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ABSTRACT: The accurate prediction of stable crystalline phases
is a long-standing problem encountered in the study of
conventional atomic and molecular solids as well as soft materials.
One possible solution involves enumerating a reasonable set of
candidate structures and then screening them to identify the
one(s) with the lowest (free) energy. Candidate structures in this
set can also serve as starting points for other routines, such as
genetic algorithms, which search via optimization. Here, we
present a framework for crystal structure enumeration of two-dimensional systems that utilizes a combination of symmetry- and
stoichiometry-imposed constraints to compute valid configurations of particles that tile Euclidean space. With mild assumptions, this
produces a computationally tractable total number of proposed candidates, enabling multicomponent systems to be screened by
direct enumeration of possible crystalline ground states. The python code that enables these calculations is available at https://
github.com/usnistgov/PACCS.

1. INTRODUCTION

Crystal structure prediction is a critically important but
particularly challenging problem for understanding and
designing ordered, periodic materials.1−4 The problem is
relatively simple to state: given the composition of a mixture
and set of interaction potentials for its constituents, what is the
thermodynamically stable periodic arrangement? Such a global
optimization problem is difficult to solve due to the high
dimensionality of the search (configurational) space and the
potential for a large number of local minima, corresponding to
metastable states, that exist in the free-energy landscape.5,6

Different challenges can arise depending on the nature of the
system in question: for nanoscale atomic and molecular
systems where density functional theory (DFT) is often
employed, evaluating the energy for a given configuration can
incur a significant computational expense. For mesoscale
colloidal systems, on the other hand, this is relatively
inexpensive, but such systems may have features such as
large size asymmetries between components,7,8 short-range
and discontinuous (hard-wall) interactions,9,10 and anisotropy
due to asphericity and directionality.11−14 These can ultimately
lead to complex energy landscapes with large regions of high
energy and sharp local minima, making optimization
particularly challenging.
A variety of methods have been developed to overcome this

problem. Common techniques include random structure
searching,15 various Monte Carlo methods,5,10,13,16,17 as well
as evolutionary algorithms that explore configurational space
by making mutations and combining structures from a
population to yield new candidates.9,18−27 Recent advances
in computer hardware have also enabled a plethora of machine
learning approaches.28−33 Due to the typically nonconvex

nature of the optimization problem, good initial guesses are
generally required; often, these are generated at random or
based on chemical, directional, or symmetry-based con-
straints.15,27 Symmetry serves as a particularly powerful and
general method for creating candidate structures, due to its
inherent presence in the large majority of known crystalline
systems.15,34

Methods based on directly generating candidates con-
strained by geometry and symmetry have been employed for
a variety of chemical systems.15,35−40 Perhaps the simplest
methodology is to use space groups to fill space by applying
matrix operations to the interior of a fundamental domain
(FD), or direct-space asymmetric unit, containing particles
whose positions are randomly assigned. This domain is the
smallest region of a space that fills it without defects after
operations determined by the group.41 However, another way
of representing symmetry is by considering the nature of the
boundaries of the fundamental domain and how, by virtue of
the operations defined by a given group, different edges and
vertices will be mapped to their symmetrically equivalent sites
at other locations on the boundary of the same domain. In two
dimensions, this information is compactly represented by its
orbifold (“orbit-manifold”),42−44 which is a surface formed by
collapsing each symmetrically equivalent location in a crystal
(an “orbit”) to a single point.
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In essence, by focusing on determining equivalent sites along
the boundaries of the fundamental domain, we develop an
algorithm that enables us to combine this symmetry
information with stoichiometry to create a constraint
satisfaction problem (CSP) whose solutions may be easily
enumerated. This is effectively a manifestation of the
multiplicity of Wyckoff positions, which reflect the number
of times a particle placed at such a position is repeated
throughout the overall crystal.41 Each CSP solution represents
a crystal structure, enabling an extensive and diverse ensemble
of periodic lattices to be enumerated. When a Hamiltonian is
introduced so that (free) energies of candidates may be
computed, this symmetry-based generation is a powerful
technique for predicting stable crystal structures.45 This
method is particularly useful for systems whose interaction
potentials are isotropic and moderate to short-ranged; this
describes many colloidal systems, which are the focus of our
efforts, but the method is not exclusive. We have demonstrated
the utility of such an approach previously;45 here we describe

the inner workings of this method in detail and provide a code
to enable these calculations.46

2. SYMMETRY-BASED CRYSTAL STRUCTURE
ENUMERATION
2.1. Wallpaper Groups. Symmetry groups in two- or

three-dimensional Euclidean space represent combinations of
transformations, such as translations, rotations, and reflections,
on some subset of the space, known as a fundamental domain
(FD), which map the domain onto an image of itself.41,47 In
three dimensions these are the well-known crystallographic
space groups, of which there are exactly 230,43 and in two
dimensions they are the analogous wallpaper groups (or plane
symmetry groups), of which there are exactly 17.41,44 The
specific symmetries associated with each group dictate
allowable shapes for its corresponding FD, and when symmetry
operations are applied to its contents a translationally periodic
structure will be produced. For periodic crystalline systems, a
set of connected FDs known as a primitive (unit) cell can be
identified, which will tile all of the space through translations

Figure 1. The seventeen wallpaper groups. Each group is listed with its Hermann−Mauguin symbol (e.g., p4m) followed in parentheses by its
orbifold signature (e.g., *442). Any pattern can be placed in the interior of the fundamental domain (traced in black) and tiled throughout space by
the groups; the “L” motif depicted is for illustrative purposes only. Example primitive cells, containing the minimum possible number of
fundamental domains, are shown in red for each group.

Figure 2. Symmetric edges and corners of the fundamental domains. Variable parameters α and L1, L2, or L are shown to illustrate the constraints
on the geometries of the domains we have chosen. For a given domain, vertices of the same colors will overlap when the domain tiles space, and
must therefore be identical. Likewise, edges of the same colors will overlap. Different colors imply independence. A single-headed arrow →
indicates the direction along which distinct edges will be overlaid, while a double-headed arrow↔ indicates that the given edge will overlay itself in
reverse and must be symmetric about its midpoint (rotations of 180° occur there).
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alone.47 Figure 1 shows all wallpaper groups, demonstrating
the actions of their symmetries on fundamental domains
(black) and highlighting the primitive cells (red) of the
resulting periodic tilings. There is not necessarily a unique
shape to each group’s FD,41 and Figure 1 illustrates our
choices. Throughout this work, we refer to the groups by their
Hermann−Mauguin symbols listed in Figure 1. Also shown are
the corresponding orbifold signatures of the groups.44

There is a substantial advantage of using symmetry groups
for generating candidate crystal structures. For a two-
dimensional lattice with L × L sites each with M possible

states, there are a total of M( )L2
possibilities. This

corresponds to the case of only restricting the allowable
symmetries to those created by the group p1, for which the
primitive cell is composed of a single fundamental domain and
only translational symmetry is imposed. Note that this cell is
typically employed in the computer simulation of fluids to
approximate nonperiodic systems.48 For the other wallpaper
groups, there will in general be 1 < k ≤ 12 fundamental
domains per primitive cell, where p6m represents the
maximum.47 Since we need only consider the independent
portion of the cell, sampling from such a group produces only

M( )L k/2
configurations, corresponding to a reduction by a

factor of [ − ]M( )L k1 1/2
.

Figure 2 shows the fundamental domains we have chosen for
all of the groups, in which we have translated the constraints of
the symmetry into requirements that must be met at the edges
and corners of each domain. Here, similarly colored edges or
points are symmetrically equivalent. This is the first step in
defining the constraint satisfaction problem.
The International Tables for Crystallography provide

standardized information on the shape of fundamental
domains and generators to produce a unit cell. However, it
is well known that the specifications in these tables are inexact
precisely at the borders, requiring additional boundary-specific
conditions to remove redundant coordinates.49,50 In three
dimensions, previous work has sought to define exact versions
of the fundamental domains, consistent with the International
Tables;50 to circumvent this problem in two dimensions, we
have elected to create our own fundamental domains,
consistent with, but not identical to, those in the tables.
Section 2.2 reviews our approach to creating domains in a
consistent fashion across wallpaper groups that allows us to
create a regular grid of points through the fundamental domain
corresponding to different Wyckoff positions such that these
redundancies are trivial to locate computationally. We note
that screening for crystal candidates within select space groups
with only certain desired Wyckoff positions has been successful
at searching for optimal sphere packings and computing phase
diagrams of purely repulsive systems;40,51 since we are not
focused on a specific class of systems, our algorithm searches
all groups with all occupancies of all Wyckoff positions to
remain as general as possible.
2.2. Discretizing Fundamental Domains. To use

symmetry groups to generate candidate colloidal crystal
structures, a method for placing individual particles over the
FDs must be devised. Discretization of the FD into a lattice
creates a finite and enumerable set of configurations. Although
restrictive, generated candidate structures can later be
optimized in continuum space, if desired. Furthermore, when
done carefully, lattices have the advantage of easily providing
nodes at special Wyckoff positions (always located at edges

and vertices of FDs) and allowing symmetric equivalence
between nodes to be determined. Only a certain fraction of
each node will be contained within the FD depending on
whether the node is located at a corner or edge, or is on the
face of the domain. This enables us to introduce the
constraints of stoichiometry, which represents the second
half of the formulation of our method, discussed in more detail
in Section 2.3. This is analogous to using the known
“multiplicities” of Wyckoff positions, which are given as
integers in the International Tables for Crystallography,
though these positions are not discretized into nodes therein.41

Figure 3 shows examples of how we discretize fundamental
domains using a “parallel-line construction” to exactly intersect

all boundaries of the FD. As previously illustrated in Figure 2,
all domains produced by this method can be classified as either
parallelograms or triangles.47 For a parallelogram, a regular
lattice can simply be laid down by creating sets of lines parallel
to the sides of the domain and taking their intersections as
nodes (cf. Figure 3a). Furthermore, any triangle may be
represented as half of a parallelogram divided along its
diagonal, provided the parallel-line spacing is such that nodes
intersect the diagonal (cf. Figure 3b). Therefore, we may use a
parallelogram motif to systematically generate a grid of lattice
nodes for all groups. Note that groups p3, p3m1, p31m, p6, and
p6m exist on hexagonal lattices (based on equilateral triangles),
while the remaining groups have lattices that are some subset
of parallelograms not derived from triangles (including
rectangle, rhombus, and square).47 These correspond to the
five Bravais lattices that exist in two dimensions. This parallel-
line construction algorithm has the benefit that it works for all
groups and can generate lattice points consistent with the
underlying symmetry requirements when fundamental do-
mains are chosen as in Figure 1.
Finally, for groups with domains having edges that must be

symmetric about their own midpoints (i.e., groups with double-
headed arrows in Figure 2: p2, pmg, cmm, and p6), a central
symmetrically unique site will appear on such an edge if and
only if the number of sites along the edge is odd. These
midpoints are, by construction, where a twofold center of
rotation (180°) occurs, which is the source of that symmetry.

2.3. Solving the Constrained Symmetry and Stoi-
chiometry Problem. Information regarding both symmetry
and stoichiometry manifests on each group’s FD via sym-
metrically equivalent positions and their multiplicity. Thus, we

Figure 3. Examples demonstrating discretization for the wallpaper
groups (a) p2 and (b) cmm. FDs are shown on the left with their
boundary symmetry restrictions. On the right, lattice sites are shown
with their symmetrically equivalent sites in dashed outlines, more
explicitly demonstrated with colored arrows.
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can combine symmetry and stoichiometry requirements to
formulate a relatively simple constraint satisfaction problem
(CSP).52 That is, we may formulate the search for different
candidate lattices as a solution that satisfies (1) the symmetry
of the desired wallpaper group and (2) the ratio of the different
components that we wish the lattice to contain.
To demonstrate this idea concretely, Figure 4 presents a

complete example for the p4g group. Here, a right triangular
FD possesses reflection symmetry across its hypotenuse and
fourfold rotational symmetry about its right angle. As shown in
Figure 4a, a lattice with N = N1 = N2 = 4 yields a total of 10
sites, 3 of which are redundant due to symmetry (2 red, 1
green). To understand the influence of stoichiometry on how
particles can be placed on this lattice, we can consider each
kind of site in turn. A particle placed on the internal (white, the
general Wyckoff) site will contribute all of itself to the domain.
However, a particle placed on a reflected edge (blue, a special
Wyckoff) site will be shared between the domain and its
reflected image, thus contributing only 1/2 of the particle to a
single domain. Similarly, the orange corner site has a
contribution of only 1/4. Analogously, in the International
Tables, the multiplicities of these sites are reported as 8
(white), 4 (blue), and 2 (orange).41 Although each node along
one of the rotated edge (red) sites is split across two
neighboring domains, a particle placed on such a site will be
replicated on its symmetrically equivalent site along the
adjacent edge. Thus, after accounting for this symmetry, a total
contribution of 1 results. Similarly, the green corner site is
shared by eight domains (see Figure 1) but has a symmetrically
equivalent site, leading to a net contribution of 1/4.
Suppose nij represents the number of particles of type i to

place on sites of type j, cj is the stoichiometric contribution for
each site of type j, mj is the number of sites of type j, and di is
the desired stoichiometric coefficient for a particle of type i in
the final generated structures. Then we wish to find all sets of
nij satisfying

∑≤ ≤n m0
i

ij j
(1)

for all j, and

∑

∑ ∑
=

∑

c n

c n
d

d
j j ij

k j j kj

i

k k (2)

for all i. Additional constraints can be added as desired to, e.g.,
limit the total number of particles placed on sites. Returning to
our specific example, we will now look for solutions for a
binary system of components A (type 1) and B (type 2) with
stoichiometry given by A3B3. From eq 1, we obtain

{

≤ + ≤
≤ + ≤
≤ + ≤

n n

n n

n n

0 3

0 2

0 2

11 21

12 22

13 23 (3)

From eq 2, we can find

{
+ + =

+
=

+ + =
+

=

n n n X Y

n n n X Z

1
1
2

1
4

3
3 5

1
1
2

1
4

5
3 5

11 12 13

21 22 23 (4)

where X = ∑k∑jcjnkj, the denominator in eq 2. Thus, eq 4 is
underspecified and admits multiple solutions when constrained
by eq 3 and the fact that all nij must be integers.
There exist various computational approaches to solving

such CSPs;52 we have employed a backtracking approach.53 In
the end, there are four sets of integer solutions to these
constraints, illustrated graphically in Figure 4b. A solution to
the CSP simply specifies all nkj values, but when nkj < mj there
are multiple ways to realize this solution. The number of
possibilities for a site of type j is

=
!

− ∑ ! ∏ !( )
w

m

m n n
j

j

j i ij i ij (5)

This gives a total number of realizations w = ∏jwj, which can
be generated from a given solution to the constraint
satisfaction problem. Each realization corresponds to a
configuration satisfying both symmetry and stoichiometric
constraints.

Figure 4. Generation of candidates from p4g with a 4 × 4 lattice. (a) Contribution of a particle on each site to the fundamental domain is
determined by the number of domains that share each site and the number of symmetrically equivalent sites. Sites are classified based on their
stoichiometric contributions. (b) All (four) solutions to the constraint satisfaction problem for an A3B3 stoichiometry, each with the number of
realizations w for placing particles on sites. (c) Three unique structures obtainable from solution (ii); although w = 6, the other unit cells are
superimposable mirror images (achiral) of those shown.
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Figure 4b shows all four solutions to the CSP for A3B3 in the
p4g group example, along with the number of different
combinatorial realizations of each solution (6, 6, 6, and 12 for a
total of 30 solutions). However, it is important to note that the
number of unique crystal structures that can be obtained from
a given CSP solution may be less than its corresponding value
of w. For example, solution (ii) has w = 6 but yields only the
three distinct structures whose unit cells are depicted in Figure
4c. In this case, the others not shown have unit cells, which are
superimposable mirror images of those displayed, i.e., the unit
cell has achiral solutions and both enantiomorphs represent
solutions to the CSP though they do not represent different
structures. This is addressed briefly in Section 4 and more
thoroughly in the Supporting Information (SI).

3. CANDIDATE STRUCTURE GENERATION
We now have a method for systematically generating
crystalline configurations by specifying only three things: the
number of nodes to use on the edge(s) of a fundamental
domain’s lattice, Ng, the wallpaper group, and the desired
stoichiometry. The CSP simply takes these three inputs and
constructs a hierarchical tree, as depicted in Figure 5. The

leaves of the tree correspond to realizations of solutions to
each CSP defined by the branches upon which the leaves
reside. Since there are a finite number of wallpaper groups, and
one can often make a reasonable choice for the stoichiometries
to consider, there are a tractable number of leaves
(configurations) that can be generated. The result is a finite
ensemble of crystalline candidates to consider. In principle, a
Hamiltonian can then be chosen, and these candidates can be
refined and screened as desired,45 though this step is beyond
the scope of this paper.
We highlight the fact that the grid spacing itself between

nodes on the lattice has been left arbitrary until this point. In
practice, we set this to unity; however, uniform scaling to any
nearest-neighbor contact distance is possible as this isotropic
scaling does not affect the symmetry. We generally scale a
given CSP solution based on some assumed diameter
(nominally unity) for different species so that nearest
neighbors are in contact with each other. First, this implies
that different structures can be generated from the same CSP
solution if there are different characteristic length scales of
interest. Second, this means that solutions that place particles
on nodes spaced far apart may be scaled down and look
identical to those configurations that packed them tightly to
begin with. This can also be a source of the redundancy
summarized in Section 4. Finally, regardless of scaling, “gaps”
can develop if the right nodes are not used in the CSP solution,

resulting in lattices of disconnected clusters (not in direct
contact). For example, this can occur if all edge nodes are
neglected, as in the orange curve of Figure 6. This means that
this algorithm is capable of generating not only connected
lattices but also disconnected cluster phase candidates. Figure
7 also contains examples of this.

3.1. Sampling from Enumerated Solutions. First, we
must define an approach to sample in an even-handed way
between groups. Since the number of FDs per primitive cell
varies from 1 (p1) to 12 (p6m), using the same number of
lattice points on each group’s FD would generate structures
with drastically different unit cell sizes. Instead, we choose to
query our algorithm, assuming we would like to consider all
candidates that have a primitive (unit) cell no larger than some
fixed size. Consider a p1 cell with Ng nodes along each side;
this corresponds to minimal symmetry (typically employed in
simulations of fluids48), where the fundamental domain is
equal to its primitive cell. Taking this as a reference, we would
like to find all crystals with more than this “trivial” symmetry
that exist up to that primitive cell size; i.e., the red
parallelograms for each group (Figure 1) should not exceed
this.
In general, we ignore p1 in favor of the other 16 groups

when generating candidates due to the principle of maximum
symmetry.34,54 This heuristic states that structures with a high
symmetry content tend to have either a very high or a very low
energy and is a consequence of the structural correlations
imposed by symmetry. Starting from this p1 reference cell, it is
possible to generate structures by systematically placing
particles within the cell. However, the number of arrangements
undergoes a combinatorial explosion as Ng increases, quickly
leading to an intractable number of possibilities.45 Regardless,
within these possibilities exist structures with symmetry that
was not imposed a priori; arrangements that have, e.g., a mirror
plane, or are symmetric by some rotation will be found if the
placement of particles is systematic and exhaustive. These
structures would have been found directly if another wallpaper
group, corresponding to its symmetry, was used as a generator
instead. However, the set of p1-generated structures will also
contain structures with minor variations on these higher
symmetry ones that destroy their overall symmetry; e.g., a

Figure 5. Schematic of the tree generated by the CSP. Ng is first
chosen (gray) and then the wallpaper group (orange); these define
the lattice. Then, the desired stoichiometry is specified (blue), which
fully defines the CSP. The solutions (green) are configurations that
can be sampled.

Figure 6. Total realizations, ∑w, for the CSP coming from the 16
wallpaper groups employed for various Ng. Various stoichiometries are
shown for the cases when nodes located at the edges of the
fundamental domains are allowed in the CSP (blue) and when any
solution involving them is excluded (orange). The vertical line at Ng =
8 denotes the crossover where the number of edge and corner nodes
is exceeded by the number of face nodes, averaged across the
groups.45
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defect in which a single particle is misplaced. As a result, the
p1-generated structures effectively contain both the high
symmetry structures and all of their defective variants. If
these defective structures are ignored (by using only the other
16 groups), the reduction of possible arrangements can be on
the order of (10 )13 or greater, making it possible to
exhaustively search reasonably sized primitive cells.45

If we consider a p1 cell with Ng
2 total nodes, we can compute

the number of nodes along each edge, N1 and N2, that must be
used on another group to reach the same node density, ρ

ρ = =
−( )N

A N

N N N

A

1 ( mod 2)g
2

g d

1 2
1
2 s

g (6)

where Ns ∈ (3,4) is the number of sides a group’s FD has, Ag is
the area of the FD, and Nd is the number of FDs per primitive
cell.45,47 If symmetry constrains the ratio of the length of the
sides to be r = L2/L1 = N2/N1 ≥ 1, we arrive at (cf. SI for more
details and caveats)

=
−( )

N
N

rN N1 ( mod 2)
1

g
2

d
1
2 s (7)

In practice, we generate a grid according to ⌊ ⌋N1 and
= ⌊ ⌋N rN2 1 . The floor operation prevents the number of

nodes from exceeding that of the reference p1 cell. In general,
we allow r ∈ (1,√2,√3, 2), but this can be chosen as desired.
Note that p2 is the only group we sample from that has an
unconstrained angle, and we typically sample α ∈ (π/2, π/3,
π/4, π/6). A detailed table of allowable r and α values is given
in the Supplementary Information of ref 45, so it is not
reproduced here.

3.1.1. Exhaustive Sampling. Once lattice parameters have
been selected, we can solve the CSP and obtain all realizations
to each solution. For a given group, if the total number of
lattice sites is small or the symmetry and stoichiometry
restrictions are significant, the resulting structures can be
explored exhaustively. Note that all nodes on the face of an FD
belong to the general Wyckoff position and have a
stoichiometric contribution factor of 1. The number of ways
to place particles (only) there to achieve the desired
stoichiometry grows combinatorially with the number of
available nodes. Special Wyckoff positions may only occur at
the edges and corners, though not all boundary nodes are
special positions, and introduce specific factors that highly
constrain the CSP. As previously shown, when averaged over
all groups, Ng ≈ 8 corresponds to the point where the total
number of nodes on the face equals the total number of edge
and corner nodes.45 We expect that when Ng < 8 the CSP is
highly constrained, leading to a relatively small number of
realizations, which can be tractably enumerated for screening
purposes, whereas when Ng > 8 the combinatorial explosion of
possibilities leads to too many possibilities to reasonably screen
[> ](10 )9 . Figure 6 shows the number of total realizations
from the 16 wallpaper groups we consider for various
stoichiometries in a binary mixture as a function of Ng.
When edge and corner nodes are excluded (only face nodes
allowed), there are three or more orders of magnitude fewer
solutions, and, in fact, Ng must be substantially larger for any
solutions to exist at all (Ng ≥ 6) compared to the case when
edge and corner nodes are allowed (Ng ≥ 3 for a 1:1
stoichiometry).

3.1.2. Stochastic Sampling. If the number of total
realizations to the CSP (structures) is too large to enumerate
completely, we can instead sample stochastically. There are

Figure 7. Mean complexity of different CSP solutions as a function of their number of realizations. For three groups, p2, p4m, and p6m, the
solutions to their CSP for an equimolar binary system are shown for different selected Ng. Solutions are sorted from the smallest number of
combinatorial realizations, w, to the largest (magenta), which is the solution index. The mean Kullback−Leibler divergence, ⟨DKL⟩, from an ideal
gas is also shown in black. Error bars correspond to 1 standard deviation. The dashed black line is a linear fit to ⟨DKL⟩. Representative
configurations from different solutions are shown on the right; the colored outlines correspond to the colored pentagons depicted on the graphs on
the left.
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different ways in which this could be done, perhaps the
simplest being to choose leaves from the tree in Figure 5 at
random. However, it is possible to miss important structures
by chance; of course, this can be mitigated if these initial
candidates are subsequently refined.45 We propose a heuristic
sampling method based on the number of realizations an
individual CSP has.
We have empirically observed that, when an individual CSP

solution has fewer realizations, it tends to correspond to the
use of special Wyckoff positions, e.g., a corner node in the FD,
which has a very small, unique stoichiometric factor relative to
the other available nodes. Moreover, these tend to correspond
to relatively “simple” lattices that represent common, intuitive
motifs. To quantify this, we compute a measure of structural
“complexity,” C = 1/DKL, where DKL is the Kullback−Leibler
divergence between the radial distribution function (RDF),
g(r), of an ideal gas and that of the lattice in question. Since
there are multiple components, we append individual pairwise
RDFs into a single vector to produce an approximate
fingerprint, e.g., h⃗x = [g11(r)][g12(r)][g22(r)]. For an ideal gas,
h⃗ig = 1⃗. After normalizing these fingerprints so they sum to
unity

∑= −D h i
h i

h i
( ) ln

( )

( )i
x

ig

x
KL

i

k
jjjjj

y

{
zzzzz

(8)

DKL is a measure of how one probability distribution differs
from another;55 we take this as a measure of how much order
or correlation exists in a system since nonzero entries in h⃗x
correspond to unique pairwise distances found in the crystal.
We posit that the fewer of these that exist, the “simpler” the
crystal; comparatively, a single instantaneous configuration of
an ideal gas may be viewed as a crystalline configuration with
an infinite unit cell size, allowing all pairwise distances.
Consequently, we expect DKL to be higher for “simpler”
crystals, so its inverse, C = 1/DKL, represents “complexity”.
Typically, the larger the w is for a given CSP solution, the

more complex the resulting structures will be on average.
Figure 7 shows representative results for three different
wallpaper groups in an equimolar binary mixture. The CSP
solutions are sorted based on the number of realizations, w,
they each have (magenta line). DKL is computed for each
structure described by a solution, and the mean is plotted in
black. While clearly variable, when fitted to a line, the slope is
generally negative (dashed black line). This indicates that the
complexity increases from left to right, as the number of
realizations increases. By weighting the probability to randomly
select a solution by p = (1 + ln w)γ, we can favor higher-
complexity structures for γ > 0 and lower-complexity structures
for γ < 0.
While we have approached this problem from a colloidal

perspective, we note that sampling with a bias toward “simpler”
structures as we have defined them is consistent with Pauling’s
fifth principle, the “Rule of Parsimony,” for ionic crystals.56

The rule states that the number of essentially different particles
and local environments in such crystals tends to be small. This
is because ionic crystals tend to have a small number of
optimal local arrangements (environments), which combine to
fill space. While this is not inviolable, the Rule of Parsimony is
a well-validated guiding principle for inorganic crystals, which
can be analogous to those often obtained in soft matter
systems.57 Note that, by using different measures of complex-
ity, Oganov and Valle21 have also found the same trend in

binary atomic crystals that simple structures tend to have lower
energies, validating Pauling’s fifth principle.

4. REDUNDANCY IN THE CSP

For various reasons, duplicate structures can appear as distinct
solutions to the CSP we have formulated. This is often the case
with very simple, achiral structures whose mirror is super-
imposable on itself, or when CSP solutions do not make use of
lattice sites that critically distinguish the symmetry of the group
from others. We performed a detailed analysis of the structures
found by our algorithm in different instances, which is available
in the SI and is summarized here.
Structural similarity was estimated by using a cosine

similarity function based on a structure’s radial distribution
function (whose Fourier transform is its structure factor). First,
we considered duplicates that may arise in a fixed group and Ng

as obtained in our p4g example in Figure 4. For small Ng

duplication is common, but it falls quickly and monotonically
until less than 1% of pairs are duplicates for Ng ≳ 9; thus, this
effect is minimal for cells of moderate size. However, it is
important to also consider the effect of the lattice size itself, for
a fixed group, as it is not necessarily guaranteed that CSP
solutions on a larger lattice completely encompass those on a
smaller one. For example, when the lattice has an odd number
of nodes along an edge, a lattice site can be placed at twofold
rotation centers occurring along that edge (e.g., as in Figure 3
with p2 and cmm), whereas, when the number of nodes is even,
the center of rotation occurs between lattice sites, and this
special Wyckoff position does not contribute to the CSP. Our
analysis suggests that this can be an important but not
overwhelming effect, though the best practice is to enumerate
structures for all possible lattices up to some Ng,max. Finally, we
tested the overlap that can occur between structures generated
by different groups and found this to be on the order of 10%
between pairs of groups.
A pairwise comparison between structures can be computa-

tionally expensive, growing as M( )2 for M structures
generated. Comparatively, the tree in Figure 5 can be
generated in a matter of central processing unit (CPU)
seconds to minutes depending on Ng. Consequently, it is
generally more efficient to allow duplicates to be generated
rather than to try to determine and remove them in advance.

5. AVAILABLE CODE

We have developed a software package in python,58 “paccs”,
which implements this enumeration scheme and other
operations, such as structure optimization given a Hamil-
tonian.46 Although full documentation may be found therein,
here we present a brief demonstration of the available
functionality that can reproduce the results presented in this
work. In the first snippet, we present the code to generate the
30 realizations of all four solutions to the CSP, as given in
Figure 4b. The parameter “congruent” implies that Ng should
be taken as the equivalent p1 cell’s size, as used in the main
text.
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In the second example, rather than using an equivalent p1
cell, we can directly specify the number of nodes we want the
FD to have. Setting “congruent” to False means the variable Ng
directly assigns the number of nodes on the FD. For the p4g
lattice, symmetry constrains r = 1, so N1 = N2 = Ng. Clearly, a 4
× 4 grid used on the p4g FD would produce an equivalent p1
cell with an 8 × 8 grid (cf. Figure 1; the red primitive cell of
p4g would thus be 8 × 8).

Note that we have leveraged python generators, which only
return configurations when requested rather than computing
them all up-front. This is an efficient way to construct the tree
in Figure 5 even when the number of true solutions to the CSP
is too large to explicitly enumerate. The tree’s topology and
branches are simply defined by the keyword arguments, and its
leaves (configurations) are traversed and sampled only when
requested.

6. CONCLUSIONS

In conclusion, we have presented a method for systematically
enumerating crystalline configurations in two-dimensional
Euclidean space. Our formulation is based on defining a
constraint satisfaction problem (CSP) using both symmetry
and stoichiometry. In essence, this amounts to using the
multiplicities of general and special Wyckoff positions when
redundant lattice positions have been accounted for. This may
be determined systematically using our parallel-line con-
struction on the fundamental domains we defined. Our
approach consists of two main steps. First, lattices are
produced systematically for each domain; a particle placed at
a node along the boundary will be divided into some fraction,
which can be viewed as its stoichiometric contribution to the
fundamental domain and, therefore, the primitive cell. Second,

symmetrically equivalent nodes are collapsed, combining these
stoichiometric factors from each equivalent node. In
conjunction, a relatively simple CSP results, which defines all
ways to achieve a desired stoichiometric ratio of an arbitrary
number of components for a given wallpaper group. Solutions
to the CSP detail how many of each type of particle (e.g., A, B,
etc.) to place at different types of nodes (e.g., corners, faces,
centers of edges, etc.), i.e., different Wyckoff positions, with a
given multiplicity.
We have described how to view solutions to the CSP as a

tree, whose leaves are all realizations (configurations) of each
branch. A combinatorial number of realizations to each
solution exist, and, when enumerated, represent configurations
that have the desired stoichiometric ratio of components and
do not violate any of the symmetry conditions of the
generating group. This implies that it is possible for the
same structure to be generated from different groups if the
pattern of the realization is simple enough. Nonetheless, we
analyzed the degree of redundancy and found it is often
insufficient to justify the additional computational effort to
remove duplicates. We provided the python code that
performs these calculations and can act as a structure
generator, producing an ensemble of configurations that can
be further optimized and screened to predict crystal structures.
This algorithm is general and may be employed, in principle, to
enumerate structures of any stoichiometry with any number of
components. We anticipate a number of additional challenges
in extending this method to three-dimensional systems,
including developing an analogous node construction
technique, and having to consider 230 space groups instead
of just 17 wallpaper groups. However, we speculate that a
stochastic, off-lattice approach to the placement of particles
employing known Wyckoff positions41 followed by more
extensive refinement may be more computationally effective.
This is the subject of future work.
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