Operando Study of Thermal Oxidation of Monolayer MoS2

2 Sangwook Park^{1,2,+}, Angel T. Garcia-Esparza^{1,3,+}, Hadi Abroshan^{4,5}, Baxter Abraham^{3,6}, John 3 Vinson⁷, Alessandro Gallo⁴, Dennis Nordlund³, Joonsuk Park⁸, Taeho Roy Kim⁹, Lauren Vallez¹, 4 Roberto Alonso-Mori⁶, Dimosthenis Sokaras^{3,*}, Xiaolin Zheng^{1,*} 5 6 7 ¹Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA. 8 ²Department of Mechanical Engineering, Seoul National University, Seoul 08826, South Korea. 9 ³Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, USA. 10 ⁴SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 11 CA 94025, USA. 12 ⁵School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. 13 ⁶Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. 14 ⁷National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA. 15 ⁸Materials Science and Engineering, Stanford University, Stanford, California 94305, USA. 16 ⁹Stanford Nano Shared Facilities, Stanford University, Stanford, California 94305, USA. 17 ⁺These authors contributed equally to this work 18 *Corresponding Authors: dsokaras@slac.stanford.edu and xlzheng@stanford.edu 19 20 **Keywords:** 2-dimensional material, monolayer molybdenum disulfide (MoS_2), operando oxidation, thermochemistry, X-ray absorption spectroscopy (XAS)

21 22

1

23 Abstract

24 Monolayer MoS₂ is a promising semiconductor to overcome the physical dimension limits of the

25 microelectronic devices. Understanding the thermochemical stability of MoS₂ is essential since

these devices generate heat and are susceptible to oxidative environments. Herein, we show the

27 promoting effect of molybdenum oxides (MoO_x) particles on the thermal oxidation of MoS_2

28 monolayers employing operando XAS, ex-situ SEM, and XPS. We demonstrate that CVD-grown

29 MoS₂ monolayers contain intrinsic MoO_x and are quickly oxidized at 100 $^{\circ}$ C (3 vol % O₂/He), in

30 contrast to previously reported oxidation thresholds (*e.g.*, 250 °C, $t \le 1$ h in the air). Otherwise,

31 removing MoO_x increases the thermal oxidation onset temperature of monolayer MoS_2 to 300 °C.

32 These results indicate that MoO_x promote oxidation. An oxide-free lattice is critical to the long-

33 term stability of monolayer MoS₂ in state-of-the-art two-dimensional electronic, optical, and

34 catalytic applications.

1 Monolayer molybdenum disulfide (MoS_2) is an atomically-thin semiconductor with a subnanometer thickness (6.5 Å to 8 Å),^[1,2] high electron mobility ($\approx 200 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$),^[1] a direct band 2 gap (1.8 eV to 2.2 eV),^[1, 3] and high current on/off ratio (> 10^8),^[1] MoS₂ monolayers^[4] can 3 potentially be used for flexible electronics and push the physical dimension limits of 4 microelectronics.^[4-6] Towards these visions, great progress has been made on the synthesis of 5 wafer-scale polycrystalline MoS₂ monolayers,^[7] and large-domain ($\approx 500 \ \mu m$) single crystalline 6 7 MoS₂ monolayers by chemical vapor deposition (CVD),^[2] and the wafer-scale transfer and stacking of monolayer MoS₂ for heterogeneous integrations.^[8, 9] In practice, microelectronics 8 dissipate energy through Joule heating,^[10] and MoS₂ monolayer transistors reach average operating 9 temperatures of > 150 °C with local hot spots of > 250 °C.^[10, 11] Therefore, investigating the 10 11 thermochemical stability of MoS₂ above room temperature and under the device working 12 temperature range is important.

13 Past studies on the thermal oxidation of MoS₂ reported that the oxidation process is fast when the temperature is above ~ 250 °C (e.g., 250 °C in the air for 1 h.^[12] 360 °C in the air for 5 14 min,^[13] and 380 °C in the air for 10 min; Table S1, Supporting Information).^[10] These findings 15 16 were supported by ex-situ observations of pits and crack formation, and identification of molybdenum oxides via atomic force microscopy (AFM),^[12-16] scanning electron microscopy 17 (SEM),^[13, 15, 17] transmission electron microscopy (TEM),^[17] X-ray photoelectron spectroscopy 18 (XPS),^[12, 16, 17] nanomechanical means,^[16] and Raman spectroscopy.^[14] Such ex-situ 19 20 characterization methods, although very informative, may not detect subtle morphological and 21 chemical compositional changes brought on by MoS_2 oxidation. Importantly, the previous thermal 22 oxidation studies assumed chemically pure MoS₂ monolayers. However, many reported as-grown monolayers frequently showed an XPS peak indicative of $Mo^{6+} 3d_{3/2}$ from MoO_3 at ~ 236.5 eV.^{[4,} 23

^{18, 19]} Even though molybdenum oxides (MoO_x) are known to activate and transfer oxygen,^[20, 21]
are defective,^[22, 23] and oxophilic,^[24] their effect on the oxidation of MoS₂ has not been
systematically investigated.

4 Herein, we characterize the thermal oxidation of MoS₂ monolayers with and without MoO_x at atmospheric pressure in the temperature range of 25 °C to 400 °C using a novel ultra-sensitive 5 6 operando X-ray absorption spectroscopy (XAS). We report the first XAS measurement of an 7 atomically-thin monolayer MoS₂ under dynamic environments (*i.e.*, temperature ramping up to 400 °C, 3 vol % O₂/He, 101.3 kPa, with X-rays in the energy range of 2 to 3 keV) and it is 8 9 complemented by ex-situ XAS, SEM, and XPS. Such unique measurements of monolayer species 10 were performed using our newly designed operando XAS reactor that enables an ultra-sensitive electron yield (EY) detection mode under actual reactive environments; ^[25-29] different to 11 12 conventional fluorescence and transmission modes (See Table S2 for details, Supporting Information). Our study shows that as-grown MoS₂ monolayers via CVD contain trace amounts of 13 oxygenated Mo^{4+} and Mo^{6+} . Without removing the MoO_x , the oxidation of MoS_2 monolayer was 14 15 activated starting as low as 100 °C even in a diluted oxidative atmosphere at ambient pressure (3 vol % O₂ in inert gas). After removing MoO_x, the oxidation onset temperature of MoS₂ monolayers 16 17 is increased to 300 °C. Our work shows that an oxide-free and high-purity monolayer MoS_2 is 18 critical to the enhanced thermochemical stability of MoS₂.

To understand the effect of MoO_x on the MoS₂ oxidation, we prepared both as-grown (oxide-containing) and etched (oxide-free) MoS₂ monolayers with high quality supported on SiO₂/Si wafers (See Experimental Section, Supporting Text and Figures S1-S4 for details, Supporting Information). The etched monolayer MoS₂ was prepared by removing MoO_x via an alkaline-bath transfer treatment. We conducted electron microscopy, Raman, and XAS

1 measurements to confirm that the etching step does not cause a structural and chemical change to 2 the 2H-MoS₂ phase (Figure 1, Figure 2, Figures S1, S2, and S4, see also Supporting Text in the Supporting Information). Ex-situ SEM images in Figure 1 show the morphological evolution of 3 4 the as-grown and etched MoS₂ monolayers. For all SEM images, the light background indicates 5 the SiO₂/Si support wafer (blue arrow), and the dark-colored triangular shapes are monolayer 6 MoS_2 (red arrow) with tens of micrometers in size. Both the as-grown and etched MoS_2 samples 7 appear to have unchanged global morphology even after oxidation at 350 °C, and both break up to small pieces at 400 °C (green arrow and dotted circles). The as-grown and some oxidized MoS₂ 8 9 monolayers have lighter-color nanoparticles arranged in lines (Figure S5, Supporting Information) 10 as marked by orange arrows and guided lines in Figure 1. The nanoparticles are ascribed to 11 molybdenum oxides (MoO_x, vide infra). In comparison, those MoO_x nanoparticles are not seen on 12 the etched MoS₂ (Figure 1k and Figure S6, Supporting Information), confirming the successful removal of oxide species by the alkaline treatment, consistent with the Mo Pourbaix diagram.^[30] 13 14 Finally, for the etched monolayer MoS₂, cracks and pits start to appear at 300 °C and 350 °C, 15 which are indications of MoS₂ oxidation (Figure 1n,o; and high magnification images in Figure 16 1r,s), and are also observed in the as-grown MoS₂ at the same annealing temperatures (Figure 1d,e; 17 and high magnification images in Figure 1h, i). Overall, the SEM results suggest that the oxidation onset temperature of MoS₂ monolayer is around 300 °C, regardless of the presence of MoO_x 18 nanoparticles, which is consistent with previous oxidation studies.^[12-14] 19

The operando XAS characterization reveals the details of the oxidation behavior differences for MoS₂ monolayers with and without MoO_x, which are not captured by SEM images. Our new operando XAS reactor equipped with EY detection mode enables, for the first-time, XAS measurement of atomically thin MoS₂ monolayers under reactive conditions, see the experimental

1 scheme of the reactor in Figure S7 and Table S2, Supporting Information). The X-ray beam spot 2 size of 1 mm (vertical) x 3 mm (horizontal) is much larger than the single crystalline domain size 3 of the monolayers (tens to around 100 μ m). First, X-ray absorption near edge structure (XANES) 4 spectra of reference standards were obtained in the EY mode under He atmosphere under ambient 5 pressure at room temperature using commercial bulk MoS₂, MoO₂, and MoO₃ materials. The 6 obtained spectra are consistent with the literature and our theoretical calculations (Figures S8 and 7 S9, Supporting Information). Then, the S K-edge and Mo L_{3.2}-edge XANES spectra of the as-8 grown and etched MoS_2 monolayers were measured under He atmosphere at room temperature. 9 Though their spectra are similar to the bulk MoS₂ material as shown in Figure 2, the as-grown 10 MoS₂ monolayer shows additional shoulder peaks (black arrows) at 2528.6 eV in the Mo L₃-edge 11 (Figure 2b) and 2633.5 eV in the Mo L₂-edge (Figure 2c), which indicates the presence of MoO_x . 12 After confirmation of the existence of MoO_x in the as-grown MoS_2 monolayers, operando XAS under the oxidative atmosphere was performed to follow the differences between the as-13 14 grown and etched MoS_2 monolayers with increasing temperature. The oxygen partial pressure used 15 in the operando XAS electron yield reactor (3 vol % O₂/He, 101.3 kPa) was identical to that used 16 for the ex-situ XAS, SEM, and XPS studies. The MoS₂ monolayers were ramped to the desired 17 temperature and held there for 30 minutes. Then, three consecutive overlapping XAS scans were 18 recorded that show spectra reproducibility (Figure S10, Supporting Information), and the averaged 19 spectra are used here. Figure 3 shows the operando XANES spectra of as-grown (Figure 3a,c) and 20 etched (Figure 3b,d) MoS₂ monolayers under increasing temperatures (100 °C to 400 °C). The 21 chemical evolutions of the as-grown and etched MoS₂ samples were monitored by following the 22 S K-edge (Figure 3a,b) and Mo L₃-edge (Figure 3c,d) XANES spectra.

1 The evolution of the S K-edge spectra is similar for the MoS₂ monolayers with and without 2 oxides. Both S K-edge spectra features of the as-grown and etched MoS₂ monolayers match with the bulk MoS₂ references for temperatures up to 350 °C, indicating that S atoms remain in the 3 4 MoS₂ chemical composition (Figure 3a,b). At 400 °C, both S K-edge spectra show a new peak at 2482.6 eV, which is ascribed to S⁶⁺, likely in the form of sulfates.^[31] The difference in the intensity 5 of the new S⁶⁺ peaks at 400 °C indicates that the as-grown sample oxidizes more than the etched 6 7 monolayer MoS₂ (Figure 3a,b). The formation of sulfates at 400 °C coincides with the severe morphological changes observed via SEM images (Figure 1f,p). 8

9 On the other hand, the operando Mo L₃-edge XANES spectra show different evolution 10 features between the as-grown and etched MoS_2 monolayers (Figure 3c,d). Those spectra were 11 further subtracted by the spectra of the etched monolayer at 25 °C (*i.e.*, pristine MoS₂ without 12 oxides) to obtain the difference spectra (Figures 3e,f), which highlight the changes of spectra 13 feature. For the as-grown MoS₂ monolayer, the first negative broad feature at 2524.5 eV ascribed to a combination of Mo⁴⁺ and Mo⁶⁺ grows with increasing temperature up to 300 °C. Then, the 14 negative feature shifts 0.3 eV to lower energy, resembling Mo⁶⁺ as in the MoO₃ reference (Figure 15 3e). Likewise, the Mo L₃-edge spectra show a gradually increased Mo^{6+} peak at 2528.6 eV with 16 17 increasing temperature (Figure 3c,e). Finally, the Mo L₃-edge white line is shifted from resembling MoS₂ to MoO₃ at 400 °C (Figure 3c,e). In comparison, for the etched sample, the Mo⁴⁺ and Mo⁶⁺ 18 peaks ascribed to MoO₂ and MoO₃ become slightly apparent only at 300 °C, and the Mo L₃-edge 19 20 white line is shifted from resembling MoS₂ to MoO₃ at 400 °C (Figure 3d,f). The Mo L₂-edge 21 spectra show the same trends (Figure S11, Supporting Information). We cross-checked the 22 operando XAS results by conducting ex-situ XAS of those MoS₂ monolayers shown in Figure 1, 23 and the results are consistent (Figure S12, Supporting Information). First-principles simulations of

XAS spectra with the OCEAN code^[32, 33] show that O-substitution on S-vacancies in MoS₂ 1 2 monolayers produces a sequential shift of the absorption edge with increasing oxygenation as 3 observed in our experimental spectra (Figure 3c,e, and Figure S13, Supporting Information). To summarize the Mo L₃-edge operando XANES results, oxygenated Mo⁴⁺ and Mo⁶⁺ species are 4 5 formed starting at 100 °C in the as-grown MoS₂ monolayer sample, and those species increase 6 with increasing temperature (likely in the form of MoO₂ and MoO₃). In contrast, features ascribed 7 to oxides start to appear at 300 °C for the etched MoS₂ monolayer sample. Furthermore, the asgrown MoS₂ monolayers are nearly completely oxidized at 400 °C, at which point, Mo⁶⁺ species 8 9 (as in MoO₃) dominate the spectra; however, the etched MoS₂ monolayers still show a transition 10 towards MoO₃ formation at 400 °C likely resulting in the spectral combination of MoO₂ and MoO₃ 11 signals.

12 To quantitively investigate the trend of chemical composition changes of the as-grown and etched MoS₂ monolayers at different temperatures, the linear combination fitting analysis (LCFA) 13 of the operando Mo L₃-edge XANES from Figure 3c,d was performed,^[34] and the results are 14 15 presented in Figure 3g,h (see Table S3 and S4 for details, Supporting Information). First, the chemical analysis supports the existence of MoO_x in the as-grown MoS₂ monolayer, and on the 16 17 contrary, the etched sample is composed of pure MoS_2 . Second, the amount of MoO_x in the as-18 grown sample is found to gradually increase with increasing temperature even at the low 19 temperature of 100 °C, indicating the oxidation onset temperature (1 ± 1 % MoO₂ and 3 ± 1 % MoO₃ 20 increase, and 5±1 % MoS₂ decrease). Third, the oxidation of the etched MoS₂ monolayer starts at 21 300 °C. Complementarily, the normalized sulfur concentration acquired from the S K-edge step as 22 a function of temperature is shown in Figure S14, Supporting Information. The analysis of the 23 edge step in the S K-edge XANES spectra shows that both the as-grown and etched MoS_2

1 monolayers start losing significant amounts of S at around 350 °C, indicating that rapid oxidation 2 happens. Both as-grown and etched MoS₂ monolayers undergo severe chemical transformations at 400 °C. The as-grown monolayer MoS₂ loses on average ≈ 23 % more sulfur than the etched 3 4 MoS₂ monolayer under the same high temperatures and oxidation conditions at 350 °C and 400 °C. 5 Overall, the differences between the samples in XANES and the chemical analysis suggest that the 6 presence of MoO_x lowers the onset temperature for fast thermal oxidation, promotes the oxidation 7 reaction under the same temperature, and facilitates the sulfur loss in monolayer MoS₂. Building upon published literature on the catalytic properties of oxides of molybdenum.^[20, 21] we propose 8 9 that MoO_x facilitates O₂ dissociation ultimately lowering the onset oxidation temperature of as-10 grown MoS₂ monolayers down to 100 °C.

We further conducted complementary ex-situ XPS at the O 1s, Mo 3d, and S 2p regions to 11 12 confirm the impact of MoO_x on the oxidation process of MoS_2 monolayers. Figure 4a,d show the 13 O 1s spectra of the as-grown and etched MoS₂ monolayers which are fitted with two singlets, 14 respectively. The main peak at 533.4 eV for both samples is assigned to Si-O from the SiO₂/Si substrate.^[35] The small peak at 531.4 eV corresponds to lattice Mo-O in oxide structures.^[12, 36, 37] 15 16 For the as-grown MoS₂ monolayer, the O 1s peak intensity of Mo-O gradually increases from room temperature to 400 °C, so does the Mo^{6+} peaks at 236.5 eV (3d_{3/2}) and 233.5 eV (3d_{5/2}) in 17 the Mo 3d region (Figure 4b).^[12, 38, 39] For the etched-MoS₂ layers, both the O 1s peak for Mo-O 18 and the Mo⁶⁺ peaks are negligible below 300 °C (Figure 4d,e). The S 2p spectra show no significant 19 20 differences throughout the oxidation process until 400 °C for both as-grown and etched samples 21 (Figure 4c,f). For both as-grown and etched samples, the MoS₂ monolayers seem to be nearly fully oxidized at 400 °C ($Mo^{6+} > 90$ % approximately, Figure S15, Supporting Information), as 22 23 evidenced by the weak intensity of S 2p (Figure S16, Supporting Information; 10 times magnified

counts than in Figure 4f) and 2s peaks, and Mo⁴⁺ peaks at 233.3 eV ($3d_{3/2}$) and 230.2 eV ($3d_{5/2}$) in 1 the Mo 3d region.^[12, 38, 39] The XPS results support the observations from the operando XANES 2 spectra (Figure 3) in that MoO_x activates the oxidation of MoS_2 monolayer from the low 3 4 temperature at 100 °C. Nevertheless, operando XANES shows advantages by providing 5 quantitative and qualitative information of chemical changes with better sensitivity, such as the 6 sulfur loss and chemical specificity with increasing temperature under reactive and dynamic 7 environmental conditions. Ultimately, operando XAS provides the accurate chemical composition evolution of the reaction products under the actual working conditions of two-dimensional devices. 8 9 In summary, we reveal for the first time the low-temperature thermal oxidation of 10 monolayer MoS_2 promoted by MoO_x . Our pioneering ultra-sensitive operando XAS study shows 11 that the as-grown MoS₂ monolayers (via CVD) contain MoO₂ and MoO₃ impurities (*i.e.*, MoO_x) 12 and that the amount of the oxides increase with increasing MoS_2 oxidation even with exposures to diluted O₂ at the low-temperature of 100 °C (3 vol % O₂/He, 101.3 kPa). In comparison, the etched 13 MoS₂ monolayers remain pristine until heating to 300 °C. The difference indicates that MoO_x 14 15 promotes the oxidation of MoS₂ monolayers under the operation conditions of two-dimensional 16 devices. The available S atoms remain in a similar chemical and structural environment up to 17 350 °C, at which point MoS₂ oxidizes to MoO₃ and other volatile species. These results are supported by systematic ex-situ XAS, XPS, and SEM characterizations. The results demonstrate 18 19 that the oxide-free condition is critical to the long-term thermochemical stability of monolayer 20 MoS₂; which is expected to hold for other transition metal dichalcogenides monolayers with 21 crucial implications for emerging scalable two-dimensional electronic, optical, and catalytic 22 applications.

1 Supporting Information

- 2 Supporting Information is available from the Wiley Online Library or the authors.
- 3

4 Acknowledgments

5 S.P. and A.T.G-E. contributed equally to this work. We acknowledge the financial support of the 6 Stanford Precourt Institute for Energy and Stanford Natural Gas Initiative. S.P. acknowledges the 7 generous financial support from the Kwanjeong Educational Foundation. Use of the Stanford 8 Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the 9 U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Part of this work was performed at the Stanford Nano Shared Facilities 10 11 (SNSF)/Stanford Nanofabrication Facility (SNF), supported by the National Science Foundation 12 under award ECCS-1542152. This research used resources of the National Energy Research 13 Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User 14 Facility operated under Contract No. DE-AC02-05CH11231. A.G. thanks the support by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, 15 16 Geosciences, and Biosciences Division, Catalysis Science Program to the SUNCAT Center for 17 Interface Science and Catalysis.

18

19 Competing interests

20 The authors declare no conflict of interest.

1 **References**

- 2
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, *Nat. Nanotechnol.* 2011,
 6, 147.
- J. Lee, S. Pak, P. Giraud, Y. W. Lee, Y. Cho, J. Hong, A. R. Jang, H. S. Chung, W. K.
 Hong, H. Y. Jeong, H. S. Shin, L. G. Occhipinti, S. M. Morris, S. Cha, J. I. Sohn, J. M.
 Kim, *Adv. Mater.* 2017, *29*.
- 8 [3] H. M. Hill, A. F. Rigosi, K. T. Rim, G. W. Flynn, T. F. Heinz, Nano Lett. 2016, 16, 4831.
- 9 [4] V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, M. C. Hersam,
 10 *Nature* 2018, 554, 500.
- 11 [5] D. Akinwande, N. Petrone, J. Hone, *Nat. Commun.* 2014, *5*, 5678.
- 12 [6] M. Park, Y. J. Park, X. Chen, Y. K. Park, M. S. Kim, J. H. Ahn, *Adv. Mater.* 2016, 28, 2556.
- K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, J. Park,
 Nature 2015, *520*, 656.
- J. Shim, S.-H. Bae, W. Kong, D. Lee, K. Qiao, D. Nezich, Y. J. Park, R. Zhao, S. Sundaram,
 X. Li, H. Yeon, C. Choi, H. Kum, R. Yue, G. Zhou, Y. Ou, K. Lee, J. Moodera, X. Zhao,

18 J.-H. Ahn, C. Hinkle, A. Ougazzaden, J. Kim, *Science* **2018**, *362*, 665.

- 19 [9] K. Kang, K. H. Lee, Y. Han, H. Gao, S. Xie, D. A. Muller, J. Park, *Nature* 2017, 550, 229.
- [10] E. Yalon, C. J. McClellan, K. K. H. Smithe, M. Munoz Rojo, R. L. Xu, S. V. Suryavanshi,
 A. J. Gabourie, C. M. Neumann, F. Xiong, A. B. Farimani, E. Pop, *Nano Lett.* 2017, *17*,
 3429.
- 23 [11] K. F. Mak, K. L. McGill, J. Park, P. L. McEuen, Science 2014, 344, 1489.
- [12] D. M. Sim, M. Kim, S. Yim, M.-J. Choi, J. Choi, S. Yoo, Y. S. Jung, *ACS Nano* 2015, *9*, 12115.
- 26 [13] W. L. Spychalski, M. Pisarek, R. Szoszkiewicz, J. Phys. Chem. C 2017, 121, 26027.
- 27 [14] M. Yamamoto, T. L. Einstein, M. S. Fuhrer, W. G. Cullen, *J. Phys. Chem. C* 2013, *117*,
 28 25643.
- [15] T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H.
 Chae, H. Y. Jeong, F. Yao, L.-J. Li, Y. H. Lee, *ACS Nano* 2014, *8*, 11401.
- 31 [16] R. Szoszkiewicz, M. Rogala, P. Dabrowski, *Materials* 2020, 13, 3067.

- [17] S. Park, S. Siahrostami, J. Park, A. H. B. Mostaghimi, T. R. Kim, L. Vallez, T. M. Gill, W.
 Park, K. E. Goodson, R. Sinclair, X. Zheng, *Adv. Mater.* 2020, *32*, e2003020.
- X. Zhang, J. Grajal, J. L. Vazquez-Roy, U. Radhakrishna, X. Wang, W. Chern, L. Zhou,
 Y. Lin, P. C. Shen, X. Ji, X. Ling, A. Zubair, Y. Zhang, H. Wang, M. Dubey, J. Kong, M.
 Dresselhaus, T. Palacios, *Nature* 2019, *566*, 368.
- 6 [19] S. Bettis Homan, V. K. Sangwan, I. Balla, H. Bergeron, E. A. Weiss, M. C. Hersam, *Nano*7 *Lett.* 2017, *17*, 164.
- 8 [20] R. H. Holm, Chem. Rev. 1987, 87, 1401.
- 9 [21] H.Arzoumanian, Coord. Chem. Rev. 1998, 178-180, 191.
- 10 [22] N. Zhang, X. Li, H. Ye, S. Chen, H. Ju, D. Liu, Y. Lin, W. Ye, C. Wang, Q. Xu, J. Zhu, L.
 11 Song, J. Jiang, Y. Xiong, *J. Am. Chem. Soc.* 2016, *138*, 8928.
- 12 [23] A. Ruiz Puigdollers, P. Schlexer, S. Tosoni, G. Pacchioni, ACS Catal. 2017, 7, 6493.
- 13 [24] K. P. Kepp, *Inorg. Chem.* **2016**, *55*, 9461.
- 14 [25] A. Erbil, I. G. Cargill, R. Frahm, R. F. Boehme, *Phys. Rev. B-Condens Matter* 1988, *37*,
 15 2450.
- 16 [26] W. T. Elam, J. P. Kirkland, R. A. Neiser, P. D. Wolf, *Phys. Rev. B-Condens Matter* 1988,
 17 38, 26.
- [27] G. D. Moggridge, T. Rayment, R. M. Ormerod, M. A. Morris, R. M. Lambert, *Nature* 1992, 358, 658.
- 20 [28] R. B. Greegor, N. E. P. Jr., F. W. Lytle, Science 1997, 275, 1452.
- [29] J.-J. Velasco-Velez, C. H. Wu, T. A. Pascal, L. F. Wan, J. Guo, D. Prendergast, M.
 Salmeron, *Science* 2014, *346*, 831.
- 23 [30] A. G. Tyurin, Protect. Met. 2003, 39, 367.
- [31] E. D. Risberg, F. Jalilehvand, B. O. Leung, L. G. Pettersson, M. Sandstrom, *Dalton Trans.*2009, 3542.
- 26 [32] J. Vinson, J. J. Rehr, J. J. Kas, E. L. Shirley, *Phys. Rev. B-Condens Matter* 2011, 83.
- [33] K. Gilmore, J. Vinson, E. L. Shirley, D. Prendergast, C. D. Pemmaraju, J. J. Kas, F. D.
 Vila, J. J. Rehr, *Comput. Phys. Commun.* 2015, 197, 109.
- [34] E. S. Jeong, C. I. Park, Z. Jin, I. H. Hwang, J. K. Son, M.-Y. Kim, J.-S. Choi, S.-W. Han,
 Catal. Lett. 2015, *145*, 971.
- 31 [35] H. A. Duarte, M. E. Sad, C. R. Apesteguía, *Catal. Today* 2019.

- 1 [36] J. Liu, S. Tang, Y. Lu, G. Cai, S. Liang, W. Wang, X. Chen, *Energy Environ. Sci.* 2013, 6.
- 2 [37] D. Guan, J. Li, X. Gao, C. Yuan, J. Power Sources 2014, 246, 305.
- 3 [38] J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, *Nat. Mater.* 2012, *11*, 963.
- 4 [39] J. Gao, B. Li, J. Tan, P. Chow, T. M. Lu, N. Koratkar, ACS Nano 2016, 10, 2628.

1	Figure 1. SEM images of the as-grown and etched MoS ₂ monolayers before (25 °C) and after
2	annealing (100 °C to 400 °C). a-j) The SEM images of the as-grown MoS_2 monolayers before
3	annealing (25 °C) (a,g) and after annealing at 100 °C (b), 150 °C (c), 300 °C (d,h), 350 °C (e,i),
4	and 400 °C (f,j). k-t) The SEM images of the etched MoS ₂ monolayers before annealing (25 °C)
5	(k,q) and after annealing at 100 °C (l), 150 °C (m), 300 °C (n,r), 350 °C (o,s), and 400 °C (p,t).
6	The light background is the SiO ₂ /Si wafer (blue arrow) and monolayer MoS ₂ appears as a dark
7	flake (red arrow). The bright nanoparticles (enclosed by orange dotted lines and pointed by arrows)
8	are ascribed as MoO_x nanoparticles. Both the as-grown (f) and etched (p) MoS_2 monolayers break
9	into small pieces (green arrow and dotted circles) after being annealed at 400 °C. Ex situ SEM
10	images were taken from different spots in different samples.
11	

2 Figure 2. S K-edge and Mo L_{2.3}-edges XANES spectra of the as-grown and etched MoS₂ 3 monolayers with the bulk MoS₂ reference. a-c) The S K-edge (a), Mo L₃-edge (b), and Mo L₂-edge 4 (c) XANES spectra of the as-grown (blue) and etched (red) MoS₂ monolayers, and bulk MoS₂ 5 standard reference (black dot) are measured at room temperature under He atmosphere before 6 oxidation. b,c) The additional shoulder peaks on the Mo L_3 and L_2 -edge spectra at 2528.6 eV (b) 7 and 2633.5 eV (c) respectively (black arrows) from the as-grown monolayer MoS_2 indicate that 8 the as-grown monolayer MoS_2 contains MoO_x . The MoO_x can be successfully removed from MoS_2 9 monolayers by the alkaline bath treatment, which is confirmed through the removal of the 10 additional shoulder peaks.

Figure 3. The operando S K-edge and Mo L₃-edge XANES spectra of the as-grown and etched MoS₂ monolayers under dilute oxidative atmosphere (3 vol % O₂/He) with increasing temperature (100 °C to 400 °C). a,b) The operando S K-edge XANES spectra of the as-grown (a) and etched (b) MoS₂ monolayers are shown. The spectra of the commercial bulk MoS₂ are included as references. The peak of S^{6+} is denoted at 2482.6 eV. c.d) The operando Mo L₃-edge XANES spectra of the as-grown (c) and etched (d) MoS₂ monolayers are shown. The prominent peak at 2528.6 eV generated by the gradual formation of MoO₃ is marked with black arrows. The spectra of the commercial MoO₂ and MoO₃ are included as references. e,f) The difference spectra of the Mo L₃-edge XANES spectra of the as-grown (e) and etched (f) MoS₂ monolayers are shown. The spectra of the commercial MoO₂ and MoO₃ are included as references. g,h) The chemical compositions of as-grown (g) and etched (h) MoS₂ monolayers after oxidation at different temperatures are estimated from linear combination fitting analysis.

Figure 4. XPS spectra of O 1s, Mo 3d, and S 2p regions of the as-grown and etched MoS₂
monolayers before (25 °C) and after annealing (100 °C to 400 °C). a,d) XPS spectra of O 1s region

of the as-grown (a) and etched (d) MoS₂ monolayers. The O 1s spectra are noted and partially
fitted with the Mo-O (filled color with lines) and Si-O (filled color with dots) peaks. b,e) XPS
spectra of Mo 3d region of the as-grown (b) and etched (e) MoS₂ monolayers. The Mo 3d spectra
are noted and partially fitted with Mo⁶⁺ 3d_{3/2} and 3d_{5/2} peaks (filled color with lines). The other
prominent peaks such as Mo⁴⁺ 3d_{3/2} and 3d_{5/2}, and S 2s are denoted in each peak energy position.
c,f) XPS spectra of the S 2p region of the as-grown (c) and etched (f) MoS₂ monolayers. The