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The mechanical analog of optical frequency combs, phononic frequency combs, has recently been 

demonstrated in mechanical resonators and has been attributed to coupling between multiple phonon 

modes. This paper investigates the influence of mode structure on comb generation using a model of 

two nonlinearly coupled phonon modes. The model predicts that there is only one region within the 

amplitude-frequency space where combs exist, and this region is a subset of the Arnold tongue that 

describes a 2:1 autoparametric resonance between the two modes. In addition, the location and shape 

of the comb region are analytically defined by the resonance frequencies, quality factors, mode 

coupling strength, and detuning of the driving force frequency from the mechanical resonances, 

providing clear conditions for comb generation. These results enable comb structure engineering for 

applications in areas as broad as sensing, communications, quantum information science, material 

science, and molecular science. 

 

Optical frequency combs have received considerable interest due to the stable broadband comb 

structure that can be generated, which has been a powerful tool in many applications, including optical 

clocks, spectroscopy, and microwave frequency synthesis [1,2]. Like optical resonators, mechanical 

resonators have also been shown to be capable of generating equally spaced vibrational frequencies due to 

mechanical mixing and mode coupling [3-14]. Early demonstrations [3-6] revealed that by electrically 

driving coupled mechanical resonators or multiple modes in a single resonator using multiple drive 

frequencies simultaneously, a comb-like structure can be generated in the frequency domain. More recently, 

it was shown that a phononic frequency comb with well-defined frequency structure can be generated with 

a single mechanical resonator that is driven with a single frequency [7]. In this case, length extensional and 

flexural vibration modes are coupled through mechanical nonlinearities, providing a mechanism for mode 

coupling that generates phononic frequency combs when the amplitudes of the coupled modes saturate. 

Additional experimental observations of phononic frequency combs with a single drive frequency have 

since been reported that support the results in [7], including comb generation in a nanomechanical beam 

resonator [8], a coupled translational-rotational resonator [11], and a membrane resonator [12]. The 

parametric mode coupling seen in [7-16] provides a path for engineering the comb structure and will likely 

find applications in sensing, communications, and quantum information science, similar to optical 

frequency combs. In addition, this phenomenon of phononic combs could be exploited in material and 

molecular sciences, for instance in the investigation of nonlinear phononics [17,18].    

Despite the growing number of experimental observations of phononic frequency combs in mechanical 

resonators, it is still largely unclear how the resonance frequencies and quality factors of the interacting 

modes influence the generation and properties of the comb. The Fermi-Pasta-Ulam framework has 
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previously been used to prove that a comb can be generated with a single drive frequency for a mechanical 

coupled-mode system [19]. This analysis presented time-domain results that show that the comb can be 

phase coherent and that generation can be achieved through a wide range of nonlinearities and the number 

of coupled modes. More recently, a nonlinear friction mechanism has been shown analytically to be capable 

of generating a comb using just a single vibrational mode in a nanomechanical resonator [20]. In this paper, 

we analyze the effect of the resonance frequencies and quality factors of the coupled modes on the 

amplitude-frequency behavior of the comb. We apply the slowly varying envelope approximation to two 

coupled mechanical modes with a 2:1 autoparametric resonance and derive analytical existence conditions 

for phononic frequency combs. Using the derived existence conditions, the position and shape of the comb 

region relative to resonance are also presented. This analysis provides guidelines for tailoring phononic 

frequency combs in mechanical resonators. 

The generation of phononic frequency combs in the mechanical resonator described in [7,9,10,13] and 

shown schematically in Fig. 1 involves two steps. First, mode 1, which is a length extensional vibration 

mode, excites mode 2, which is a flexural vibration mode, when increasing the drive amplitude 𝐹 above a 

certain threshold, i.e. above the red lines in Fig. 2. Second, mode 2 feeds back into mode 1 until the 

amplitudes of both modes oscillate and there is a continuous exchange of energy between the two modes. 

This is similar to a phenomenon found in optical parametric oscillators (OPO) where the idler is generated 

from the pump by increasing the pump power over a threshold [21,22]. When further increasing 𝐹, modes 

1 and 2 experience a temporal oscillation, similar to the slow time scale in Kerr combs. This corresponds 

to a Hopf bifurcation of two eigenmodes that are symmetric to the real axis. These eigenmodes transition 

from stationary to time-varying amplitude for specific drive, or pump, conditions, resulting in phononic 

frequency combs. This behavior is described by two coupled phonon modes with quadratic coupling 

nonlinearities and a 2:1 autoparametric resonance. The coupling is a result of a nonlinear strain relationship 

between the length-extensional and flexural modes [23], and the equations of motion can be written as 

�̈�1 + 2𝛾1�̇�1 + 𝜔1
2𝑥1 + 𝛼22𝑥2

2 = 𝐹𝑐𝑜𝑠(𝜔𝐷𝑡) (1) 

�̈�2 + 2𝛾2�̇�2 + 𝜔2
2𝑥2 + 𝛼12𝑥1𝑥2 = 0 (2) 

Here, 𝜔1 and 𝜔2 are the resonance frequencies where 𝜔1 ≈ 2𝜔2, 𝛾1 and 𝛾2 are the damping rates, and 

𝛼22𝑥2
2 and 𝛼12𝑥1𝑥2 are the nonlinear coupling terms. This system is driven by 𝐹cos(𝜔𝐷𝑡), where 𝐹 is the 

drive amplitude and 𝜔𝐷 is the drive frequency. The coefficients 𝛼12 and 𝛼22 are part of the Fermi-Pasta-

Ulam framework. Note: Considering our experimental results [7], we assume the energy functional of the 

form 𝑥1𝑥2
2 that is necessary and sufficient to generate phononic combs. However, in real experimental 

systems, the terms 𝑥1
3, 𝑥2

3 and 𝑥2𝑥1
2 need to be added to accurately address the quantitative details. 

Specifically, the Duffing, or third-order, nonlinearity was not included in eqs. (1) and (2) since experimental 

results showed the existence of phononic frequency combs before the Duffing nonlinearity had an effect on 
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the frequency response [7]. Furthermore, this analysis is focused on existence conditions rather than 

accurate prediction of the comb amplitude. Solutions for 𝑥𝑗 are assumed to be 𝑥𝑗 = (𝑢𝑗𝑒𝑖𝜔𝐷𝑡 + 𝑢𝑗
∗𝑒−𝑖𝜔𝐷𝑡)/

2 for j = 1, 2, where 𝑢𝑗 are slowly varying envelopes [24,25]. After substituting these solutions into eqs (1) 

and (2), the equations of motion can then be written in terms of the complex amplitudes, 𝑢𝑗 ,  

�̈�1 + [2𝛾1 + 2𝑖𝜔𝐷]�̇�1 + [(𝜔1
2 − 𝜔𝐷

2 ) + 2𝑖𝛾1𝜔𝐷]𝑢1 + 𝛼22

𝑢2
2

2
= 𝐹 (3) 

�̈�2 + [2𝛾2 + 𝑖𝜔𝐷]�̇�2 + [(𝜔2
2 −

𝜔𝐷
2

4
) + 𝑖𝛾2𝜔𝐷] 𝑢2 +

𝛼12

2
𝑢1𝑢2

∗ = 0 (4) 

The generation of phononic frequency combs is indicated by the periodic modulation of the complex 

amplitudes 𝑢𝑗, where the modulation is slow compared to the carrier frequencies, resulting in pulsing 

between the two modes. In order to study these slow dynamics, the appropriate assumptions for the slowly 

varying envelope approximation are applied to eqs. (3) and (4) (see Supplementary Information for details 

on all derivations), providing two first-order differential equations that describe the normalized amplitudes 

of the two modes, 𝜓1 and 𝜓2, when driven by a single frequency near the resonance of mode 1 (i.e., 𝜔𝐷 ≈

𝜔1). 

𝜕𝜓1

𝜕𝜏
= −𝑖𝑓 − (1 + 𝑖Δ1)𝜓1 + 𝑖𝜓2

2 (5) 

𝜕𝜓2

𝜕𝜏
= −(𝛾21 + 𝑖Δ2)𝜓2 + 2𝑖𝜓1𝜓2

∗ (6) 

 

Here, 𝜏 = 𝛾1𝑡, 𝑓 =
𝛼12

8𝛾1
2𝜔𝐷

2 𝐹, 𝛾21 =
𝛾2

𝛾1
, Δ1 =

𝜔𝐷−𝜔1

𝛾1
, Δ2 =

𝜔𝐷−2𝜔2

2𝛾1
, 𝜓1 =

𝛼12

4𝛾1𝜔𝐷
𝑢1, and  𝜓2 = √𝛼12𝛼22

4𝛾2𝜔𝐷
𝑢2. 

To understand the conditions for comb generation within these slow dynamics, the stationary points have 

been investigated. Assuming steady-state conditions (i.e., 
𝜕𝜓1

𝜕𝜏
=

𝜕𝜓2

𝜕𝜏
= 0), eqs. (5) and (6) have two sets of 

stationary points: (𝜓1𝐿 , 𝜓2𝐿) and (𝜓1𝑃, 𝜓2𝑃). The first set is 𝜓1𝐿 = −𝑓 (−𝑗 + Δ1)⁄ , 𝜓2𝐿 = 0. These 

stationary points are stable when f is small and provide the same expected amplitudes as the case where 

eqs. (1) and (2) are linear (i.e., 𝛼12 = 𝛼22 = 0). The second set of stationary points, 𝜓1𝑃 and 𝜓2𝑃, are 

defined by the following quadratic relationship, 

|𝜓2𝑃|4 + (𝛾21 − Δ1Δ2)|𝜓2𝑃|2 +
1

4
(1 + Δ1

2 )(𝛾21
2 + Δ2

2) − 𝑓2 = 0 (7) 

and |𝜓1𝑃|2 = (𝛾21
2 + Δ2

2) 4⁄ . When 𝜓1𝑃 and 𝜓2𝑃 are stable stationary points, there is a 2:1 autoparametric 

resonance, or internal resonance, in which energy flows from mode 1 to mode 2, resulting in vibration of 

both modes with constant steady-state amplitude. Interestingly, 𝜓1𝑃 is not a function of f because the 

amplitude is saturated and an increase in f will only increase 𝜓2𝑃. Stability of the slow dynamics, eqs. (5) 

and (6), at  𝜓1𝑃 and 𝜓2𝑃 requires that the discriminant of eq. (7) be positive, 𝑓 ≥
1

2
|𝛾21Δ1 + Δ2|, which is 
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shown in parameter space (f  vs. Δ1) in Fig. 2 (black line). This condition sets the boundary for 

autoparametric resonance, often referred to as an Arnold tongue, where 𝜓1𝐿 and 𝜓2𝐿 are stable stationary 

points below the line and 𝜓1𝑃 and 𝜓2𝑃 may be stable above the line. The transition from 𝜓1𝐿 and 𝜓2𝐿, to 

𝜓1𝑃 and 𝜓2𝑃 is a Hopf bifurcation.   

In the case of autoparametric resonance, the oscillatory amplitudes 𝜓1 and 𝜓2 are at steady state (i.e., 

the amplitudes remain constant over time). However, in the case of phononic frequency combs, we have 

previously shown that the amplitudes, 𝜓1 and 𝜓2, are modulated as a function of time such that periodic 

pulses are generated in the time domain, thereby resulting in frequency combs around the two modes [7]. 

Therefore eqs. (5) and (6) are linearized about these stationary points, such that small amplitude 

perturbations are defined as 𝛿𝜓1 and 𝛿𝜓2, and 𝜓1 ≡ 𝜓1𝑃 + 𝛿𝜓1 and 𝜓2 ≡ 𝜓2𝑃 + 𝛿𝜓2. Substituting into 

eqs. (5) and (6) and applying steady-state conditions, 
𝜕𝜓1

𝜕𝜏
=

𝜕𝜓2

𝜕𝜏
= 0, the linearized dynamics can be written 

as follows. 

 

𝜕𝛿𝜓1

𝜕𝜏
= −(1 + 𝑖Δ1)𝛿𝜓1 + 2𝑖𝜓2𝑃𝛿𝜓2 (8) 

𝜕𝛿𝜓2

𝜕𝜏
= −(𝛾21 + 𝑖Δ2)𝛿𝜓2 + 2𝑖𝜓1𝑃𝛿𝜓2

∗ + 2𝑖𝜓2𝑃
∗ 𝛿𝜓1 (9) 

 

In order to study the stability of the linearized dynamics, it is assumed that 𝛿𝜓1 = 𝑏1𝑒𝜆𝛾1𝑡; 𝛿𝜓1
∗ = 𝑏2𝑒𝜆𝛾1𝑡; 

𝛿𝜓2 = 𝑏3𝑒𝜆𝛾1𝑡and 𝛿𝜓2
∗ = 𝑏4𝑒𝜆𝛾1𝑡, and modulations 𝛿𝜓1 and 𝛿𝜓2 can only grow in strength if 𝜆 is both 

real and positive. After applying the Routh-Hurwitz criterion [26] to analyze the stability of the linearized 

dynamics, eqs. (8) and (9), we obtain the following condition. 

 

|𝜓2𝑃|2 ≥ −
𝛾21(1 + Δ1

2)[1 + Δ1
2 + 4𝛾21(1 + 𝛾21)]

4(1 + 𝛾21)2(1 + Δ1
2 + 2𝛾21 + 2Δ1Δ2)

 (10) 

 

This condition dictates the minimum value of |𝜓2𝑃|2 that is required for non-zero values of 𝛿𝜓1 and 𝛿𝜓2. 

Only such non-zero amplitude modulations can ensure the generation of side-bands in the frequency 

domain, which in turn yields the frequency comb spectra. Hence, the energy exchange between modes 1 

and 2 should be significant enough to enhance the value of |𝜓2𝑃| in order to generate frequency combs. 

Similar to the autoparametric resonance, the transition from stable amplitudes to amplitude modulation is 

also a Hopf bifurcation. 

Since |𝜓2𝑃|2 is always positive (i.e., |𝜓2𝑃| is real), we obtain a boundary condition for the existence of 

phononic frequency combs as  2Δ1Δ2 ≤ −(1 + Δ1
2 + 2𝛾21). This boundary forms the subset of the region 
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of autoparametric resonance, 𝑓 ≥
1

2
|𝛾21Δ1 + Δ2|, as shown in Fig. 2, where the red line represents the 

threshold for instability of the linearized dynamics. While this analysis cannot prove that comb generation 

is the only dynamic behavior found within this instability bound, the frequency dependence of phononic 

frequency combs in experimental results [7] matches with the analytical evidence that the existence zone 

of phononic combs is bounded in drive frequency. Figure 2 shows that the phononic combs exist in the red-

detuned and blue-detuned sides of driven mode 1 for 𝜔2 <
𝜔1

2
 and 𝜔2 >

𝜔1

2
, respectively, for the presented 

model. 

In order to verify that this bounded region describes the conditions for phononic frequency combs, we 

conducted numerical simulations of eqs. (5) and (6) within this region. Figure 3 shows typical simulation 

results for mode amplitudes. The time domain responses (Figs. 3(a) and 3(b)) exhibit periodic oscillations 

and the corresponding fast Fourier transforms (FFT) (Figs. 3(c) and 3(d)) clearly demonstrate the existence 

of frequency combs.  

Having established a description of the region in which combs can exist, we now investigate how the 

resonance frequencies and quality factors of modes 1 and 2 affect the location and shape of this region 

relative to the boundary describing the Hopf bifurcation to autoparametric resonance. To this end, the 

existence condition, eq. (10), is considered. From the resulting boundary line, the parameter 𝜔𝑐 =

1

2
(𝜔𝐷,𝑚𝑖𝑛 + 𝜔𝐷,𝑚𝑎𝑥) is defined as the center frequency of the comb region (Fig. 2) (see Supplementary 

Information for definitions of 𝜔𝐷,𝑚𝑎𝑥 and 𝜔𝐷,𝑚𝑖𝑛).. It has been derived in the supplementary information, 

such that 𝜔𝑐 =
1

4
(3𝜔1 + 2𝜔2), with 𝜔2 ≈

𝜔1

2
. For any value of 𝜔2, the threshold for autoparametric 

resonance is always minimum when 𝜔𝐷 equals 𝜔1. We now want to understand the minimum detuning 

from 𝜔1 that is required to excite phononic frequency combs. We know that phononic combs only exist in 

a specific frequency band. Depending on whether 𝜔2 >
𝜔1

2
 or 𝜔2 <

𝜔1

2
, 𝜔1 will be closer to either the left 

or right edge of phononic comb boundary. The difference between 𝜔1 and the edge of the existence 

boundary for combs corresponds to the minimum detuning that is required for generating frequency combs, 

which is 𝛿 = |𝜔𝐷,𝑒𝑑𝑔𝑒 − 𝜔1| =
𝜔1

√2𝑄1𝑄2
. By increasing the quality factors, 𝑄1 and 𝑄2, 𝛿 is reduced, which 

in turn reduces the drive amplitude threshold for generating phononic combs. In other words, higher gain 

in the phononic combs can be obtained for smaller 𝛿. This analysis also shows that phononic combs can be 

generated only if the quality factor 𝑄2 is set above a critical value of 𝑄2,𝑐 =
2

𝑄1
(1 −

2𝜔2

𝜔1
)

−2
, as shown in 

Fig. 4a. The system parameters used in Fig. 4 were selected based on the experimental results in [7] so that 

the connection between the quality factors can be more easily understood. The frequency range 𝑅 

corresponding to the existence band of phononic combs is found to increase with 𝑄2 as 𝑅 = |𝜔2 −
𝜔1

2
| −
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(
√2𝜔1

√𝑄1𝑄2
), which then asymptotes at |𝜔2 −

𝜔1

2
| for large values of 𝑄2. Similar to 𝑄2, there also exists a critical 

value for |𝜔2 −
𝜔1

2
|, which is 𝑔 = 2𝜔1√

2

𝑄1𝑄2
. For |𝜔2 −

𝜔1

2
| > 𝑔, the frequency range 𝑅 scales linearly 

with |𝜔2 −
𝜔1

2
|, as shown in Fig. 4b. The above conditions can be used to design mechanical resonators that 

have sufficient quality factor and placement of resonance frequencies to systematically generate phononic 

frequency combs. 

Equation (10) shows that there is only one boundary zone for phononic frequency combs in a two-mode 

system, which either lies on the red-detuned or blue-detuned side of mode 1 (i.e. either 𝜔𝐷 < 𝜔1 or 𝜔𝐷 >

𝜔1). There is an interesting discrepancy between this model and the experimental results shown in [7]. 

These results show that there are two boundary zones for phononic frequency combs and these zones lie on 

both sides of the resonance frequency (i.e., 𝜔𝐷 < 𝜔1 and 𝜔𝐷 > 𝜔1). The mode shapes for these two regions 

have been measured, as shown in [7], revealing that the mode coupling on either side of resonance is with 

two different modes. Referring to these as modes 2 and 3, the boundary zone that corresponds to 𝜔𝐷 < 𝜔1 

can be explained by coupling between modes 1 and 2, and the zone corresponding to 𝜔𝐷 > 𝜔1 is due to 

coupling between modes 1 and 3. Hence, independently coupling a driven mode 1 to two different phonon 

modes leads to two bands of phononic frequency combs. Equation (10) can be directly employed to capture 

this more complex behavior, where the existence boundary for phononic combs resulting from the 

interactions of mode 1 and mode 2 is 2Δ1Δ2 ≤ −(1 + Δ1
2 + 2𝛾21) and between modes 1 and 3 is 2Δ1Δ3 ≤

−(1 + Δ1
2 + 2𝛾31).  

In summary, this paper derives the existence conditions for phononic frequency comb generation with 

two coupled phonon modes in terms of drive frequency and amplitude. Using the boundary conditions, we 

investigated the influence of modal properties, including the quality factors and resonance frequencies of 

interacting modes on the conditions for comb generation. These include critical modal frequency separation, 

critical quality factors, and critical detuning that are required to produce a phononic frequency comb. For a 

system of two coupled phonon modes, the analysis revealed that there is only one existence zone for 

phononic combs. However, by correlating these analytical results with published experimental results, 

distinct existence boundaries of phononic frequency combs can be generated by independently coupling a 

driven mode with several other phonon modes. The results of this work will accelerate the development of 

mechanical devices with enhanced phononic comb properties for their applications in physical sciences.  

 

Supplemental Material: See supplemental material for the derivations of existence conditions of phononic 

frequency combs. 
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Data Availability: The data that support the findings of this study are available from the corresponding 

author upon reasonable request.  
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FIG. 1. Micromechanical resonator and phononic frequency comb concept. (a) Micromechanical resonator design 

used in [7] to generate phononic frequency combs. A length-extensional mode couples to a flexural mode through a 

nonlinear strain relationship. (b) Visual description of the mode coupling concept that results in phononic frequency 

combs, showing two modes where the resonance frequency of one mode is near double that of the other mode.   
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FIG. 2. Regions for parametric resonance (above the black line) and phononic frequency combs (above the red line) 

as a function of drive amplitude and frequency and the relative values of  𝜔1 and 𝜔2. That is, the drive conditions 

above the black line lead to parametric modal coupling and the drive conditions above the red line leads to phononic 

frequency combs. The existence bounds for both red-detuned resonances (a) and blue-detuned resonances (b) are 

shown, where the detuning is for  𝜔2 relative to 𝜔1. System parameters: (a) 
𝜔1

2𝜋
= 3.86 𝑀𝐻𝑧, 𝑄1 = 1000, 

𝜔2

2𝜋
=

1.9 𝑀𝐻𝑧 and 𝑄2 = 10; (b) 
𝜔1

2𝜋
= 3.86 𝑀𝐻𝑧, 𝑄1 = 1000, 

𝜔2

2𝜋
= 1.96 𝑀𝐻𝑧 and 𝑄2 = 10. 
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FIG. 3. Numerical simulation results for the mode amplitudes, eq. (5) and eq. (6), within the phononic frequency comb 

boundary. Simulation parameters: Δ1 = 5; 𝜅 = −9; Δ2 =
Δ1

2
+ 𝜅; 𝛾21 = 1; 𝑓 = 20. (a)-(b) Time domain responses. 

(c)-(d) Corresponding fast Fourier transforms (FFT) showing the existence of phononic frequency combs. 
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FIG. 4. Regions for generation of phononic frequency combs. (a) Quality factor of mode 2 vs. drive frequency. (b) 

Resonance frequency of mode 2 vs. drive frequency. System parameters: (a) 
𝜔1

2𝜋
= 3.86 𝑀𝐻𝑧, 𝑄1 = 4000; 

𝜔2

2𝜋
=

1.92 𝑀𝐻𝑧; (b) 
𝜔1

2𝜋
= 3.86 𝑀𝐻𝑧, 𝑄1 = 4000; 𝑄2 = 50. 
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