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Abstract Cooking equipment is involved in nearly half of home fires in the United States, with cooktop
fires the leading cause of deaths and injuries in cooking-related fires. In this study, we evaluate 16 elec-
trochemical, optical, temperature and humidity sensors, placed in the cooktop exhaust duct, for use in
predicting and preventing cooktop ignition. The sensors were evaluated in a series of 60 experiments con-
ducted in a mock kitchen. Experiments covered a broad range of conditions, including both unattended
cooking and normal cooking scenarios, where 39 experiments led to auto-ignition. The experiments in-
volved a variety of cooking oils and foods and were conducted using either an electric coil cooktop,
gas-fueled cooktop, or electric oven. The sensor data collected in the experiments were used in two types
of analysis, threshold analysis and neural-network analysis, to estimate the performance of the sensors
for predicting ignition and ignoring normal cooking conditions. The combined information from multiple
sensors was evaluated in sensor ratios with threshold analysis, and in the neural-network models devel-
oped using selected pairs of sensor inputs. Some of the multiple-sensor cases performed as well as or
better than the individual sensor thresholds and individual sensor models. Consistently across threshold
and machine learning analysis, the best performing sensor was the sensor measuring volatile organic com-
pounds. This sensor was also included in all of the best performing sensor ratios and machine learning
models.1

Keywords Cooktop ignition · Sensor analysis · Neural networks · ignition prevention

1 Introduction

According to a recent National Fire Protection Association (NFPA) report, 47 % of reported home fires
involve cooking equipment, with cooktops accounting for 87 % of cooking-fire deaths and 80 % of the
civilian injuries [1]. Electric-coil stovetops manufactured after June 2018 in the U.S. must pass the abnor-
mal cooking test in Underwriters Laboratories (UL) 858 [2]. The test prescribes a maximum temperature
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of the dry-pan or a performance test for ignition-prevention using 50 mL of canola oil with the coil ele-
ment on its highest power setting. This standard does not apply to older cooktops or other types of cooking
appliances, such as gas cooktops.

Therefore, we consider the feasibility of using a variety of sensors as the basis for a retrofit device that
would provide early warning or feedback control to automatically shut off the cooktop to prevent ignition.
The goal of this device would be to prevent fires from unattended cooking, while ignoring normal-cooking
activities and nuisance sources. It may be advantageous to install the proposed system near or within a
kitchen exhaust duct or on the ceiling in the kitchen.2 It could also be integrated into existing household
systems via the internet.

There have been studies that investigated the performance advantages of multiple sensors over a sin-
gle sensor for detection of generalized fire conditions and nuisance-alarm resistance. Gottuk et al. [3]
compared the effectiveness of various multi-criteria, fire-detection algorithms using signals from carbon
monoxide (CO) sensors and smoke detectors to reduce false fire alarms and to increase detection sensi-
tivity. A cutoff value for the signal of the CO sensor multiplied by the signal from an ionization smoke
detector was reported to show improved effectiveness over typical smoke detectors.

In another study, Cestari et al. [4] included the signals from ionization, photoelectric and CO detec-
tors with temperature from a thermocouple to develop advanced, fire-detection algorithms that reduced
nuisance sensitivity and detected fires at least as fast as conventional ionization and photoelectric detec-
tors. Eight parameters were identified from the four sensors by considering the magnitude and rate of
rise of the output from each sensor. Algorithms developed using these parameters showed that the best
fire sensitivity and nuisance immunity was observed for the algorithms based on 1) temperature rise and
CO, 2) CO and ionization detector, and 3) temperature rise, CO and ionization detector. Another series
of studies developed and tested a prototype four-sensor (ionization, photoelectric, CO and carbon dioxide
(CO2)) package for early warning seaboard applications [5]. Although these studies did not focus solely
on cooktop fires, typical, nuisance sources from cooktops were considered, including steam as well as
cooking aerosols (e.g., the effluent from hot cooking oil and bacon).

A few studies focused on cooktop fires and considered multi-detector sensing of pre-ignition signa-
tures in a kitchen environment. Johnsson [6] conducted a series of experiments investigating the feasibility
of distinguishing between normal-cooking activities and pre-ignition conditions using a variety of sensors
in a mock kitchen with a closed door. Sensors were placed above the cooktop and on the compartment
ceiling. Signals from alcohol, CO, and hydrocarbon sensors showed the potential to predict ignition while
discriminating from normal cooking. Nearly all the experiments were conducted with the range hood off

and the effects of room configuration and transport likely played a significant role in the interpretation
of results. More recently, Johnsson and Zarzecki [7] conducted experiments that suggested that modi-
fied photoelectric smoke detectors could be used to warn of pre-ignition conditions while not impacting
normal-cooking scenarios.

Jain et al. [8] conducted cooking-oil auto-ignition experiments, considering the effectiveness of var-
ious inexpensive sensors to detect pre-ignition conditions, and reported that the rate-of-change of the
moving average of CO concentration was a robust indicator of impending ignition. The study, however,
did not consider normal cooking or common, nuisance sources.

The objective of this study was to apply data-driven, statistical methods and machine learning methods
to design a detection algorithm for cooktop ignition prevention. Data was obtained from experiments of
a variety of ignition and normal-cooking scenarios. The experiments were focused on measuring sensor
response, with limited consideration of effluent transport to the sensors. Our approach was to develop
and evaluate the performance of sensor-based prediction algorithms using threshold analysis and neural-
network models.

2 Further research may be needed to characterize the long-term performance of a sensor system exposed to a range of typical
cooking scenarios and kitchen conditions.
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Fig. 1 Two-dimensional schematic of the front of the mock kitchen experimental setup (not to scale).

2 Experimental Methods

Sixty ignition and normal-cooking experiments were conducted in a mock kitchen shown in Figure 1
using either an electric-coil cooktop, gas-fueled cooktop, or electric oven for broiling. There were four
different burners used in the cooktop experiments: the small 15 cm diameter electric-coil heating element
with a measured power of 1.1 kW, the large 20 cm diameter electric-coil heating element with a measured
power of 1.8 kW, the medium gas burner with an estimated heat output of 3.4 kW, and the large gas burner
with an estimated heat output of 4 kW.

Sixteen sensors were placed in the exhaust duct where they were exposed to the well-mixed exhaust
flow containing gases and particles representative of cooking. The location of the sensors was approx-
imately 3 m downstream of the range hood opening, which was 0.8 m above the cooktop. The sensors
monitored various quantities including CO2, CO, temperature, humidity, smoke, hydrocarbons, alcohols,
hydrogen (H2), natural gas, propane, volatile organic compounds (VOC), and dust/aerosols. Sensor data
were acquired at 0.25 Hz. Many of the sensors output a voltage reading, which has not been calibrated
to concentration or other measurements. If these sensors are used in further development of a prediction
algorithm, the signals should be calibrated.

The exhaust fan was normally set to the highest setting on the range hood. The flow in the exhaust
duct (15 cm diameter) was characterized using a bi-directional probe placed in the center of the duct
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about 20 diameters downstream of a bend. The typical, average velocity was 3.4 m/s with a standard
uncertainty of ± 0.1 m/s. The average velocity varied between experiments with a standard deviation of
0.2 m/s. Using the electric-coil cooktop, the duct temperature increased by an average of 9 ◦C causing
an estimated reduction in duct mass flow of 3 %. For the gas cooktop, the duct temperature increased by
an average of 23 ◦C, which is estimated to reduce the duct mass flow by 7 %. Aluminum foil was added
on the sides of the cooktop to reduce the impact of room air currents on the plume flow above the heated
pan and reduce transport effects. For Experiments 8 to 15 and 19 to 34, additional aluminum foil, shown
in green in Figure 1, was added to the front of the cooktop and exhaust hood to ensure that most of the
plume flowed into the hood and past the sensors stationed in the duct.

2.1 Experimental Cooking Scenarios

The cooking scenarios covered a wide range of conditions representative of normal cooking as well as
conditions beyond normal cooking, sometimes leading to ignition of the food. The experiments used
round, cast iron, aluminum, multi-layered, and stainless-steel pans with diameters of either 20 cm (8 in)
or 25 cm (10 in). Typically, one pan of food was heated per experiment, but multiple pans were simulta-
neously heated on separate burners in a few experiments. In most cases, the smaller burner was used for
the 20 cm pan, and the larger burner was used for the 25 cm pan.

The conditions for all 60 experiments are described in Table 1. The foods in the experiments were
vegetable oils, butter, water, hamburgers, salmon, bacon, frozen french fries, and chicken. Common veg-
etable cooking oils in the U.S [9], soybean, canola, olive, sunflower, and corn oils, were tested. In total,
39 of the 60 experiments led to auto-ignition of the food, including cooking oils, salmon, fries, and bacon.
Ignition typically occurred 10 min to 15 min after turning on the burner.

Cooking oils and bacon were heated on the highest burner setting until ignition occurred or the sensor
signals began to drop and only char remained. The cooking procedure for the hamburgers (80 % lean)
was the same as in Cleary [10]. Two hamburgers were also cooked on a broiler pan placed on the top shelf
of the oven on the broil setting, according to the UL 217 Cooking Nuisance Smoke Test procedure [11].

The cooking procedures for salmon, chicken and frozen fries were based on the consensus from a
variety of recipes. In the salmon cooking procedure, the butter was heated on high for 3 min, the salmon
was added and heated on high for 4 min, and the salmon was flipped and cooked on high for 4 min.
Following that procedure, unattended cooking was simulated by continuing to cook the salmon at the
highest setting. In one case, the salmon eventually ignited. For chicken legs in 200 mL of preheated oil,
the burner was set to half of the maximum to maintain a pan temperature of about 200 ◦C for frying. The
chicken legs were flipped four times, every 4 min. For frozen fries, initially 500 mL of canola oil was
preheated to 200 ◦C. After the frozen fries were added, the burner power was adjusted to maintain a pan
temperature around 200 ◦C. After 15 min of cooking, the burner was turned to its highest setting, and the
food later ignited.

2.2 Pan Temperature Measurements

In each experiment, pan temperatures were measured at one or more locations using Type-K thermo-
couples either spot welded or peened to the food side of the pan. The thermocouples showed significant
variations in temperature across the pan surface. The standard uncertainty of the Type-K thermocouples
was ± 2.2 ◦C according to the manufacturer. Figure 2 shows calibrated infrared (IR) images of dry, (no
oil) cast-iron pans. The images reveal the distribution of temperatures on the small electric coil element
and on the large gas burner, which was influenced by pan orientation and geometry. The maximum tem-
perature the camera could monitor was 370 ◦C, so regions above that temperature are shown as white.
The simultaneous, thermocouple measurements that were used to calibrate the IR images are labeled in
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Table 1 Experimental Conditions

Number Ignition Heating Source Pan Type Pan Diameter Food & Amount
(cm)

1 Y 1.1 kW electric coil cast iron 20 50 mL canola oil
2 Y 1.1 kW electric coil cast iron 20 50 mL canola oil
3 Y 1.1 kW electric coil cast iron 20 50 mL canola oil
4 Y 1.1 kW electric coil cast iron 20 50 mL canola oil
5 Y 1.1 kW electric coil cast iron 20 50 mL canola oil
6 Y 1.1 kW electric coil cast iron 20 50 mL canola oil
7 Y 1.1 kW electric coil cast iron 20 50 mL canola oil
8 Y 1.1 kW electric coil cast iron 20 50 mL canola oil
9 Y 1.1 kW electric coil cast iron 20 100 mL canola oil
10 Y 1.1 kW electric coil aluminum 20 50 mL canola oil
11 Y 1.1 kW electric coil multi-layered 20 50 mL canola oil
12 Y 1.1 kW electric coil stainless steel 20 50 mL canola oil
13 Y 1.1 kW electric coil cast iron 20 200 mL canola oil
14 Y 1.8 kW electric coil cast iron 20 50 mL canola oil
15 Y 1.8 kW electric coil cast iron 25 100 mL canola oil
16 N 1.1 kW electric coil aluminum 20 50 mL corn oil
17 Y 1.1 kW electric coil aluminum 20 50 mL corn oil
18 Y 1.1 kW electric coil cast iron 20 50 mL corn oil
19 Y 1.8 kW electric coil cast iron 25 100 mL corn oil
20 Y 1.1 kW electric coil cast iron 20 50 mL corn oil
21 Y 1.1 kW electric coil cast iron 20 50 mL soybean oil
22 Y 1.8 kW electric coil cast iron 25 100 mL soybean oil
23 Y 1.1 kW electric coil cast iron 20 50 mL olive oil
24 Y 1.8 kW electric coil cast iron 25 100 mL olive oil
25 Y 1.8 kW electric coil cast iron 25 100 mL sunflower oil
26 Y 1.1 kW electric coil cast iron 20 50 mL sunflower oil
27 Y 1.1 kW electric coil cast iron 20 46 g butter
28 N electric oven broiler pan N/A 460 g (1 lb) of hamburgers (2)
29 N 1.1 kW electric coil cast iron 20 230 g (0.5 lb) hamburger (1)
30 N 1.8 kW electric coil cast iron 25 460 g (1 lb) of hamburgers (2)
31 Y 1.1 kW electric coil cast iron 20 227 g (8 oz) salmon & 42.5 g butter
32 N 1.8 kW electric coil cast iron 25 454 g (16 oz) salmon & 85.1 g butter
33 N 1.1 kW electric coil cast iron 20 50 mL water
34 N 1.8 kW electric coil none N/A N/A
35 Y 1.1 kW electric coil cast iron 20 50 mL canola oil & 2 L water

on separate burners
36 Y 1.1 kW electric coil cast iron 20 50 mL canola oil
37 N 1.1 kW electric coil cast iron 20 50 mL canola oil
38 N 1.1 kW electric coil aluminum 20 50 mL canola oil
39 N 1.1 kW & 1.8 kW electric coil cast iron & 20 50 mL canola oil in each pan

aluminum
40 N 1.1 kW electric coil cast iron 20 50 mL canola oil
41 N electric oven broiler pan N/A 460 g of hamburgers (2)
42 N 1.1 kW electric coil cast iron 20 227 g (8 oz) salmon & 45.4 g butter
43 N 1.1 kW electric coil cast iron 20 282 g chicken legs (2)

& 200 mL canola oil
44 Y 1.8 kW electric coil cast iron 25 223 g frozen french fries

& 500 mL canola oil
45 N 1.8 kW electric coil cast iron 25 220 g bacon (8 slices)
46 Y 1.1 kW electric coil cast iron 20 110 g bacon (4 slices)
47 N 1.8 kW electric coil cast iron 25 460 g (1 lb) of hamburgers (2)
48 Y 1.1 kW & 1.8 kW electric coil cast iron 20 & 25 50 mL & 100 mL canola oil

in separate pans
49 Y 1.1 kW & 1.8 kW electric coil cast iron 20 & 25 50 mL & 100 mL canola oil

in separate pans
50 Y 1.1 kW & 1.8 kW electric coil cast iron 20 & 25 50 mL & 100 mL olive oil

in separate pans
51 Y 1.1 kW electric coil cast iron 20 50 mL canola oil
52 N 4 kW methane gas none N/A N/A
53 N 3.4 kW methane gas cast iron 20 50 mL canola oil
54 Y 4 kW methane gas cast iron 25 100 mL canola oil
55 N 4 kW methane gas cast iron 25 N/A
56 Y 4 kW methane gas cast iron 25 100 mL canola oil
57 Y 4 kW methane gas cast iron 20 50 mL canola oil
58 Y 4 kW methane gas cast iron 25 100 mL canola oil
59 N 4 kW methane gas none N/A N/A
60 N 3.4 kW & 4 kW methane gas cast iron 20 & 25 50 mL & 100 mL canola oil

in separate pans
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Fig. 2 IR images showing the distribution of surface temperature on a 20 cm diameter cast iron pan heated by the small electric
coil heating element (left) and the large gas burner (right).

Fig. 3 Pan surface temperatures and cooking regimes for an experiment leading to ignition of 50 mL of canola oil, Experiment 8.

the figure. From the thermocouple calibrations, the pan emissivity ranged from 0.88 to 0.96, depending
on the experiment. The uncertainty in the IR temperatures was ± 8 ◦C. Figure 3 shows the thermocouple
measurements on the pan surface during Experiment 8, which ended with the ignition of canola oil. These
figures demonstrate that temperature variation across the pan’s bottom surface was as large as 50 ◦C.

Figure 3 shows that the temperature at the center of the pan lagged temperatures measured toward
the edge of the pan throughout the experiment until ignition. For some experiments, there was only one
thermocouple in the pan, measuring the center temperature. Because ignition is related to the hottest
pan temperatures, the peak pan temperatures were estimated in experiments when only the center pan
temperature was measured. The estimates were based on linear regressions between the thermocouple
readings at the pan center and at the edge locations: 5 cm from the center in the 20 cm diameter cast
iron pan, and 6 cm or 7.5 cm from the center in the 25 cm diameter cast iron pan. The linear regression
relationships for the edge temperatures are shown in Table 2 as a function of center temperature for similar
experiments (same pan size and burner size).

The average pan temperature at the time of ignition for all the experiments was 429 ◦C (standard
deviation of 25 ◦C). For the electric-coil experiments, the pan temperature at the time of ignition was
between 403 ◦C and 483 ◦C, consistent with previous studies [12]. For the gas cooktop, the ignition
temperatures of the pan were lower, between 371 ◦C and 382 ◦C. The gas cooktop also took much longer
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Table 2 Relationships Between Pan Thermocouple Temperatures

Experiment Type Linear Regression R2

Electric coil, cast iron 20 cm pan, small burner T5cm = 0.972 Tcenter + 23 ◦C 0.99
Electric coil, cast iron 25 cm pan, large burner T6cm = 1.07 Tcenter + 16 ◦C 1.00
Methane, cast iron 25 cm pan, large burner T7.5cm = 0.967 Tcenter + 31 ◦C 0.99

to ignite. The average time to ignition was 536 s for the 25 cm pan on the large, electric-coil burner and
1104 s for the 25 cm pan on the large gas burner. In general the temperature rise for the pans on the gas
cooktop were slower than on the electric-coil cooktop. In addition, ignition was not observed using the
medium, gas burner; ignition occurred only when the pan was heated on the large, gas burner. Heating a
pan represents a complex set of heat transfer processes involving radiation, convection and conduction,
and the burner and pan configurations play an important role.

2.3 Defining Normal Cooking

To develop an algorithm that predicts ignition, normal cooking must be defined. This is because sensor
performance involves not only quantifying the rate of missed ignitions, but also the rate of false alarms.
A missed ignition means the algorithm would not have predicted ignition with enough time to intervene
and prevent ignition. To evaluate the algorithms the amount of necessary lead time is defined, considering
the thermal lag of the cooktop and burner-pan system. Processing lag associated with the algorithm itself
is not considered; the algorithm is assumed to act immediately based on the signals received from the
sensors. Previous work on an electric-coil cooktop suggests that a period of 60 s before ignition is enough
time to intervene and prevent the ignition [6] despite potential thermal lag leading to additional tempera-
ture rise in the system. A 60 s period of time was supported by results from Experiments 37 to 39, where
the power to the electric coil cooktop was cut after about 5 min of heating of the oil on maximum power.
The pan temperature continued to increase after the burners were turned off in all three experiments, for
48 s in Exp. 37, 16 s in Exp. 38, and 60 s in Exp. 39. A false alarm means the algorithm predicts that
ignition is imminent, but the conditions are that of normal cooking, and ignition is not likely.

Figure 3 illustrates three periods of a typical experiment: normal cooking, pre-ignition, and ignition.
Initially, all experiments start as normal cooking. At some point, the conditions exceed some reasonable
temperature-based or time-based limit and transition to "pre-ignition." Therefore, any condition that is
not defined as normal cooking is labeled as pre-ignition, regardless of whether or not ignition eventually
occurs in the experiment. This is because the conditions during pre-ignition are considered beyond the
requirements of normal cooking and potentially hazardous. Such conditions are accompanied by severely
burned or charred food and copious amounts of aerosol. Since there is no experiment in which normal
cooking overlapped with the period 60 s before ignition, these definitions make it possible for algorithms
to predict ignition without interfering with normal cooking.

While the definition of the ignition period is straightforward, establishing reasonable limits of nor-
mal cooking requires more nuance. The limits of normal cooking are based on either a maximum pan
temperature, a safe food temperature, or the duration of cooking at an approximate pan temperature. For
example, because the thickness of the vegetable oils and butter was thin (typically 3 mm), it was assumed
that pan temperature was a good indication of the oil temperature. Additionally, steady-state heat transfer
was confirmed with measurements of the oil mass loss for the most common cooking case of 50 mL
of oil in a 20 cm cast iron pan on the 25 cm electric coil burner. Following the initial 35 s of transient
heating, the mass loss rate was approximately constant at 0.01 g/s until ignition. When cooking foods
such as meat, the pan temperature could be much hotter than the food, and food temperature was a better
indicator of ignition potential than pan temperature. In defining normal cooking for meats, the USDA
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safe minimum internal temperatures for chicken (74 ◦C), fish (63 ◦C), and ground beef (71 ◦C) [13] were
used.

The end of normal cooking for all types of oils and butter was defined when the pan temperature
reached 300 ◦C. When deep-frying, it is recommended to keep oils below their smoke point, and the
highest oil smoke points are around 230 ◦C [14]. Therefore, a limit of 300 ◦C allowed significantly
more heating than recommended, while being well below oil ignition temperatures. For bacon, a USDA
fact sheet states, "It’s very difficult to determine the temperature of a thin piece of meat such as bacon,
but if cooked crisp, it should have reached a safe temperature." [15] Instead of relying on a crispness
determination, we treated bacon like oils, and the end of normal cooking was when the pan temperature
reached 300 ◦C. This was reasonable since bacon is very high in fat, and liquid fat quickly coats the pan
like vegetable oil. Photos taken at a pan temperature of 300 ◦C showed that the bacon had already begun
to blacken. Some bacon experiments led to ignition.

For chicken legs in 200 mL of preheated oil, the burner was set to medium power to maintain a pan
temperature of about 200 ◦C for frying. The chicken legs were flipped every 4 min for a total cooking
time of 18.5 min, which was 10 % longer than the time it took for the thermocouple inserted in the
middle of the meat to reach 74 ◦C. This time was defined as the end of normal cooking, and the internal
chicken temperature was 80 ◦C. For salmon fried in butter on high power for 4 min on each side, the
thermocouples inside the meat did not show a steady increase in temperature. In most cases, the meat
temperature exceeded 63 ◦C at least momentarily before the end of the 8 min cooking period, which was
taken as the end of normal cooking.

For hamburgers, the end of the frying procedure used by Cleary [10] was about 10 % longer than the
time for the temperatures in the middle of the hamburgers to reach 71 ◦C. At the end of this procedure, the
meat temperature was about 77 ◦C, which is an indication of well-done beef [16]. Therefore, the end of
the frying-hamburger procedure was defined as the end of normal cooking. For broiling hamburgers, the
UL 217 Cooking Nuisance Smoke Test [11] specifies 25 min of broiling. However, in our experiments,
adding an additional 10 % to the time when the hamburgers reached 71 ◦C, was less than 18 min (1122 s).
Therefore, this was defined as the end of normal cooking, and at this time the meat temperature was
82 ◦C.

For frozen fries in 500 mL of preheated oil, the burner power was adjusted periodically to maintain
a pan temperature around 200 ◦C, like was done for the experiments cooking chicken legs. There is no
recommended safe temperature for fries, so the end of normal cooking was defined as 15 min of frying
and when the color of the fries had turned medium brown. After the end of normal cooking, the burner
power was turned to high and the fries and oil later ignited.

3 Sensor Analysis

Each sensor signal was characterized by its unique profile with its absolute value and slope varying in
time. Eleven of the sensor signals tended to increase in time as ignition approached, as shown in Figure
4 (Experiment 8) and Figure 5 (Experiment 57). Not plotted are the CO2, humidity, and duct temperature
sensors, which were less responsive before ignition, and typically increased sharply just after ignition.
The figure legend indicates the detection target of the sensor. HCs means hydrocarbons such as butane,
propane, and methane, and IAQ means indoor air quality. A sensor may respond to quantities other than
those indicated by its label, such as the dust sensor, which operates using light scattering and responds
to both dust particles and cooking aerosols. The average background signals of the 11 responsive sensors
were subtracted from the raw, signal outputs. The complete set of sensor data for all experiments is
reported in [17].

Figures 4 and 5 plot the signals of the 11 responsive sensors for canola-oil experiments on an electric-
coil burner and a gas burner, respectively. For clarity, the signals in Figures 4 and 5 are normalized by
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Fig. 4 Sensor signals (background subtracted and normalized by sensor peak) and cooking regimes for an experiment leading to
ignition of canola oil in a cast iron pan on an electric-coil burner, Experiment 8.

Fig. 5 Sensor signals (background subtracted and normalized by sensor peak) and cooking regimes for an experiment leading to
ignition of canola oil in a cast iron pan on a gas burner, Experiment 57.

the maximum value recorded from that sensor over all experiments. In both figures, ignition occurred
at the maximum time shown on the graph, and the ignition period of 60 s before ignition is marked.
The regimes of normal cooking and pre-ignition are also shown, with the transition occurring when the
pan temperature exceeded 300 ◦C. The most noticeable differences in the sensor responses between the
experiments are the responses of the natural gas sensor and the generally lower signals for the gas burner
experiment. Reduced sensor signals for the experiments with the gas cooktop compared to electric coil
was a consistent trend across the experiments.

Sensor signals and their ratios were evaluated across all experiments to determine if a threshold value
could be selected to both prevent ignition and ignore normal-cooking conditions. Machine learning was
also used to classify sensor data as representing normal cooking or pre-ignition conditions, and a similar
performance metric was used.

3.1 Threshold Analysis

A threshold value of a sensor or sensor ratio could potentially miss ignitions as well as trigger false alarms.
We considered the most conservative sensor or ratio threshold, which is the minimum value obtained at
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least 60 s before all ignitions. The false alarm rate (FAR) to evaluate the threshold performance, defined
in Equation 1, was the ratio of the number of experiments with a false alarm to the total number of
experiments. The FAR can also be described as the false positive rate.

FAR =
false alarms

total # experiments
=

# exp. exceeding threshold during normal cooking
60

(1)

In addition to investigating the performance of thresholds of individual sensor values as a criteria to
prevent cooktop ignition and minimize false alarms, the ratios between sensor values were also consid-
ered. Carbon dioxide (mole fraction), duct temperature (K), and humidity (mole fraction of water) signals
were used in the denominator of ratios. These signals did not include background subtraction to avoid
dividing by zero because the values during the experiment were similar to the background.

3.2 Neural-Network Analysis

The sensor signals were also used to train a multi-layer perceptron that can differentiate between normal
cooking and pre-ignition conditions. A four-layer neural-network architecture was used with one input
layer, two hidden layers, and one output layer. The two hidden layers, with 64 neurons and 32 neurons,
respectively, were activated with a rectified linear unit (ReLU) activation function. The numbers of hidden
layers and neurons were selected based on initial testing for accuracy and efficiency. The initial testing
was performed for neural networks trained on 28 experiments and tested on five experiments. Beginning
with one hidden layer of eight neurons, neurons were added, and then hidden layers, until there was
no longer a significant improvement in performance. The ReLU activation function was used for its
numerical performance in engineering applications. For the output, a sigmoid activation function was
used because it gives a probability ranging from 0 to 1. The maximum number of epochs or iterations was
set to 300, and the iterations were stopped if the validation accuracy did not improve for five consecutive
iterations.

Each time point was classified individually with a label assigned as "0" during the normal cooking
window and "1" during the pre-ignition period. The analysis considered over 12 800 time points in the 60
experiments. A cross-validation method, where the neural-network model was trained using the data from
59 experiments (training set) and then tested on the last experiment (testing set), was used. This process
was repeated 60 times until each experiment was excluded from the training and used once as the test set.
Each iteration of training and testing was done on a newly created neural network. The output for each
time point in the test experiment, a value between 0 and 1, was the model prediction for the probability
of pre-ignition for that time. The values were converted to 0 or 1 using thresholds of 0.5, 0.8, 0.9 or 0.98
to compare the model predictions to the binary labels from the experiment.

There were 35 total neural-network models developed, including 28 unique cases that used different
sets of training data and seven repeat cases, to characterize repeatability of the model development. The
baseline case used all 11 sensor data sets as the input training data. Eleven cases were based on only a
single sensor as training input. Finally, 16 unique pairs of sensors were used as input data for additional
cases, which are listed in Table 3. The pairs were selected from the individual sensors with the best
threshold or machine learning performance and from the sensors included in the ratios with the best
performance. The repeated cases were the baseline case, three single sensor cases (using the VOC, IAQ,
and smoke sensors), and the three best performing cases using sensor pairs, noted in Table 3.

The overall performance was evaluated by quantifying the rate of false alarms and the rate of missed
ignitions on a per-experiment basis. The rate of false alarms (FAR) was the same as defined in Equation
1, with a false alarm defined as an experiment with any wrongly predicted values above the threshold
within the normal cooking window. A missed ignition was an experiment where ignition occurred, but
the prediction value did not reach the threshold at any time up to the start of the ignition window (60 s
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Table 3 Neural-Network Model Cases Based on Pairs of Sensor Signals

Sensor Input Data

VOC & Duct Temp.
VOC & Humidity
VOC & IAQ
VOC & Dust1

VOC & CO expensive1

VOC & CO cheap1

IAQ & Duct Temp.
IAQ & Humidity
IAQ & Dust
IAQ & Smoke
IAQ & CO expensive
IAQ & CO cheap
Dust & Duct Temp.
Dust & CO expensive
Dust & CO cheap
Smoke & CO expensive

1 repeated case

before ignition). A practical implication of this definition is that if a sensor caused a false alarm in an
experiment, the same experiment could not be counted as a missed ignition for that sensor. To calculate
the missed ignition rate (MIR), the number of missed ignitions was divided by the number of experiments
in which ignition was observed. The MIR can also be described as the false negative rate.

MIR =
missed ignitions

# ignition experiments
=

# exp. not reaching threshold before ignition window
39

(2)

4 Results and Discussion

4.1 Threshold Results

For individual sensors, the optimal threshold values such that no ignitions are missed are reported in Ta-
ble 4 along with the operating principle of each sensor. With the exception of the expensive CO sensor
and the IAQ sensor, most of the thresholds are reported as measured voltages because the sensors have
not been calibrated. The output of the IAQ sensor corresponds to the equivalent mole fraction of CO2
×10−6 (PPM), according to a calibration from the manufacturer. The threshold’s estimated uncertainty is
determined from the range in the signal during the background measurement period of one experiment,
and reported as a percentage of the optimal threshold. The performance of the threshold with no missed
ignitions is reported as the FAR. Also shown is the maximum FAR that would have occurred if the thresh-
old was decreased by the uncertainty and the maximum missed ignition rate that would have occurred if
the threshold was increased by the uncertainty.

The best performance is for the VOC sensor with a 0.02 false alarm rate, or one false alarm in 60
experiments. The false alarm occurred about two minutes before the end of normal cooking in Experiment
47. This was one of the experiments in which frying hamburgers were cooking on a 25 cm cast-iron pan
on the large, electric-coil burner. At that time, the thermocouples inside the hamburgers were both 68 ◦C,
which is just below the safe temperature for ground beef (71 ◦C), but still within our definition of normal
cooking. However, when taking into account the threshold uncertainties, the VOC sensor would have a
non-zero missed ignition rate (miss one ignition), while the IAQ and dust sensors would not miss any
ignitions.
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Table 4 Optimal Thresholds of Individual Sensors and Their Performance

Estimated False FAR w/ Missed Ignition
Sensor Threshold Units Threshold Alarm Threshold Rate (MIR) Operating Principle

Uncert. Rate Decrease w/ Threshold
(FAR) Increase

VOC 0.57 V 3 % 0.02 0.02 0.03 metal oxide semiconductor
IAQ 12 300 ×10−6 1 % 0.05 0.07 0 metal oxide semiconductor

(mole fraction)
Dust 0.20 V 14 % 0.08 0.12 0 light scattering
Alcohol 0.99 V 1 % 0.10 0.12 0.03 electrochemical
Smoke 0.49 V 11 % 0.22 0.28 0.03 electrochemical
CO expensive 4.7 ×10−6 64 % 0.22 0.71 0.03 electrochemical

(mole fraction)
CO cheap 0.0088 V 156 % 0.23 1.00 0.21 electrochemical
HCs, low range 0.23 V 14 % 0.23 0.27 0.03 electrochemical
HCs, high range 0.17 V 25 % 0.38 0.48 0.03 electrochemical
H2 0.0083 V 157 % 0.47 1.00 0.21 electrochemical
Natural gas 0.0058 V 130 % 0.92 1.00 0.13 electrochemical

The estimated relative uncertainties of some of the sensor thresholds were substantial. This was the
case for both CO sensors, the H2 sensor, and the natural gas sensor. For these sensors, the threshold for
detection was on the same order or less than the signal variation. The two different CO sensors perform
similarly despite the differences in output format and price. However, the two CO sensors had quite
different threshold uncertainties, with the uncertainty for the cheaper CO sensor much higher than the
expensive CO sensor. The CO, H2, and natural gas sensors all perform much worse when considering
their threshold uncertainties, with significant missed ignition rates or high false alarm rates. Using these
sensors alone would likely result in poor performance in practice due to the inevitable signal variations
from different sensors and different cooking conditions.

Figure 6 shows the performance of the eight individual sensors with the lowest false alarm rates as
well as their ratios with duct temperature, humidity, and CO2. The lowest FAR was with the VOC sensor
alone and in a ratio with duct temperature. These performed significantly better than all the other sensors
or ratios of sensors by a factor of 2 to 15. The ratios of sensors with duct temperature have similar
performance to the sensor alone, while the ratios with humidity or with CO2 tend to perform the same
or worse than the sensor alone. One exception is the ratio of the expensive CO sensor to CO2, which is
slightly better than the CO sensor alone. The most significant improvement occurs for the ratio of the
low range hydrocarbon sensor to humidity, with the false alarm rate for the ratio falling to 0.15 from the
hydrocarbon sensor alone at 0.23. The ratio of the low-range, hydrocarbon sensor to the duct temperature
is also slightly lower than the hydrocarbon sensor alone.

4.2 Neural-Network Results

An example output of the neural-network analysis is given in Figure 7, which shows the specific predic-
tions for one experiment from one model case. The labels for pre-ignition and ignition from Experiment
24 are shown as well as the prediction of pre-ignition from one of the baseline models (based on 11 sen-
sors). In this case, use of any of the four prediction thresholds (0.5, 0.8, 0.9, 0.98) results in detection well
ahead of the ignition window, which begins 60 s before ignition (red symbols). However, both the 0.5 and
0.8 thresholds are reached before the end of normal cooking, and therefore would be considered a false
alarm. Note that once a threshold is reached, that threshold line continues to be 1 even if the prediction
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Fig. 6 Threshold false alarm rates of the eight top performing individual sensors and of their ratios with duct temperature, humidity,
and CO2.

Fig. 7 Baseline (11 sensor) neural-network model predictions and results using different thresholds for Experiment 24.

curve later drops below the threshold. This is to reflect the functionality of the system in a real application,
where an intervention to the hazardous situation would only need to be triggered once.

The false alarm rates and missed ignition rates are plotted in Figure 8 as a function of the prediction
threshold for three different neural-network models. False alarm rates are represented by filled symbols,
and missed ignition rates are in open symbols. In blue circles, are the rates for the two model cases, both
trained with only the VOC sensor data. The rates for the models trained with data from the smoke sensor
are in red. The baseline models trained with all 11 sensors are in black. The performance of repeat model
cases differed by at most 0.07 (4/60 experiments) for FAR and at most 0.03 (1/39 experiments) for missed
ignition rate. The lowest false alarm rate with zero missed ignitions is also labeled for the models based
on the VOC sensor, the smoke sensor, and all 11 sensors (baseline).

In all cases, as the prediction threshold increased, the false alarm rate decreased. The missed ignition
rates were typically lower than the false alarm rates because the neural network was trained to predict
the pre-ignition window, which began well before the ignition window. All missed ignition rates using
a prediction threshold of 0.5 were zero. However, the trends of the missed ignition rates differed as the
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Fig. 8 Neural-network model false alarm rates and missed ignition rates as a function of prediction threshold, using VOC sensor,
smoke sensor, and 11 sensors as input (baseline).

Table 5 Best Performing Neural-Network Model Cases with Missed Ignition Rates of Zero

Sensor Input Data Prediction Threshold False Alarm Rate

VOC1 0.98, 0.9 0.02, 0.08
VOC & CO cheap1 0.98, 0.9 0.02, 0.08
VOC & CO expensive1 0.98, 0.98 0.03, 0.05
VOC & Dust1 0.98, 0.98 0.05, 0.05
VOC & Duct Temp. 0.9 0.07
IAQ1 0.8, 0.8 0.09, 0.09
IAQ & CO expensive 0.8 0.10
VOC & IAQ 0.9 0.10
Dust 0.8 0.12
Dust & CO expensive 0.8 0.12
Dust & CO cheap 0.8 0.14
IAQ & Dust 0.8 0.14
IAQ & Duct Temp. 0.8 0.14

1 repeated case

prediction threshold increased. The models based on the VOC sensor had zero missed ignitions until the
threshold was 0.98, when the missed ignition rate of one repeat was 0.05. The models based on the smoke
sensor started having missed ignitions for a threshold of 0.8, and the missed ignition rate increased to
1 (missing all ignitions) by the 0.98 threshold. The baseline models had zero missed ignitions for all
prediction thresholds tested.

Table 5 summarizes the best performing models from the neural-network analysis. In order to compare
the performance of the neural-network models to the performance using sensor thresholds, only cases with
missed ignition rates of zero are listed. For each case, the highest threshold (out of 0.5, 0.8, 0.9 and 0.98),
that still had a zero missed ignition rate, is used to determine the false alarm rate in Table 5. In other
words, the lowest false alarm rate that did not miss any ignitions is reported for the model. Repeat model
cases for the VOC sensor, the IAQ sensor, and three sensor pairs are reported as well.

The best performing neural-network models were based on the VOC sensor alone and on the combina-
tion of the VOC and cheap CO sensors. Their best performance matched the 0.02 FAR, using a threshold
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of 0.57 V for the VOC sensor signal or a threshold of 0.0019 V/K for the ratio of the VOC sensor to the
duct temperature. The one false alarm for the neural-network models would have occurred at the same
time as the VOC sensor exceeded the 0.57 V threshold in Experiment 78. The VOC and expensive CO
sensor neural-network model also performed well with a 0.03 false alarm rate (2 out of 60 experiments).

The best performing sensors in the neural-network analysis are the VOC, IAQ and dust sensors, one of
which is included in each of the top performing model cases in Table 5. These are the same three sensors
with the best signal threshold performance in Table 4. The false alarm rates from the neural-network
models based on these individual sensors are within 0.04 of the false alarm rates based on thresholds of
the individual signals. For the IAQ and dust sensors, the neural-network models have two additional false
alarms compared to the signal threshold, while the VOC neural-network model has the same number.

Some neural-network models trained with multiple sensors had similar or improved performance over
the models trained with only one sensor. The models using the CO sensors individually did not perform
well and are not listed in Table 5 because they had missed ignition rates of 0.05 and higher. However,
the CO sensors usually complemented other sensors. In the pairing with the VOC sensor and either CO
sensor, the model had similar or improved performance compared to the single sensors. Pairing the VOC
sensor with the dust sensor was also similar or improved performance compared to the individual sensors.
The baseline model using all 11 sensors performed worse than many of the models based on pairs or
individual sensors (false alarm rate of 0.25). The baseline model performance was probably negatively
affected by including input data from the poorest performing sensors, two of which had individual sensor
models with false alarm rates above 0.5 (H2 and natural gas sensors).

5 Conclusions

A set of cooking experiments was designed to investigate the feasibility of creating a robust and reliable
model to detect pre-ignition conditions for a kitchen cooktop with enough time to prevent food ignition.
Sixteen off-the-shelf sensors collected data in the exhaust duct above the cooktop, and the sensor data
were analyzed using thresholds for the signals and signal ratios and using machine learning models. A
precise and consistent definition of normal cooking versus pre-ignition was required to evaluate model
performance.

Both signal threshold analysis and machine learning analysis were in complete agreement identifying
the most effective individual sensors at providing early detection of impending ignition. The three best
performing sensors were VOC, IAQ, and dust, and both analyses predicted similar rates of false alarms
for zero missed ignitions. The VOC sensor appeared to be the most effective sensor, but when considering
the estimated uncertainty in the VOC signal, the VOC threshold could have a missed ignition rate of 0.03.
Although the IAQ and dust sensors had slightly greater false alarm rates, they would still have zero missed
ignitions after applying an estimate for the realistic variation in their thresholds. These three sensors all
had a consistent response to the copious amounts of aerosol released before ignition, which likely include
volatile organic compounds and smoke. Both the VOC and IAQ sensor manufacturer descriptions mention
sensitivity to volatile organic compounds and cooking odors, while the VOC, IAQ and dust sensors all
note sensitivity to smoke. Further investigation into the chemical and physical characteristics of pre-
ignition cooking aerosols would be beneficial.

The combined information from multiple sensors was evaluated by both threshold analysis and ma-
chine learning analysis. In the threshold analysis, some sensor ratios performed as well as or better than
the individual sensor values used in the ratios, but none of the ratios performed better than the VOC sen-
sor threshold. In the machine learning analysis, multiple sensors were used to train the baseline model
(11 sensors) and models based on pairs of sensors. While the baseline model had a 0.25 false alarm rate,
it did not miss any ignitions. The model using the VOC sensor paired with both CO sensors performed as
well as the VOC alone, and the model using the VOC and dust sensors performed similarly well. When
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two sensors are used to train the neural network, it can learn from the ratio of the signals as well as less
intuitive relationships between the signals that correlate well with the classification label. With additional
testing scenarios and repeat measurements, models using more than one sensor might be more robust,
with less false alarms, because more information is available for the model to make the prediction. Fi-
nally, future studies should also investigate the effect of sensor location on the system performance and
durability.
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