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Abstract Mass spectrometry is a core analytical chemistry technique for elucidating
the structure and identity of compounds. Broadly, the technique involves the ion-
ization of an analyte and analysis of the resulting mass spectrum, a representation
of ion intensity as a function of mass to charge ratios. In this article, the notion
of similarity as it applies to mass spectra is explored. In particular, several modes
of approximating distances and similarities in patterns are touched upon: `1 and
`2 distances, the Wasserstein metric (earth mover’s distance) and cosine similarity
derived measures. Concluding the manuscript is a report on the performance of the
similarity measures on a small test set of data, followed by a discussion of mass
spectral library searching and prospects for quantifying uncertainty in compound
identifications leveraging mass spectral similarity.

1 Background and Motivation

When discussing industrial mathematics, it is natural for one to think of the mod-
eling, simulation, and optimization of industrial processes (operations research), a
field in which some of the great mathematicians of the 20th century made their mark.
More recently, industrial mathematicians have been tasked with making sense of the
abundance of data that exists on public and private servers (data science) which has
spawned beautiful algorithms in statistical and machine learning. From the opera-
tions research specialist to the data scientist, all industrial mathematicians leverage
mathematical thinking with application-specific knowledge to solve problems of
industrial importance.
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One task of significant industrial importance is the characterization of complex
material composition. These materials may include natural products, foods and
drugs, fuels, biological fluids, plastics, etc. As examples of the importance of ma-
terial composition characterization, consider the implications of a fuel containing
impurities causing inefficient performance, or of a food containing contaminants
negatively affecting the health of consumers. It is of utmost importance that the
composition of materials is accurately characterized and, to this end, one of the most
commonly employed tools to approach this task is mass spectrometry.

The objective of this manuscript is to introduce the notion of estimating simi-
larity between measurements obtained through mass spectrometry. In particular, the
similarity of mass spectra, the resulting measurements from analysis using mass
spectrometry, for pure compounds is explored. There are two primary reasons why
estimating the similarity of mass spectra is of great importance. (1) Measures of
spectral similarity are leveraged in mass spectral library searching, the process of
sorting through curated libraries of mass spectra of known compounds to aid in
the identification of an analyte from its mass spectrum. (2) Accurate measures of
mass spectral similarity are necessary for quantifying the uncertainty of compound
identification using mass spectrometry.

The manuscript is organized as follows. In Section 2, a brief overview of mass
spectrometry and mass spectral library searching is provided, followed by details
of several pattern similarity measures in Section 3. Concluding the manuscript is a
report on the efficacy of each similarity measure for an illustrative test set of mass
spectra, and a larger discussion about the implications of similarity measures to mass
spectral library searching and uncertainty quantification in Section 4.

2 Mass Spectrometry and Mass Spectral Library Searching

Mass spectrometry has been a prominent tool in the analysis of matter for over one
hundred years. Broadly, the technique involves the ionization of an analyte, through
one of a variety of methods, followed by detecting the intensity of ions across a mass-
to-charge (m/z) range. After processing, the output of a mass speectromety analysis
is a mass spectrum. A comprehensive discussion of the technology is outside the
experience of the authors and thus the scope of this manuscript, however, good
introductory texts [22] and historical review articles [10] can be readily found in
the literature. The discussion in this manuscript will focus exclusively on unit-mass
resolution mass spectra of pure compounds (molecules) obtained through electron
ionization (EI) mass spectrometry.1

Amass spectrum of themolecule caffeine is shown in Figure 1. Themeasure along
the x-axis is mass-to-charge (m/z) and the y-axis indicates the relative abundance
at each m/z. For reference, a standard 2-dimensional representation of the structure

1 The specification of "unit-mass resolution" indicates that the mass-to-charge ratio of ions will
always be positive integer values. This resolution of electron ionization mass spectra are commonly
used in many industrial applications.



Pattern similarity measures applied to mass spectra 3

Fig. 1 A representative electron ionization mass spectrum of caffeine from the NIST17 Demo
Library [2] with the structure of caffeine overlaid on the spectrum.

of caffeine is overlaid on the mass spectrum. Note that in EI mass spectrometry,
the charge of an ion is most often 1, and so m/z is often interpreted and referred to
as mass. Ideally, every peak in a mass spectrum can be explained exclusively as a
molecular ion or a fragment ion.

A molecular ion, as its name implies, is an ion of the intact molecule being
analyzed. In the example of caffeine with nominal molecular mass 194 Da, the
molecular ion peak appears at m/z 194 (see Figure 1). The peaks occurring with
m/z values greater than 194 are molecular ions where the molecule is constructed
with heavier isotopes (e.g. Carbon-13 instead of Carbon-12). For some molecules,
molecular ions will contain weak bonds that cause it to fragment prior to reaching
the detector, resulting in the molecular ion being unobserved in the mass spectrum.

Under normal conditions, an ionized molecule will almost always fragment. The
portion of the molecule that remains charged after fragmentation is referred to as
a fragment ion and the portion(s) that are neutral charged are referred to as neutral
losses. Fragment ions are recorded in mass spectra, neutral losses are not. Most
ionized molecules can fragment in several ways. Accordingly, mass spectra will
typically contain a number of fragment ion peaks; however, there are some cases
where a very stable ion - either the molecular ion or a fragment ion - will lead to
mass spectra of very few peaks (see Figure 2).

Since a mass spectrum summarizes the mass of a molecule and its fragments, it is
possible for an analytical chemist to identify a molecule directly through interpreta-
tion of its mass spectrum. This is particularly true for simple molecules with limited
mechanisms for fragmentation. For more complex molecules, identification through
interpretation is impractical if not impossible. An important resource used by many
analysts to aid in identifying molecules are mass spectral libraries. These carefully
curated databases of mass spectra of known molecules can be sorted through by
comparing to the mass spectrum of the analyte, a process referred to as mass spectral
library searching, potentially finding a match to the analyte spectrum or providing
information that supports further investigation. For interested readers, a seminal re-
port on the topic of mass spectral library searching was provided by Stein and Scott
[21].
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Fig. 2 A representative electron ionizationmass spectrum of cathinone from the ScientificWorking
Group for the Analysis of Seized Drugs (SWGDRUG) mass spectral library [3] with the structure
of cathinone overlaid on the spectrum.

3 Pattern Similarity Measures

All unit-mass resolution EI mass spectra can be easily represented as vectors of
equivalent length, where the index of each element in the vector is representative of
the mass-to-charge of an ion and the value of each element being the corresponding
relative abundance from the spectrum. It is between these vectors that a similarity
estimate is computed. This section first describes similarity measures that are tra-
ditionally used in mass spectral library searching, followed by similarity measures
used in general pattern recognition tasks and a final measure motivated by the study
of histograms.

Using the standard dot-product formula we can define the cosine similarity be-
tween two non-zero vectors, x and y as ξ1,

ξ1 =

∑n
i=1 x[i] y[i]√∑n

i=1 (x[i])
2
√∑n

i=1 (y[i])
2
, (1)

where n is the length of the vectors, and the x[i] notation indicates the ith element
of the vector x. A commonly employed variant of cosine similarity is the simple
match factor. It differs from standard cosine similarity by three modifications: (i)
the values of the elements of the input vectors are replaced with their square roots,
(ii) the resulting cosine similarity measure is squared, and (iii) the resulting value is
scaled by a constant. This sequence of modifications result in a simple match factor,
ξ2,

ξ2 = C

(∑n
i=1(x[i])1/2 (y[i])1/2

)2∑n
i=1 x[i]

∑n
i=1 y[i]

, (2)

where C is, for historical reasons, 999. In mass spectral library search programs that
use simple similarity, the value is further rounded to the nearest integer, also for
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historical reasons. A further modified measure of similarity commonly employed in
mass spectral library searching is the identity match factor. It was first introduced
in [21] and is referred to as the "composite score". This measure differs from the
simple similarity match factor in that it is modified by a ratio based on relative
abundances at adjacent m/z values. An alternate identity match factor is computed
in this manuscript. A vector, r is computed with each element defined

r[i] =

{
γ[i] if x[i]x[i − 1]y[i]y[i − 1] > 0,
0 if x[i]x[i − 1]y[i]y[i − 1] = 0,

where

γ[i] =
x[i]

x[i − 1]
y[i − 1]

y[i]
.

The set of indices marking non-zero values of r is denoted α. A modification term,
F, is computed

F =

∑m1
i α[i] ·min (r[α[i]], 1/r[α[i]])∑m1

i α[i]

where m1 is the number of elements in the set α. The modified identity match factor,
ξ3, is then computed as

ξ3 = C
m1F + m2

ξ2
C

m1 + m2
, (3)

where m2 is the number of indicies where elements of both x and y have non-zero
values, and C is 999 as in (2).

For general pattern recognition tasks, the set of `p distances are often employed.
For consistency and completeness, we present the `1 distance, ξ4, and `2 distance,
ξ5, between non-zero vectors,

ξ4 =

n∑
i=1
| x[i] − y[i] | , (4)

ξ5 =

(
n∑
i=1
(x[i] − y[i])2

)1/2

. (5)

An intriguing measure of similarity comes from viewing the mass spectra as dis-
crete probability distributions with finite support on a metric space. TheWasserstien
metric, a commonly employed method in computer vision and often called the earth
mover’s distance [19], can be viewed as a distance that represents the minimum cost
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associated with transforming a reference mass spectrum into a second to which it is
being compared. We denote this distance as ξ6,

ξ6 = EMD (x, y) , (6)

and note that it is a far more complicated computation than ξi , where 1 ≤ i ≤ 5.
The numerical results presented in this paper result from (6) being evaluated using a
transportation simplex algorithmwith a ground distance computed using an `1 metric.
It is worth noting that the larger cost associated with evaluating (6) has resulted in
significant research on reducing the computational costs including approximations
to the metric [20] and the development of parallel programming algorithms [15].

4 Results and Discussion

To demonstrate the performance of the similarity measures outlined in Section 3,
pairs of replicate spectra2, and non-replicate spectra3 were chosen at random from
two highly regarded commercial libraries. The distribution of similarity measures
generatedwith eachmethod are shown in Figure 3 as box andwhisker plots, generated
using the default boxplot function as implemented in base-R [17]. Each box and
whisker object describes the distribution of similarity measures computed on a set
of mass spectra. The set of non-replicate spectra is labeled on the x-axis of each plot
as "other", and the set of replicate spectra is labeled "replicate". For each distribution,
the outlined box is the computed Inter Quartile Range (IQR) with the 2nd quartile
(median) marked as a darkened line within the box, and the bottom and top edges
of the box indicating the 1st and 3rd quartile measurements, respectively. The upper
whisker indicates either the maximum measured value in the distribution or the
maximum similarity measure within 1.5 IQR of the 3rd quartile value. Similarly, the
lower whisker is minimum similarity measure or the minimum measure within 1.5
IQR of the first quartile value. Outlier scores greater than 1.5 IQR of the 1st or 3rd
quartile are shown as open circles.

The three cosine similarity derived measures traditionally employed in mass
spectral library searching are summarized in panels a-c of Figure 3. It is clear that
the distribution of these measures differ notably between the sets of replicate and
non-replicate spectra. That is to say, the cosine similarity derived measures are
performing as desired. There is, however, still overlap between computed measures
between the two sets. The maximum similarity measure computed between a pair
of non-replicate spectra is greater than the minimum similarity measure computed
between a pair of replicate spectra. We do see that the modifications from cosine

2 The term "replicate spectra" is used here to indicate spectra of one compound sourced from two
different commercial libraries, differing from the usual convention of a repeated measurement by a
single individual/source.
3 The term "non-replicate spectra" is used here to indicate a pair of spectra from two different
compounds, each spectrum from a different library
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Fig. 3 Distribution of similarity and distance measures when considering spectra of the same
molecules (replicate) and of different molecules (other). Note that the scale of the ordinate axis
varies for each similarity measure. (a) Similarity as approximated by a cosine similarity. (b)
Similarity as approximated by a simple match factor. (c) Similarity as approximated by an identity
match factor. (d) Distance as approximated by an `1 norm. (e) Distance as approximated by the `2
norm. (f) Distance as approximated by the earth mover’s distance.

similarity (Figure 3a) to simple match factor (Figure 3b), and then identity match
factor (Figure 3c) do improve the separation between similarity scores computed
on replicate and non-replicate spectra, with only outlier measures overlapping using
identity match factors.

The results of measuring similarity by the `1 and `2 distance are shown in Fig-
ures 3d-e. In general, both distance measures do perform as desired, with replicate
spectra having smaller computed distances than non-replicate spectra. The separa-
tion, however, is not as pronounced as was the case in the cosine similarity derived
measures. Using earth mover’s distance to measure similarity (Figure 3f), replicate
spectra have smaller computed distances than non-replicate spectra across the total
distribution of similarity measures. However, a substantial number of non-replicate
spectra are similar according to this metric.

In general, the superior efficacy of the identity match factor as compared to
the distance measures is due to the nature of variability in mass spectra and the
modifications built-in to the identity match factor. Consider the replicate spectra
of cocaine, taken from two publicly available mass spectral libraries, presented in
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Fig. 4 Representative electron ionization mass spectra of cocaine from (top) the ScientificWorking
Group for the Analysis of Seized Drugs (SWGDRUG) mass spectral library [3] with structure
overlaid and (bottom) the Mass Bank of North America [1] with chemical formula overlaid.

Figure 4. Both spectra are validmeasurements of cocaine, yet vary substantially in the
relative abundance of certain fragment ions (see m/z 182). The processes of taking
the square root of relative abundances as in simple match factors (2) and accounting
for the ratio of relative abundances for adjacent peaks are able to mitigate some of
the natural variability observed in mass spectra. The use of similar modifications to
improve the separation of similarity measures between replicate and non-replicate
spectra using the `p and earth mover’s distances is on-going work.

It is also worth discussing the limitations of the numerical assessments described
in this manuscript. The random selection of non-replicate mass spectra for assess-
ment limits the interpretation of the results. Some of the non-replicate mass spectra
may have come from vastly different molecules, and others may have come from
molecules of very similar nature, such as positional isomers or chemical analogs.
Creating subsets of mass spectra for testing, based on either properties of chemicals
(e.g. molecule size, molecule type, etc.) or the mass spectra themselves (e.g. small
numbers of peaks, large numbers of peaks, etc.), may illuminate insights about what
similarity means in different situations. For example, we may find that similarity of
mass spectra with few peaks is better captured by one similarity measure than the
others.
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Implications for Mass Spectral Library Searching

A mass spectral library search algorithm sifts through a reference library of mass
spectra and produces a list, commonly referred to as a "hits list" or "hitlist", of
mass spectra that are presumably similar to a query spectrum. From this hitlist, a
chemist will either propose an identity for the analyte or will conclude that further
investigation is needed. A thorough numerical evaluation of how each described
dissimilarity measure would affect mass spectral library searching requires defining
several specific and involved identification tasks. This and the subsequent selection
of search parameters is outside the scope of this manuscript. General evaluations of
similarity measures in library searches where the objective is to return a hitlist where
the top entry is the correct identification of the analyte can be found in the literature
[21, 12, 13, 14].

In general, for the purpose of sifting through the library, any of the similarity
measures outlined in Section 3 can be used and one of the top few library mass spec-
tra appraised to be most similar to the queried spectrum will be measurements of
the same compound. One concern with using any similarity measure, especially the
Earth Mover’s distance, is that some of the reference spectra that appear in the hitlist
may not be measurements of the same compound producing the query spectrum,
thus challenging the identification of the analyte. However, in this case it is possible
that a hitlist containing non-replicate spectra can also aid the identification process.
In 2017, a measure of spectral similarity referred to as "Hybrid Similarity" was in-
troduced [7, 16, 9], as a means of searching through libraries when it was suspected
that a reference spectrum of the analyte was not contained in the library (e.g. a novel
designer drug with no representative mass spectrum contained in the library). This
measure is able to capture the similarity between mass spectra of molecules that
differ by a single modification, that does not significantly alter the fragmentation
mechanism of common fragment ions, resulting in spectra differing by predictable
shifts in ion m/z values - these types of molecules are now referred to as cognates. A
hitlist containing several cognates of the query can provide a chemist adequate infor-
mation to propose additional investigations or, potentially, even propose a possible
identity of the compound generating the query spectrum. There have been several
recent publications describing applications of hybrid similarity [18, 6, 5, 4, 11, 8].

The popularity of hybrid similarity in mass spectral library searching is evidence
supporting the continued exploration of novel similarity measures for mass spectra.
Though it is not immediately clear whether the similarity measures outlined in this
manuscript will be beneficial, it is possible that one or more of these measures will
be useful in identifying particular types of molecules or in very specific situations
(e.g. identifying a molecule based on a spectrum with poor signal-to-noise as is
often the case when samples are collected in less-than-ideal circumstances). Further
investigation of these similarity measures with specific test cases is an on-going
course of work.
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Towards Uncertainty Quantification

The last section of this manuscript is a discussion of leveraging similarity measures
for quantifying uncertainty with compound identifications using mass spectrometry.
As was noted in Section 1, the accurate identification of pure compounds, that may
be contained within complex materials, is of incredible industrial importance. At
present, using only the numerical value of any mass spectral similarity measure to
identify a molecule from its spectrum should be avoided - there is adequate overlap
in similarity measures that incorrect identifications are possible. It is worth noting
that using mass spectrometry alone for identifying compounds is generally not rec-
ommended. Rather, using a series of complimentary measurements is prudent, such
as gas chromatography retention times [23] to simultaneously identify compounds.

As noted previously, conducting strict systematic investigations with subsets of
mass spectramay provide useful insights about the types ofmass spectra that generate
high similarity measures. For example, if we find that good similarity scores using
the `2 distance only occur between molecules that are isomers, this suggests the
uncertainty of an identification using only an `2 measure of similarity will be a
function of the number of possible isomers of the proposed molecular identity.
Another approach that may support uncertainty quantification is the simultaneous
analysis of multiple similarity measures. If two spectra are completely identical,
then all computed similarity measures should return their optimal value. If two
mass spectra are deemed similar using the `2 distance, but the two spectra appear
significantly dissimilar when measured by cosine similarity, this casts significant
doubt upon the identification of the compound that generated the mass spectra.
Developing composite measures or schemes for evaluating mass spectra may be
fruitful endeavors that greatly reduce uncertainty and enhance the efficacy of mass
spectrometry based compound identification procedures.
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