) to the
form in Eq. (8) utilizing as variational parameters EF and γ. The
results are presented in Fig. 3, where the intensity of the theoretical
line shape has also been normalized. We notice that both the Fermi
energy and the damping are different between samples, and while the
theory does not account for the contribution of uncoupled phonon
to the total line shape, one can remove this contribution from the
spectra by subtracting the intensity for samples at low carrier densi-
ties [e.g., Fig. 1(c)]. However, we notice that this additional step is
not required in the interpretation and numerical fitting of the Raman
signals. These completes step 2 of our algorithm.

Step 3. Computation of carrier density as a function of
the Fermi energy

Obtaining the carrier density requires an analytic representa-
tion of the band structure for the GaAs. We refer readers to Ref. 11
for more complete, detailed discussions about the analytic fits to
the theoretical results given by the four models labeled therein as
BGN and PDOS models (PDOS2, PDOS2NPG, and PDOS4). In
each case, the numerical prediction for the logarithm of the elec-
tron density nM (M ¼ BGN, PDOS, PDOS2NPG, PDOS4) is fitted
to a fourth order polynomial in the Fermi energy of the form

log10 (nM) ¼ aM0 þ aM1EF þ aM2E2
F þ aM3E3

F þ aM4E4
F , (18)

with coefficients aMi. Figure 4 presents the result of Eq. (18) for the
four models analyzed here for Fermi energies ranging from
"0:1 eV to 0:3 eV. We note that unlike GaSb, most of the electrons
for GaAs are in the conduction subband at Γ, the conduction

subband at L is only weakly populated at the highest Fermi ener-
gies, and the conduction subband at X is negligibly populated. This
explains why there is very little difference between the PDOS2 and
PDOS4 models for GaAs.

Step 4. Determination of electron density

We can finally determine with the results in Fig. 4, the elec-
tron densities for the samples A nd B in Figs. 1(a) and 1(b) and
corresponding Figs. 3(a) and 3(b). We interpolate in Fig. 4 from
the Fermi energies obtained in the numerical fitting in Fig. 4 the
electron densities for each model. We report in Table I the electron
densities nM in GaAs from the Fermi energy identified in the
Raman line shapes. The logarithm of the electron densities for (a)
BGN, (b) PDOS2, (c) PDOS4, and (d) PDOS2NPG models as a
function of Fermi energy is calculated utilizing the fitting

FIG. 3. Numerical fit of the theoretical line shape in Eq. (8) to the experimen-
tally measured Raman spectra reported in Fig. 1. The intensity is normalized to
the maximum of the ω" peak. The Fermi energy EF and the damping γ are the
fitting parameters. In (a) EF ¼ 33meV and γ ¼ 2:8 meV and (b) EF ¼ 0:17 eV
and γ ¼ 14meV. Other parameters are as in Fig. 1.
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coefficients reported in Table S5 in the supplementary material.
We conclude that the present approach provides reasonable predic-
tions of the electron densities in GaAs. The theoretically predicted
electron densities depend on the choice for the values of GaAs
material properties and the density of states models used to
compute the electron density from the Fermi energy. The predicted
values among the four models (BGN, PDOS2, PDOS2NPG, and
PDOS4) span a range of about 30% for both samples. We used
whenever possible well-established values for GaAs materials prop-
erties given in the supplementary material section. The authors of
Ref. 24 estimate that the statistical variation for nHall in GaSb is
10% based on measurement reproducibility for the decade of
1018 cm"3. Considering the similarities between GaAs and GaSb
for some of their respective Hall effect parameters, we would expect

that the statistical variation for the measurement reproducibility of
nHall in GaAs to be also 10% for the decade of 1018 cm"3. However,
considering the eight sources of error for Hall effect measurements
listed by Thurber,33 we estimate that those eight sources of error
contribute to a larger than 10% uncertainty in the nominal electron
densities reported for samples A and B. As we state in the forego-
ing, our goal is to show quantitatively how the values of electron
densities extracted from Raman spectra depend on both electric
susceptibility models and band structure models. We consider the
Raman spectra of sample A and B to be representative of GaAs
spectra in the decade of 1018 cm"3. Our goal is not to compare
quantitatively Raman and Hall effect determinations of electron
densities for samples A and B. Improved values are possible if
other parameters, such as effective masses, are adjusted for samples
with known electron densities. This method can also be extended
to other semiconductors if adequate models for the band structure
near symmetry points such as the Γ point are available.

V. CONCLUSION

We introduced an algorithm for the extraction of carrier densi-
ties in compound semiconductors, which includes simulation of
Raman spectra as a function of Fermi energy, and band structure cal-
culations. We applied this methodology to different samples of
n-type GaAs of known electron doping to provide a proof of concept.
Our theoretical analysis for extracting electron densities from Raman
spectra is unique in two ways: (1) one of the four physical models,
the BGN physical model treats the many-body effects self-consistently
and (2) all four physical models are valid at any temperature, e.g.,
room temperature. When high concentrations of carriers exist, this

FIG. 4. Determination of electron den-
sities nM in GaAs from the Fermi
energy identified in the Raman line
shapes. The logarithm of the electron
densities for (a) BGN, (b) PDOS2, (c)
PDOS4, and (d) PDOS2NPG models
as a function of Fermi energy are
shown.

TABLE I. Comparison between theoretically predicted and nominal electron
densities for the samples A and B on Figs. 3(a) and 3(b).

Sample A B

Fit to ω+ peak (cm−1) 450 940
EF (eV) 0.033 0.17
γ (meV) 2.8 14
CFH −0.28 −0.28
nBGN (1018 cm−3) 0.53 4.4
nPDOS2 (10

18 cm−3) 0.80 5.6
nPDOS2NPG (1018 cm−3) 0.86 5.5
nPDOS4 (10

18 cm−3) 0.78 6.0
nHall (10

18 cm−3) 1.4 5.8

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 075703 (2020); doi: 10.1063/5.0011247 128, 075703-8

Published under license by AIP Publishing.

https://doi.org/10.1063/5.0011247%23suppl
https://doi.org/10.1063/5.0011247%23suppl
https://aip.scitation.org/journal/jap


theory and its associated numerical procedures for determining
carrier concentrations from Fermi energies are necessary for inter-
preting room temperature Raman spectra self-consistently.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional tables that
include data parameters used in the calculation of the coefficients
in Eq. (18) for each model and an expanded discussion on approxi-
mate forms to the susceptibility.
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