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Ultrafast optical pumping of systems with spatially nonuniform magnetic textures is known 
to cause far-from-equilibrium spin transport effects, such as the broadening of domain-walls. 
Here, we study the dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni 
multilayers subject to a femtosecond optical pump and find an ultrafast domain dilation by 
6% within 1.6 ps. This surprising result is based on the unambiguous determination of a 
harmonically-related shift of ultrafast magnetic X-ray diffraction for the first- and third-order 
rings. Domain dilation is plausible from conservation of momentum arguments, whereby 
inelastic scattering from a hot, quasi-ballistic, radial current transfers momentum to the 
magnetic domains. Our results suggest a potentially rich variety of unexpected physical 
phenomena associated with far-from-equilibrium inelastic electron-magnon scattering 
processes in the presence of spin textures. 

 The understanding of ultrafast magnetisation processes [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
challenges typical notions of non-equilibrium spin dynamics. Many theoretical models and 
mechanisms have been proposed to explain experimental findings, including heat redistribution 
in the quasi-equilibrium spin, electronic, and lattice systems [1, 2, 3], superdiffusive spin 
currents into metallic spin sinks [4, 11], Elliott-Yafet scattering [4], hot-electron transport [5, 6], 
ultrafast magnon generation and exchange splitting reduction [7], and the femtosecond 
transition from ferro- to paramagnetic state [9, 10]. 

 The impact of morphological and magnetic spatial inhomogeneities on ultrafast 
processes has been recognised in studies that rely not only on spatially-averaged 
measurements, e.g., X-ray magnetic circular dichroism (XMCD) but also on the diffracted X-ray 
intensity [12, 13, 14, 15]. Transport mechanisms [11, 16, 17] have been proposed to be 
important in describing spatially-dependent ultrafast phenomena, such as the demagnetisation 
and domain-wall broadening in domain networks [14, 15, 18], and the imprinting of domain 
patterns in ferrimagnetic metallic alloys [12, 13]. A time-dependent shift in the scattering ring 
radius was observed in Ref. [13]. The shift was associated with the transition from a 
morphologically-induced magnetisation pattern into nonlinear magnetisation structures upon 
partial quenching of a homogeneously magnetised ferrimagnet. In Ref. [14], an observed 
ultrafast shift of the first-order X-ray magnetic diffraction ring in the case of a labyrinth domain 
network was attributed to broadening of fixed domain-walls [18]. 

 Here, we detect time-resolved X-ray diffraction out to the fifth-order ring by use of 
labyrinth domain networks in a CoFe/Ni multilayer with perpendicular magnetic anisotropy. 
This allows us to unambiguously detect a 6% shift in the diffraction ring radii within 1.6 ps after 
pumping. The shift scales harmonically with the diffraction ring order, which is strong evidence 
for an ultrafast modification of the average domain period. Concurrently, the domain 
correlation length also shrinks, further evidence for ultrafast spatial alteration of the domain 
structure. 

 Domain dilation would require domain-wall speeds deemed unphysical within currently 
accepted models based on quasi-equilibrium torque transfer [19, 20]. However, domain dilation 
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is plausible within the framework of inelastic scattering between hot electrons and the spin 
texture. In the reference frame of outwardly propagating, quasi-ballistic hot electrons subject in 
a thermal gradient, the domain network appears as a large-amplitude, counter-propagating 
spin wave with a well-defined momentum. Momentum-conserving scattering between these 
two systems is sufficient to explain the measured dilation. The detection of such a scattering 
process in this type of experiment is made possible by the finite size of the pump spot; an 
important experimental feature that has been heretofore ignored in the analysis of ultrafast 
pump-probe demagnetisation studies. The proposed scattering mechanism motivates further 
experimental studies that can take advantage of the reciprocal space structure for more exotic 
spin textures, such as skyrmion lattices and periodic chiral domain structures. 

We measured the picosecond time-evolution of the labyrinth domain network by use of 
pump-probe coherent, time-dependent, soft-X-ray small-angle scattering at the Linac Coherent 
Light Source (LCLS) free-electron laser. The sample was a 40 nm thick CoFe/Ni multilayer with 
perpendicular uniaxial anisotropy. A high-speed CCD camera captures the time-dependent 
scalar diffracted intensity of the probe beam. The experimental setup is schematically shown in 
Figure 1a.  

The time-evolution of the labyrinth domain network is inferred from the magnetic 
scattering squared amplitude |𝑆𝑆(q, 𝑡𝑡)|2, with wavevector q, isolated from the diffracted 
intensity 𝐼𝐼(q, 𝑡𝑡) by subtracting the charge intensity |𝐶𝐶(q, 𝑡𝑡)|2 obtained from the saturated 
sample, as described in the Supplementary Note 1. Details on the samples’ preparation, setup, 
and measurement technique are given in the Methods. For labyrinth domains randomly 
oriented in the film’s plane, |𝑆𝑆(q, 𝑡𝑡)|2 consists of concentric rings, shown in Figure 1b. The 
width of each diffraction ring results from the domain-size distribution, akin to jitter in 
temporal signals [21]. We note that the first-order scattering ring was partially obscured by the 
location of the through-beam aperture in the centre of the CCD camera, depicted as a dark-blue 
box in Figure 1b. 

We azimuthally average the magnetic scattering intensity to obtain 𝑆𝑆2(q, 𝑡𝑡), where 𝑞𝑞 =
|q| (See details in Methods). The pre-pump (t < 0) average data is shown in Figure 1c by a solid 
black line. The shoulder in the first-order diffraction ring at q < 0.0375 nm-1, shown by a grey 
area, is an artefact of the aforementioned partial obscuration by the aperture. 

The shape of 𝑆𝑆2(q, 𝑡𝑡) is fitted by the function f(q,t), composed of two factors: 

𝑓𝑓(𝑞𝑞, 𝑡𝑡) = 𝑒𝑒−2𝑞𝑞/𝑄𝑄(𝑡𝑡) �𝑀𝑀0(𝑡𝑡) + ∑ 𝑀𝑀2𝑛𝑛+1(𝑡𝑡)

�𝑞𝑞−(2𝑛𝑛+1)𝑞𝑞0(𝑡𝑡)
(2𝑛𝑛+1)Γ(𝑡𝑡) �

2
+1

2
𝑛𝑛=0 �

2

   (1) 

The first is the exponential form factor associated with the non-zero characteristic spin 
correlation length scale, 𝑄𝑄(𝑡𝑡). The second term is the magnetic structure factor, consisting of a 
linear superposition of inhomogeneities with uniform spectrum originating from the sample’s 
morphology, 𝑀𝑀0(𝑡𝑡), and three Lorentzians centred at odd-integer multiples of the first-order 
ring, q0(t), as enforced by Fourier series decomposition. The quantities 𝑀𝑀2𝑛𝑛+1(𝑡𝑡) are fitting 
parameters that are proportional to the harmonic rings’ amplitudes with indices denoting the 
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respective diffraction order. Γ(𝑡𝑡) is the linewidth associated with the domain-size correlation 
length. We stress that the function f(q,t) is an empirical fit to the magnetic scattering intensity. 

The concurrent fit of the three diffraction rings and the form factor is essential to 
accurately determine the fitting parameters. The fit of the time-averaged 𝑡𝑡 < 0 diffraction data 
by use of equation (1) is shown in Figure 1c with the red dashed curve. The exponential form 
factor contribution of Q(0) = 0.1087 nm-1 ± 4x10-5 nm-1 is shown by a dashed blue line. The 
fitted first-order ring radius is q0(0) = 0.0392 nm-1 ± 2x10-5 nm-1, equivalent to an equilibrium 
domain width of π/q0 = 80.1 nm ± 0.01 nm. Magnetic force microscopy imaging of the labyrinth 
domain network agrees well with this average domain width, see Supplementary Note 2. To 
illustrate the quality of the fitting, we show the scattering signal in Figure 1d using an equalized 
representation 

𝑆𝑆𝑒𝑒(𝑞𝑞, 𝑡𝑡) = ��𝑆𝑆2(q, 𝑡𝑡)𝑒𝑒𝑞𝑞/𝑄𝑄 − 𝑀𝑀0(𝑡𝑡)� 𝑞𝑞2.12    (2) 

where the exponential form factor is divided out, the magnetic noise background 𝑀𝑀0(𝑡𝑡) is 
subtracted, and the scale factor q2.12 equalizes the amplitudes of the first-order and third-order 
rings. By use of this equalization, it is visibly apparent that all diffraction rings are fitted with 
high fidelity. The individual Lorentzian components are shown with solid blue curves. 

We apply equation (1) to fit the time-dependent, azimuthally averaged scattering signal. 
In Figure 2a to c, we show the fitting results in the form of 𝑆𝑆𝑒𝑒(q, 𝑡𝑡) at selected times. In all 
panels, the diffraction amplitudes are quenched, c.f. Figure 1d, as expected for ultrafast 
demagnetisation. The time-evolution of the form factor is shown in Supplementary Note 3. The 
full temporal evolution of the normalized amplitudes 𝑀𝑀1,3,5(𝑡𝑡)/𝑀𝑀1,3,5(𝑡𝑡 = 0) is shown in Figure 
2d, exhibiting distinct time evolutions. At 1.6 ps, the third-order ring is quenched slightly more 
than the first-order ring while the fifth-order ring appears to be almost entirely quenched. Both 
the first-order and third-order rings partially recover until 13 ps after quenching. For t > 13 ps, 
the third-order ring resumes quenching, but at a much slower rate of ≈2% per ps. While the 
precision of the fifth-order ring is reduced due to the low photon flux at high q, it is significantly 
more quenched compared to the first-order and third-order rings at all times , further 
confirmed by averaging the scattering data over a time-span from 6 ps to 11 ps, shown in the 
Supplementary Figure 7. 

The empirical fit of finite amplitudes for all three diffraction rings allows us to extract 
quantitative information on the average width of the domain-walls as well as the average 
domain width. For the domain-wall average width, we consider a one-dimensional, hyperbolic 
tangent Bloch-wall model applicable for materials with strong perpendicular magnetic 
anisotropy [22]. To be compatible with our two-dimensional measurements, we use the 
azimuthally integrated scattering data such that every diffracted photon is considered to lie 
along the same q axis, as would be expected for parallel stripe patterns [23]. We then fit the 
diffraction peak amplitudes with the Bloch-wall model for a 1-d periodic chain of domain-walls 
of width 𝑤𝑤w(𝑡𝑡), 

𝐴𝐴2𝑛𝑛+1(𝑡𝑡) = 𝜋𝜋𝜋𝜋(𝑡𝑡)𝑤𝑤𝑤𝑤(𝑡𝑡) 
2𝑤𝑤𝑑𝑑(𝑡𝑡)

csch �𝜋𝜋(2𝑛𝑛+1)𝑤𝑤𝑤𝑤(𝑡𝑡)
2𝑤𝑤𝑑𝑑(𝑡𝑡)

�    (3) 
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where 𝑚𝑚(𝑡𝑡) is the magnetisation of infinitely wide domains separated by a Bloch-wall, and 
𝑤𝑤d(𝑡𝑡) is the width of the domains (see details in Methods). The harmonic-dependent amplitude 
data is in good agreement to equation (3), with results at selected times shown in Figure 3a in 
logarithmic scale. We note that the fifth-order ring amplitude has little weight on the overall fit. 
The evolution of 𝑚𝑚(𝑡𝑡) is shown in Figure 3b, exhibiting a typical demagnetisation behaviour, 
but with a faster remagnetisation process than would otherwise be surmised by inspection of 
the diffraction amplitude data in Figure 2d. The evolution of 𝑤𝑤w(𝑡𝑡) is shown in Figure 3c. The 
initial domain-wall width is 39 nm, in good agreement with a calculated value of 45 nm from 
Bloch-wall theory, see Methods. We find a significant broadening of the domain-walls from 39 
nm to 51 nm (31%) within 1.6 ps, followed by partial recovery towards its original equilibrium 
value in the first 10 ps after pumping. From 10 ps to 20 ps, the domain-walls resume 
broadening to approximately 38% of the original equilibrium value, likely because of a 
reduction in the effective magnetic anisotropy of the sample due to delayed thermal diffusion 
through the sample thickness (See Supplementary Note 4). 

We now turn to the time evolution of the diffraction ring radii. In Figure 4a, we show 
colour contour plots of the azimuthally averaged magnetic diffraction ring intensity profiles for 
the first- and third-order rings as a function of both time and q, divided by the equilibrium form 
factor. The visible shift in both radii are marked with horizontal lines that indicate the q-value 
for the time-averaged ring radii before (dashed red line) and between 6 and 11 ps after optical 
pumping (dashed black line). The difference in the average radii, 𝛿𝛿𝛿𝛿, is 0.0018 ± 0.0001 nm-1 
for the first-order ring, and 0.0054 ± 0.0003 nm-1 for the third-order ring. 

The data and fits depicted in the 𝑆𝑆𝑒𝑒(q, 𝑡𝑡) representation at 0 ps, 1.6 ps, and 18.8 ps are 
shown in Figure 4b, vertically shifted for clarity. The experimental data are shown with black 
curves and the fits with dashed red curves. The radii of the diffraction rings at equilibrium are 
indicated with vertical dashed lines. In this representation, the third-order diffraction ring shift 
is evident, the position of which is shown by black circles, c.f. vertical dashed black lines. 
Computing the domain size as wd(t) = π/q0(t), we obtain the time evolution shown in Figure 4c, 
which exhibits a 6% dilation at 1.6 ps, i.e. an average domain width of 86 nm. We restate that 
our fitting procedure enforces harmonically related rings, so that their accurate fits are strong 
evidence that there is indeed domain dilation at picosecond timescales. 

A reminiscent 4% shift in the first-order diffraction ring radius was previously observed 
by time-resolved X-ray scattering in a similar magnetic system that supports labyrinth domain 
patterns [14]. In that work, a domain dilation stemming from the ring radius shift was deemed 
unphysical due to the exceedingly large domain-wall speeds at the edges of the X-ray probe 
spot implied by a fractional expansion in the average domain width, 
(0.04 × 10 𝜇𝜇m) 1 ps = 4 × 105 ⁄ m s-1. Such an extreme speed is many orders of magnitude 
larger than known mechanisms to drive isolated domain-walls in equilibrium, e.g. Refs. [19, 20].  
Pfau, et al., [14] attributed the diffraction ring radius shift to domain wall broadening, modelled 
with an effective Gaussian filter function to represent how smaller domains demagnetise more 
than larger domains. Such a filter function is inconsistent with our data because application of a 
sufficiently-narrow filter induces a sizeable asymmetry in the diffracted rings profile. An 
extensive discussion on the harmonic dependent-asymmetry and filter function 
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implementation is provided in the Supplementary Note 5. Based on the fit to the pre-pump 
data < 𝑆𝑆2(q, 𝑡𝑡 < 0) >, fitting of the time-dependent data with such a Gaussian filter function 
resulted in the dashed blue curves in Figure 4b, with inferior results.  

The persistent ring symmetry after pumping allows allowed for accurate fitting of the 
correlation length ∝ 1 linewidth⁄ , shown in Figure 4d, from 2π/7.4 μm-1 ≈ 848 nm in 
equilibrium to 2π/8.8 μm-1 ≈ 722 nm at 1.6 ps after optical pumping. This is supporting evidence 
for an ultrafast change in the spatial structure of the domain pattern: the domains must 
necessarily incur in ultrafast spatial rearrangement for the correlation length to change. We 
also note that the diffraction rings scattered by stripe domain patterns in equilibrium may shift 
as a consequence of an increased correlation, giving the impression of a net dilation [24]. This 
possibility can be excluded because the correlation length actually decreases. 

While the requisite domain wall speeds to accommodate domain dilation are far beyond 
what have been previously demonstrated, such speeds do not violate any fundamental physics 
if one considers momentum and energy exchange between the electronic and spin system. We 
can examine the plausibility of such exchange by resorting to reciprocal space, where the 
periodic variation of the magnetic pattern can result in a transfer of linear momentum between 
electrons and correlated spin textures. For example, one could imagine a mechanism based 
loosely on inelastic electron-magnon scattering that couples the electronic and spin system in 
momentum space. We are motivated by the fact that, in the reference frame of a hot quasi-
ballistic electron moving in the +x direction, the domain structure of the system incurs a 
Doppler shift, schematically shown in Figure 5a. In other words, the spin texture is 
indistinguishable from a non-zero frequency magnon ensemble of that is moving in the -x 
direction with an average momentum proportional to the first-order ring radius. 

Given that the pump pulse creates a substantial lateral temperature gradient in the hot 
electron bath at time t = 0, the average, instantaneous, non-equilibrium electron momentum in 
the ballistic limit is 〈p𝑒𝑒(𝑡𝑡)〉 ≅ 𝑘𝑘𝐵𝐵∇𝑇𝑇𝑇𝑇r̂ [25], where r̂ is the radially directed unit vector (See 
Supplementary Note 6). This approximation is valid for 𝑡𝑡 < 𝜏𝜏𝑒𝑒𝑒𝑒, where 𝜏𝜏𝑒𝑒𝑒𝑒 is the electron-lattice 
scattering time in a non-equilibrium scenario. In the rest frame of the electrons, defined by the 
ensemble average velocity, the initial domain network is a coherent superposition of magnons 
with non-zero frequency, along with a commensurate momentum per magnon of 𝑝𝑝𝑚𝑚(𝑡𝑡 = 0) =
ℎ/2𝑤𝑤𝑑𝑑. Invoking conservation of momentum, relaxation of the electronic system back to 
equilibrium via electron-magnon scattering results in a coherent recoil of the magnetic system, 
i.e. a change of the equivalent magnon momentum given by 

∆𝑝𝑝𝑚𝑚(𝜏𝜏) = 𝑝𝑝𝑚𝑚 − ∆𝑝𝑝𝑒𝑒(𝜏𝜏)                         (4) 

The average electron momentum in equation (4) remains smaller than the magnon 
momentum, i.e. 𝑝𝑝𝑚𝑚 ≫ ∆𝑝𝑝𝑒𝑒(𝜏𝜏) such that the resultant magnon recoil results in a perturbation of 
the equilibrium domain wavelength. If such magnon-electron scattering were present, the 
process would be analogous to Compton scattering, albeit not relativistic, whereby a magnon 
can scatter from free electrons resulting in both an energy and momentum shift. Under the 
assumption of an electronic relaxation process where every available hot conduction electron 
with excess momentum 〈𝑝𝑝𝑒𝑒(𝑡𝑡)〉 scatters from every available magnon with momentum ℎ/2𝑤𝑤𝑑𝑑 
(see Methods), we obtain a relative domain dilation of 2𝑤𝑤𝑑𝑑𝑘𝑘𝐵𝐵∇𝑇𝑇𝑇𝑇 ℎ⁄ = 6 % at 𝜏𝜏 = 1 ps. For 
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this calculation, we estimate a lateral electronic temperature gradient as approximately 3000 K 
(See Supplementary Note 4) over the pump spot radius of 172 μm. Therefore, we conclude that 
there is sufficient momentum in the electronic system such that an inelastic electron-magnon 
scattering process could cause such a shift in the domain period. It is also the case that the 
kinetic energy of the hot electron system is sufficient to drive the measured domain dilation, as 
is also required for inelastic scattering (See Supplementary Note 7). 

Two important caveats must be mentioned. First, there is a significant temperature 
gradient through the sample thickness during the first 2 ps after optical pumping (see 
Supplementary Figure 4). This implies that domain dilation must be a non-local effect, insofar as 
the domains are dilated throughout the sample thickness. Otherwise, a disparate domain 
dilation at the top and bottom surfaces of the sample would disintegrate the domain network, 
an event that would be experimentally detected as a collapse of the harmonic rings. Second, 
the electronic thermal gradient within the X-ray probe spot is likely much smaller than that 
expected further from the centre of the pump spot, implying that any electron-magnon 
scattering must either be non-local in nature, or the quasi-ballistic electron momentum, due to 
a combination of charge conservation and electrostatic screening, e.g. plasmon dynamics, is not 
strictly a function of the local temperature gradient.  

From the experimental data and the 1-d Bloch wall model in equation (3), we can 
reconstruct the one-dimensional domain profile dynamics. The domain profile at t = 0 is shown 
in Figure 5b by a dashed black curve and compared to the profiles at 1.6, 11.2, and 20 ps in solid 
blue curves, showcasing the magnetisation quench, domain-wall broadening, and domain 
dilation. The full evolution is available in the Supplementary Movie 1. The time-evolution of the 
maximum magnetisation within each domain is plotted in Figure 5c by blue circles. The 
maximum quenching of 50% occurs 1.2 ps after pumping. In contrast, a quenching of only 35% 
is determined from XMCD measurements under identical pumping conditions, but with the 
sample subject to an in situ saturating magnetic field, shown by red circles in Figure 5c. This 
difference is further evidence that inelastic electron-magnon scattering is enhanced in the 
multidomain state. The convergence of both curves after 10 ps is indicative that the dynamics 
are strictly thermally thereafter. 

Considering a static domain network to be equivalent to a magnon distribution, 
although unconventional, is consistent with the well-defined spectral character of our magnetic 
sample. The primary assertion that we bring forward is that a static domain network subject to 
a Doppler shift in the reference frame of moving electrons is no different than a spin-wave with 
a well-defined momentum. Insofar as the spin texture possesses such a well-defined 
momentum, i.e., some degree of spatial coherence, inelastic scattering would allow for domain 
dilation that manifests as extremely large domain-wall speeds in real space. In other words, any 
such mechanism requires localization in momentum space and, as such, does not apply to 
isolated domain-walls. The possibility that quasi-ballistic momentum imparted to the electronic 
system by ultrafast optical pumping suggests that domain dilation should be tuneable by laser 
fluence and spot size, as well as details of the domain structure, including domain size, domain 
wall size, and domain orientation. As such, these results greatly expand the parameter space in 
which to further explore the rich nature of far-from-equilibrium electron-spin interactions, 
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including materials with more exotic spin textures, such as chiral domain networks and 
skyrmion lattices. 

 

Methods 

Experimental setup 

 The magnetic samples were fabricated by sputter deposition with the following layer 
composition: Si3N4(50) / Ta(3) / Cu(5) / [Co90Fe10(0.2)/ Ni(0.6)]x50 / CoFe(0.2) / Cu(3) / Ta(3), 
where the layer thicknesses in parentheses are in nm. The Si3N4 membrane allows for X-ray 
transmission. X-ray measurements were performed at the SXR hutch [26] at the Linac Coherent 
Light Source (LCLS). The free-electron laser (FEL) generated 60 fs long soft X-ray pulses at a 
repetition rate of 120 Hz with a photon energy of 852.7 eV to match the L3 absorption edge of 
Ni. Circularly polarized X-rays were achieved by use of a Delta-undulator [27]. The X-ray beam 
was focused to an elliptical spot with foci a = 23 µm and b = 15 µm. The scattered X-rays were 
recorded with a primary CCD detector placed 275.3 mm away from the sample. The detector had 
four 512 x 512 pixel panels that could be moved independently from one another. Such an 
experimental geometry allowed us to detect X-rays scattered at angles of up to ≈ 8∘. The camera 
pixels have a maximum well depth of 16,000 electrons. 

The CCD camera had an opening at the centre through which unscattered X-rays were 
transmitted. These X-rays were detected with a secondary CCD placed behind the primary CCD. 
An Al filter in front of the secondary CCD was used to suppress the infrared pump beam, which 
was collinear with the incident X-ray beam. In addition to scattering measurements without an 
applied magnetic field, we carried out measurements of both the scattering (with the primary 
CCD) and XMCD (with the secondary CCD) when the sample was magnetically saturated to 
remove any non-magnetic contributions from the zero-field scattering data [28]. For this, an 
external magnetic field of 0.6 T was applied perpendicularly to the surface of the sample. 

An amplified infrared (IR) laser pump pulse from a Ti:Sapphire laser at the central 
wavelength of 795 nm was used to pump the sample. The duration of the IR pump pulses was 60 
fs, the Gaussian beam waist size was 172 µm, and the average incident pump fluence was 23 mJ 
cm-2. Higher pump fluence resulted in catastrophic damage to the sample. The pump laser was 
synchronized with the FEL to within the jitter of the arrival time of X-ray pulses. The delay time 
between the IR pump and the X-ray probe was varied from negative delays (to probe an 
unperturbed sample before the IR pump has arrived) to 20 ps. Scattering patterns at different 
delays were collected in a single-shot manner, and the pattern at a given delay was computed as 
an average of all of the scattering patterns taken within ±200 fs of that delay. The first-order 
diffraction ring contained 500 electrons per shot, ≈ 3 % of the camera saturation. 

The magnetic parameters of the 40 nm thick CoFe/Ni ferromagnetic multilayers were 
measured as a function of temperature with a vibrating sample magnetometer (VSM). At room 
temperature, we determine a saturation magnetisation Ms = 771 kA m-1, a first-order 
anisotropy constant K1 = 739 kJ m-3, and a negative second-order anisotropy constant K2 = -266 
kJ m-3. A non-negligible second-order anisotropy was previously reported for this material 
system [29]. The net uniaxial anisotropy, including the magnetostatic contribution, is 99 kJ m-3. 
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This corresponds to an effective magnetisation Meff = -2.05 kA m-1 for perpendicular FMR. The 
experimentally measured FMR value is Meff = -2.12 kA m-1, in good agreement with the VSM 
measured value. Despite the large second-order anisotropy constant, the relative magnitudes 
of the first- and second-order anisotropies are within the range necessary for a net 
perpendicular magnetic anisotropy [30]. We confirmed that out-of-plane labyrinth domain 
network is indeed stabilised at room temperature by use of magnetic force microscopy 
measurements, shown in the Supplementary Figure 1. 

 

Azimuthal averaging 

The azimuthal average of incomplete data captured by the primary CCD camera is 
performed according to the following algorithm. First, the centre of the scattering pattern, |q| =
0, is determined by fitting a circle to the 3rd order diffraction ring. Because this diffraction ring 
was not obscured by the central square aperture, a reliable fit can be obtained for the centre 
location in pixels. Once the centre is determined, the data is then azimuthally averaged. By 
definition, the azimuthal average 〈𝑆𝑆2(𝒒𝒒, 𝑡𝑡)〉 = �∫ 𝑆𝑆2(𝑞𝑞 cos𝜃𝜃 , 𝑡𝑡)𝑑𝑑𝑑𝑑2𝜋𝜋

0 � /𝐿𝐿(𝑞𝑞), where 𝜃𝜃 is the 
polar angle for the q vector and L(q) is the circumference for a given q. To account for the missing 
pixels, we compute 𝐿𝐿(𝑞𝑞) = ∫ W(𝑞𝑞,𝜃𝜃)𝑑𝑑𝑑𝑑2𝜋𝜋

0 , where W(𝑞𝑞,𝜃𝜃) is a two-dimensional mask of the CCD 
cameras, where missing pixels are numerically counted for as zeros. In this way, the azimuthal 
average is normalized by an adjusted circumference that does not count missing pixels. 

 

Bloch wall model 

The profile of a single Bloch-type domain-wall is modelled as [22] 

𝑚𝑚𝑑𝑑(𝑥𝑥, 𝑡𝑡) = 𝑚𝑚(𝑡𝑡) tanh � 𝑥𝑥
𝑎𝑎(𝑡𝑡)

�     (5) 

where 𝑚𝑚(𝑡𝑡) is the time-dependent, normalised magnetisation within the adjacent domains, and 
𝑎𝑎(𝑡𝑡) is a measure of the domain-wall width. Equation (5) is strictly applicable to materials with 
negligible second-order anisotropy constant. In our case, the ratio between the second and first-
order anisotropy constants is κ = -0.36. This ratio leads to a broader domain-wall, yet similar in 
shape to that predicted from equation (5). See, e.g., Figure 3.60 in Ref. [22]. The domain-wall 
width is calculated following the Lilley interpretation that considers the slope of the domain-wall 
profile at the origin [22]. From our fitting parameters, the domain-wall width is defined as 
ww=πa(t). Assuming an exchange constant of 𝐴𝐴𝑒𝑒𝑒𝑒 = 2 × 1011 J m-1, the calculated domain-wall 
width from Bloch theory is approximately 𝑤𝑤𝑤𝑤 = 𝜋𝜋�𝐴𝐴𝑒𝑒𝑒𝑒 (𝐾𝐾1 + 𝐾𝐾2)⁄ = 45 nm, where we consider 
the reduced anisotropy K1+K2. 

In q-space, a Bloch wall profile for an individual domain wall in a periodic array of 
domains of width 𝑤𝑤𝑑𝑑 = 𝜋𝜋 𝑞𝑞0⁄  results in a discrete spectral amplitude given by 

𝐴𝐴2𝑛𝑛+1(𝑡𝑡) = 𝜋𝜋2𝑚𝑚(𝑡𝑡)𝑎𝑎(𝑡𝑡) 
2𝑤𝑤𝑑𝑑(𝑡𝑡)

csch �𝜋𝜋
2(2𝑛𝑛+1)𝑎𝑎(𝑡𝑡)
2𝑤𝑤𝑑𝑑(𝑡𝑡)

�   (6) 
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We obtain equation (6) by convolving the spectrum of a square wave of periodicity 𝑤𝑤𝑑𝑑 = 𝜋𝜋/𝑞𝑞0 
with the spectrum of the derivative of the Bloch-wall model equation (5). Using the domain-wall-
width definition of ww=πa(t), we obtain equation (3). In this case, 𝑚𝑚(𝑡𝑡) is the asymptotic 
magnetisation amplitude in the infinite wavelength limit, i.e. when 𝑞𝑞0 → 0. It is not to be 
confused with the maximum amplitude of the magnetisation between the domains for non-zero 
𝑞𝑞0. 

To compare our data with this 1-d model, we must consider how the labyrinth domain 
network distributes the diffracted photons uniformly along the azimuthal coordinate. To account 
for this, we use azimuthal integration of the measured intensity, where the modelled amplitudes 
are related to the fitted diffraction ring amplitudes via 

𝐴𝐴2𝑛𝑛+1(𝑞𝑞0, 𝑡𝑡) = 𝑀𝑀2𝑛𝑛+1(𝑡𝑡)�2𝜋𝜋(2𝑛𝑛 + 1)𝑞𝑞0                                         (7) 

 

Conduction electron density in Co/Ni multilayer 

To determine the conduction electron density for our CoFe/Ni multilayers we consider 
the conduction electron density per layer and perform a volume average. These are obtained 
from the Hall coefficients for Ni and Co, which are -0.61e-10 m3 C-1 and -1.33e-10 m3 C-1, 
respectively [31]. We assume the Hall coefficient for Co only as the alloy composition is 90% Co 
and only 10% Fe. From these coefficients, we obtain 1.12 and 0.52 electrons per atom for Ni and 
Co, respectively. Weighted average of the 3:1 Ni to Co ratio results in 0.97 electrons per atom. 
Coincidently, this is approximately equal to the spin density, as well. 

 

Data availability 

The data that supports the findings of this study are available from the corresponding author 
upon reasonable request 

 

Code availability 

Fitting functions were performed both by MATLAB and Mathcad. The codes are available upon 
reasonable request from E.I. and T.J.S.  
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Figure 1. Experimental setup and static scattering. a A femtosecond infrared (IR) pulse incident 
on the sample excites the sample. The time-dependent magnetisation is measured by a time-
delayed, circularly-polarised X-ray probe. The scattered X-rays are captured by a primary, high-
speed CCD while the unscattered beam is captured by a secondary CCD acting as a point 
detector. An electromagnet is used to saturate the sample, allowing for both measurements of 
time-resolved XMCD, as well as the static charge contribution to the scattered intensity. b The 
two-dimensional magnetic component of the scattered intensity obtained with the primary 
CCD. The first-order diffraction ring is partially obscured due to the aperture in the middle of 
the primary CCD. c Equilibrium azimuthally-averaged magnetic scattering. The data, the fit to 
the data with equation (1), and the fitted form factor are shown by the solid black, dashed red, 
and dashed blue curves, respectively. The same data and fit are shown in d after equalisation, 
as per equation (2), to accentuate the quality of the fit for the all the diffraction rings. The solid 
blue curves represent the three Lorentzian components of the fit used to determine the 
periodic structure of the domains. The asymmetry of the Lorentzians is due to equalisation. 

 

Figure 2. Time evolution of diffraction rings. The equalised data, fits, and Lorentzians, as per 
equation (2), are shown by solid black, dashed red, and solid blue curves, respectively. We show 
three instances in time after pumping: a 1.6 ps, b 11.2 ps, and c 18.8 ps. The horizontal black 
lines illustrate the relative amplitude of the first- and third-order diffraction rings. d Temporal 
amplitude evolution of the first- (blue), third- (red), and fifth-order (grey) diffraction rings. The 
vertical dashed lines correspond to the time instances shown in panels a, b, and c. Error bars 
represent one standard deviation. 

 

Figure 3. Bloch wall model fits. a Diffraction amplitudes at selected time instances fitted with 
the Bloch wall model of equation (3). The amplitudes (circles) and fits (crosses) are shown in 
logarithmic scale and vertically shifted for clarity. From the fits, the evolution of the asymptotic 
magnetisation, m, and the domain-wall width, ww, are shown in panels b and c. The colour-
coded vertical lines represent the time instances shown in panel a. Error bars represent 
standard deviation. The domain walls broaden by 30% within the first 2 ps after pumping. 

 

Figure 4. Diffraction ring shifts. a Colour contour plots of the azimuthally-averaged magnetic 
diffraction ring intensity profiles, after form-factor normalization, as a function of both time 
and radial q for the first- and third-order rings. The first-and third-order rings are presented in 
the bottom and top panel, respectively. The dashed red line marks the average ring radius prior 
to optical pump. The dashed black line marks the ring radius averaged between 6 ps and 11 ps 
after optical pump. A shift in both rings is detected; 0.0018 ± 0.0001 nm-1 for the first-order 
ring and 0.0054 ± 0.0003 nm-1 for the third-order ring. b Data and fits in the representation of 
equation (2) shown by, respectively, solid black and dashed red curves. Time instances at 0 ps, 
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1.6 ps, and 18.8 ps are shown and shifted vertically for clarity. The positions of the first-, third-, 
and fifth-order diffraction rings at equilibrium are shown by vertical black dashed lines. The 
position of the first and third diffraction ring from the raw experimental data is pinpointed by 
black circles. Inferior fits by use of the domain-wall broadening model of [14] are shown by blue 
curves. The time evolution of the domain width wd and diffraction-ring width Γ are shown in 
panels c and d. In both panels c and d, the vertical dashed black lines indicate t = 0 and t = 10 
ps. Error bars represent one standard deviation. 

 

Figure 5. Domain dilation. a Schematic of the proposed inelastic scattering process. In the 
reference frame of a quasi-ballistic electron, a Doppler shift causes the domain network to 
appear as a propagating magnon ensemble with a well-defined momentum. In the event of 
magnon-electron scattering, conservation of momentum requires that the reduction in electron 
momentum in the laboratory rest-frame leads to a commensurate coherent recoil of the 
Doppler-shifted magnon momentum. b Snapshots of the magnetisation profile obtained from 
the Bloch domain-wall model of equation (3) at various times. The dashed black curve is the 
equilibrium domain. Quenching, domain-wall broadening, and domain dilation after optical 
pumping are all evident by eye. c Maximum magnetisation obtained from the Bloch wall model 
of equation (3) (solid blue curve and circles), as compared with the experimentally-measured 
time-resolved XMCD (solid red curve and circles) from the same sample when subjected to an 
in situ saturating perpendicular magnetic field. The domain pattern in zero field quenches by 
15% more than the saturated state at 1.6 ps. Error bars represent one standard deviation. 
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Supplementary Note 1. Subtraction of charge contribution to the scattering intensity 
To separate the electronic and magnetic contributions, we use the refractive index 

formalism to describe the interaction of soft X-rays with the ferromagnetic multilayer film. An 
equivalent description in terms of scattering amplitudes is also possible [1]. 

Within the approach adopted here, spatial variations of the refractive index 𝑛" will cause 
the incident X-rays to scatter. The variations could either be caused by inhomogeneities of the 
chemical composition or surface roughness, collectively referred to as charge variations 𝑐(r), 
where r = (𝑥, 𝑦) is the spatial coordinate, or a spatially dependent profile of the out-of-plane 
magnetisation component 𝑠(r) ≡ 𝑀-(r). 

With the corrections to the refractive index 𝛿𝑛/ and 𝛿𝑛0 due to charge and spin variations, 
respectively, the electric field of an electromagnetic wave transmitted through the sample is  

 𝐸 = 𝐸"exp[𝑖𝑘𝑑(𝑛" + 𝛿𝑛:𝑠(r) + 𝛿𝑛;𝑐(r))], (1) 
where 𝐸" is the incident circularly polarized wave and is assumed to be a plane wave (𝐸" = 1) 
due to the large spot size of the incident beam of ~100 𝜇m relative to its wavelength of 1.45 nm, 
𝑑 is the sample thickness, and 𝑘 is the wavenumber of the incident X-rays. 𝐸 in equation (1) is 
referred to as the exit surface wave (ESW). We divide out the term exp[𝑖𝑘𝑑𝑛"] and, to make the 
notation more compact, introduce substitutions 𝐶(r) = 𝑖𝑘𝑑𝛿𝑛;𝑐(r) and 𝑆(r) = 𝑖𝑘𝑑𝛿𝑛:𝑠(r). A 
Taylor expansion of equation (1) to first order in 𝐶(r) and 𝑆(r) yields  

 𝐸 = 1 + 𝐶(r) + 𝑆(r). (2) 
The scattered intensity at the detector is obtained by taking a Fourier transform of equation 

(2) and multiplying it by the conjugate  
 𝐼D = |𝐶(q)|F + |𝑆(q)|F + 2𝑅𝑒(𝐶(q)𝑆(q)), (3) 

where 𝐶(q) and 𝑆(q) are Fourier transforms of 𝐶(r) and 𝑆(r), respectively. The Fourier transform 
of the first term in equation (2) is a delta function 𝛿(q), which is non-zero only when the scattering 
vector 𝐪 ≠ 0. Since we are not interested in the unscattered signal, we neglected the delta function 
in equation (3). 

Because the incident X-ray probe is circularly polarized, the magnetically and 
electronically scattered X-rays have the same polarization, and thus the third term in equation (3) 
is, in general, non-zero. 

When a saturating perpendicular magnetic field 𝐻- is applied to the sample, it eliminates 
the magnetic domains, and the complex magnetically scattered signal 𝑆(q) vanishes except at 𝐪 =
0, in which case 𝐼(q) ∝ |𝐶(q)|F. However, the total transmission through the sample still depends 
on its magnetisation direction due to the effect of X-ray magnetic circular dichroism upon 
circularly polarized X-rays, which in turn affects the charge scattering because of the non-zero 
sample thickness. Thus, the magnitude of the scattered intensity is essentially a product of the 
charge scattering and a field-dependent XMCD transmission factor 𝐼OPQR(𝐻-)|𝐶(q)|F. This 
variation can be accounted for by including second order terms in the Taylor expansion of equation 
(2), as was done in Ref. [5]. For that reason, the pure charge scattering |𝐶(q)|F with circular 
polarized X-rays and a non-negligible sample thickness is found from the scattering intensities 
taken with positive and negative applied saturating fields  

 Σ = T
F
[𝐼(q,+𝐻-) + 𝐼(q,-𝐻-)] = |𝐶(q)|F. (4) 

A relatively weak charge scattering ring was observed when the sample was saturated in 
an applied magnetic field, with a ring radius of q = 0.2 nm-1, corresponding to the grain size of the 
sputtered polycrystalline sample. The charge scattering overlap was confined to the relatively weak 
fifth-order magnetic-domain diffraction ring. For this reason, the effect of cross-terms in equation 
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(3) on the magnetic first- and third-order diffraction rings is negligibly small. We then extract the 
magnetic scattering intensity as  

 |𝑆(q)|F = 𝐼(q, 𝐻- = 0) − Σ. (5) 
  

 
Supplementary Note 2. Domain size from direct imaging 

A direct image of a labyrinth domain pattern was obtained by means of magnetic force 
microscopy (MFM) with a similar sample, shown in the Supplementary Figure 1. In this 
measurement, the spatial resolution was approximately 22 nm. Upon contrast optimization of the 
MFM image and azimuthal average of its Fourier transform, we obtain the spatial spectral curve 
shown in the Supplementary Figure 2. This sample was deposited under similar conditions as the 
sample used for the X-ray scattering measurements. By visual inspection of the MFM spatial 
spectrum, we estimate a peak Fourier amplitude for the domain pattern, adjusted for the q-
dependent background amplitude, at q0 = 0.033 nm-1 ± 0.002 nm-1. This is equivalent to a domain 
size of 95 nm ± 7 nm, in fair agreement with the 𝑤X ≅ 80.14 ± 0.04 nm obtained for 𝑡 < 0 from 
X-ray scattering with a similar sample. 

 

 
Supplementary Figure 1. 𝟏𝟎 × 𝟏𝟎 µm2 magnetic force microscope (MFM) image of a similar 
CoFe/Ni multilayer sample to that used for the X-ray scattering measurements. 
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Supplementary Figure 2. Azimuthally averaged Fourier transform of real-space MFM 
domain micrograph presented in Supplementary Figure 1. 
 

Supplementary Note 3. Time evolution of the form factor, Q 
The form factor at equilibrium is concurrently fitted with the Lorentzian line shapes and 

returns a value of Q(0) = 0.1087 nm-1 ± 4.48x10-5 nm-1. The exponential form factor corresponds 
to a spatial distribution of spin density with a Lorentzian-like correlation function which may be 
interpreted as an approximation of the exchange length, 𝜆`a ≈ 1/Q = 9.19 nm ± 0.0038 nm, in 
rough agreement with the calculated exchange length of 7.3 nm determined from a combination 
of magnetometry measurements and an assumed exchange constant of 𝐴`a = 2 × 10cTT J m-1. 

The time evolution of the form factor exponent 𝑄 is shown in the Supplementary Figure 3, 
exhibiting an ultrafast increase and subsequent recovery to equilibrium, shown by a solid magenta 
line, at ≈10 ps. It is possible this is the result of an ultrafast alteration in the characteristic exchange 
length of the sample, where the exchange length is defined as 𝜆`a ≡ e2𝐴`a 𝜇"⁄ 𝑀0

F, which is 
directly proportional to the exchange integral. If it is indeed the case that 𝑄 ∝ 1 𝜆`a⁄ , then it would 
suggest that the exchange stiffness is attenuated more than the magnetisation immediately after 
optical pumping. This is in agreement with previous studies that found significant evidence for a 
reduction in the exchange splitting in ultrafast pumping experiments [6,7]. The fact that 𝑄 returns 
to its equilibrium value 10 ps after pumping suggests that this is the time scale at which 
conventional equilibrium concepts relating temperature, magnetisation, and the renormalization of 
exchange, i.e., 𝐴 ∝ 𝑀0, are valid [8-10]. Coincidentally, 10 ps is the time scale at which the 
electron, spin, and lattice thermal baths are generally considered to be in thermal equilibrium with 
each other. 
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Supplementary Figure 3. Time evolution of the fitted form factor. The magenta solid line 
indicates the pre-pump equilibrium value for Q. The dashed vertical black lines indicate t = 0 ps 
and t = 10 ps, when Q recovers its pre-pump value. 
 

 
Supplementary Note 4. Time evolution of thermal profile in thick metallic multilayers after 
optical pumping 
 The heat transport in the film was modelled by use of the three-temperature model [11], 
which includes three coupled equations to describe the dynamics of the electron, lattice, and spin 
temperature baths  

 

𝐶g(𝑇g)
ijk
il
= ∇nn⃗ ⋅ q𝜅g(𝑇g, 𝑇s)∇nn⃗ 𝑇gt + 𝐺gs(𝑇g)(𝑇s − 𝑇g) + 𝐺g:(𝑇: − 𝑇g) + 𝑆(𝑧, 𝑡),

𝐶s(𝑇s)
ijw
il
= ∇nn⃗ ⋅ q𝜅s(𝑇g, 𝑇s)∇nn⃗ 𝑇st + 𝐺gs(𝑇g)(𝑇g − 𝑇s) + 𝐺s:(𝑇: − 𝑇s),

𝐶:(𝑇:)
ijx
il
= 𝐺g:(𝑇g − 𝑇:) + 𝐺s:(𝑇s − 𝑇:).

 (6) 

We used material-specific and temperature-dependent values for the specific heat 𝐶y, thermal 
conductivity 𝜅y, the electron-lattice coupling constant 𝐺gs, the electron-spin coupling constant 𝐺g:, 
and the lattice-spin coupling constant 𝐺s: [5,12-14]. The subscript x stands for e, l, or s to denote 
the electron, lattice, or spin system, respectively. The laminate structure of the sample was taken 
into account, and the spatial profile of the heat source 𝑆(𝑧, 𝑡) was found by computing the 
absorption of the pump light with an incident fluence of 26.7 J cm-2 by the film using the multilayer 
formalism of Ref. [15]. More details on the material parameters used in the simulation can be 
found in Ref. [5]. The magnetisation profile was obtained from the calculated temperature of the 
spin system using the experimentally measured temperature dependence of the magnetisation. The 
electron-spin coupling parameter was chosen to be 𝐺g: = 3 × 10T} W m-3 K-1 to obtain a good fit 
to the experimental XMCD signal, as shown in Supplementary Figure 4. However, one must take 
the calculated temperatures for the various thermal baths in this model to be no more than rough 
estimates at the short times over which substantial changes in the magnetic scattering occurs. 
Given that 𝐺g: ≫ 𝐺s:, and an estimated 𝐶:(𝑇:) ≅ 1.5 × 10� J m-3 K-1 at the elevated temperatures 
expected after pumping, the estimated time constant for heat transfer between the electronic and 
spin system is 5 ps, which is much longer than the measured domain dilation time and the domain-
wall broadening time of 1.6 ps. This highlights the fact that the electron-spin scattering processes 
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in the far-from-equilibrium regime are strongly amplified for this system when compared to those 
expected from highly simplified models based on equilibrium dynamics. 

 
Supplementary Figure 4. Thermal model results. a Depth profile temperature results of three-
temperature heat transport model for the electronic, lattice, and spin temperatures. b The electron-
spin coupling coefficient was chosen to optimize the fit of the XMCD data for magnetisation vs. 
time, averaged over the depth of the sample. 
 

Supplementary Note 5. Time-dependent filtering kernels  
In our measurements, we were able to detect all three orders of diffraction rings at all times 

after the femtosecond optical pulse. This fact allows us to test the hypothesis brought forth by 
Pfau, et al., [16] that their time-resolved distortions of the first-order diffraction ring could be 
plausibly explained in terms of a Gaussian filter function that attenuated high-q components of the 
diffraction after pumping. Such a process would entail a domain-size-dependent demagnetisation. 
Because the Gaussian function applies to the domains, convolution with the domain-wall profile 
leads to the following functional form 

𝑓�(𝑞, 𝑡) = 𝑒cFD/��(l�")� �< 𝑀"(𝑡 < 0) > +∑ ������ (l)

���(����)���(���)�(����)��(���)� �
�
�T

F
��" 𝑒cFD�/F((F��T)�(l))��

F

(7) 

where the quantities 𝑀F��T(𝑡) are fitting parameters and 𝜎(𝑡) is the Gaussian standard deviation. 
Note that only the Gaussian filter function is time dependent while the remaining parameters can 
be estimated from the fit to < 𝑆F(q, 𝑡 < 0) >. As shown in the text, this functional form does not 
faithfully represent the data. 

Use of a Gaussian function is advantageous because it is possible to analytically solve for 
𝜎(𝑡) to produce the observed peak shift. With this method, we can study more closely the 
implications of invoking a Gaussian filter function. In particular, we are interested to test whether 
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this representation is valid for the third-order ring, which was not measured in Ref. [16]. For this, 
we use the analytical form of the Gaussian standard deviation 

𝜎(𝑡) = (Γ(t)F + |𝑞"(𝑡)−< 𝑞"(𝑡 < 0) >|F) � D�(l)
|D�(l)c�D�(l�")�|

− 1�  (8) 

as a function of the fitted linewidth Γ(𝑡) and ring radius q0(t). We then isolate the third order ring 
from the data by subtracting the first and fifth-order rings as well as the form factor and background 
fitted with f(q,t), equation (1) in the main text. This data is shown in the Supplementary Figure 5 
by solid black curves. At t = 0, shown in panel a, the data is slightly asymmetric because of the 
residue from the first-order ring fit. Note that this is not the time-averaged data for t < 0, but the 
data captured at t = 0 with respect to the pump pulse. The spectrum obtained by using a Gaussian 
filter function is shown by dashed blue curves. For this, we use the pre-pump (t < 0) time-averaged 
data for the third-order ring, multiply it by a Gaussian filter function with standard deviation given 
in equation (8), and scale it so as to match the ring amplitude at q0(t). Good agreement is obtained 
at t = 0, shown in panel a. This is expected since in the absence of a shift, the equation (8) tends 
to infinity. However, for t = 1.6 ps shown in panel b, we clearly see an asymmetry. This asymmetry 
appears because a Gaussian filter function physically implies that small domains demagnetise 
more than large domains. This asymmetry also renders fG(q,t) unable to accurately fit the 
experimental data, as shown in the main text, Figure 4. An even poorer agreement is obtained by 
scaling the Gaussian filter function by the measured XMCD data, shown by green dashed curves. 
The rationale of this approach is that the filter function at q = 0 should be proportional to the 
quenching for a uniformly magnetized sample to be a complete description of the ultrafast 
demagnetization. 

 

 
Supplementary Figure 5. Third-order ring spectra obtained by use of Gaussian filter 
function. In both panels, the black curves are data, blue dashed curves are spectra obtained with a 
suitably scaled Gaussian filter function, and the green dashed curves are spectra obtained by 
Gaussian filter functions scaled by the experimental XMCD data. 

 
Another approach to a filter function is to reconstruct it from experimental data. The 

hypothesis in Ref. [16] was based on linear response theory, where the dynamic evolution of the 
domain network is attributed to a time-dependent spatial filter kernel 𝐺(𝑥, 𝑦, 𝑡) that is convolved 
with the equilibrium perpendicular-to-plane magnetisation component 
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𝑀-(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 𝑡) ∗ 𝑀-(𝑥, 𝑦, 𝑡 = 0)    (9) 

Because the scattering intensity is related to 𝑀- via a Fourier transform, |𝑆(q, 𝑡)|F =
|ℱ{𝑀-}|F, it is possible to reinterpret the filtering kernel as a multiplicative factor in Fourier space 
𝑔(q, 𝑡) that describes the time-dependent evolution of the scattering, given by 

𝑔(q, 𝑡) = e|𝑆(q, 𝑡)|F |𝑆(q, 𝑡 = 0)|F⁄        (10) 

where 𝑔(q, 𝑡) = ℱ{𝐺(𝑥, 𝑦, 𝑡)}. This kernel may be computed from experimental data with good 
accuracy up to the third-order peak. However, employment of the filter in equation (10) with our 
diffraction data yields a complicated transfer function with multiple maxima and minima that 
deviates significantly from a Gaussian functional form. An example filtering kernel obtained at 
1.6 ps after the pump pulse is shown by a solid black curve in the Supplementary Figure 6. 

The associated error to the kernel can be computed by standard error propagation to be 

𝛿𝑔(q, 𝑡) = T
e¨(q)

©(q,l)
F ª T

©(q,l)�
+ 1                                          (11) 

where 𝑁(q) is the time-independent photon count per q and we assume that the main source of 
noise in the measurement is shot noise. The error is shown in grey colour in the Supplementary 
Figure 6. While the low-q portion of the filtering kernel for 𝑞	 < 0.04 nm-1 appears Gaussian, the 
qualitative behaviour is distinctly non-Gaussian for higher 𝑞 > 0.04 nm-1. 

 While the filter function 𝑔(q, 𝑡) may allow to find a functional form that fits the data, its 
most salient shortcoming is lack of generality: the filter function cannot explain both our 
measurements and the measurements obtained in Ref. [16]. We therefore conclude that extraction 
of the filter function 𝑔(q, 𝑡) is not a viable method for the determination of how optical pumping 
affects demagnetisation in the presence of a labyrinth domain pattern. 

 
Supplementary Figure 6. Time-dependent filtering kernel computed from experimental data 
at t = 1.6 ps. Vertical dashed red lines indicate the positions of the first-, second-, and third-order 
diffraction rings at t < 0 ps. 
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Supplementary Figure 7. Fits of time averaged scattering data after pumping. The equalized, 
azimuthal-average data are time-averaged in the interval ti = [6 ps, 11 ps]. The equalized data, fits, 
and Lorentzians in the representation of equation (2) in the main text are shown by solid black, 
dashed red, and solid blue curves, respectively. After time-averaging, the fifth-order ring, though 
significantly quenched relative to what is detected prior to pumping (e.g. the upper panel in Figure 
4b in the main text), is more clearly distinguished, and is found to be resolved in a manner that is 
consistent with the fitting of the first- and third-order rings. Small errors in the fit with increasing 
q are visibly enhanced in this equalized representation. Regardless, the fit is extremely sensitive 
to the exact positions of the diffraction rings in the data, as captured with the Lorentzian model for 
the ring profiles. In this particular fit, we obtained q0 = 0.0373 nm-1 ± 4.5x10-5 nm-1, corresponding 
to a domain width of 84.1 nm ± 0.03 nm. This represents a ≅4% domain dilation, in good 
agreement with the domain width of 83.9 nm ± 0.3 nm calculated from time-average of the domain 
width shown in Figure 4c in the main text within the time interval ti. 

 
Supplementary Note 6. Hot electron momentum from ultrafast pumping 

The momentum of hot electrons excited by ultrafast pumping is calculated from Ref. [17]. 
Within the first 500 ps, we expect electrons to remain quasi-ballistic insofar as electron-phonon 
scattering occurs on a time scale of 2-3 ps. The electron velocity in Ref. [17] is given by 

𝐯 = ®¯°
`
∇nn⃑ 𝑇       (12) 

Because the effective thermal electric field is 𝐄g³³ =
¯°
`
∇nn⃑ 𝑇, then we can write the 

momentum as 

〈𝐩`(𝑡)〉 = 𝐅𝑡 = 𝑒𝐄g³³𝑡 = 𝑘¸∇nn⃑ 𝑇𝑡      (13) 

For an effective temperature gradient of 3000 K over 170 µm in 1 ps, the average radial electron 
momentum 〈𝐩`(𝑡)〉 ℏ⁄  is 2.3 µm-1, or 6% of q0 = 39.2 µm-1. 
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Supplementary Note 7. Energy conservation 
 

Both momentum- and energy-conservation must be considered for an inelastic scattering 
process. Here, we provide a highly simplified estimation of the possible deformation of the domain 
structure that can be driven by the available kinetic energy of the radially flowing ballistic-like 
hot-electron flow. 

The far-from-equilibrium net kinetic energy of the ballistic-like hot electrons excited by 
the pump pulse is given by 

𝐸g =
T
F
𝑚g𝑣gF =

T
F¼k

�¯½jk¾
¿
�
F
      (14) 

where τ is the momentum scattering time. The kinetic energy density associated with this net radial 
electron flow is 

𝑈g = 𝑛g𝐸g       (15) 

Using a conduction electron density of 𝑛g ≈ 9 × 10FÃ m-3, we arrive at an available energy 
density of 𝑈g = 2.9 kJ m-3. 

The energy of a Bloch wall is given by 

𝑈¸sÄ;Å = 𝜋e𝐴gy𝐾È          (16) 

where 𝐴gy is the exchange energy density. 𝑈¸sÄ;Å is an energy per unit area of the domain wall. 
For a wall of length 𝐿 in a film of thickness 𝑑, 𝑈¸sÄ;Å is multiplied by the product 𝐿𝑑 to obtain the 
net energy of the wall. The width of a Bloch wall is given by 

𝑤Ê = 𝜋e𝐴gy 𝐾È⁄          (17) 

We approximate the equilibrium energy density of the labyrinth domain structure 𝑈Ë as a 
close-packed network of Bloch walls that are spaced 𝑤Ê apart, centre to centre. From this, the 
spatially averaged domain wall energy density is 

𝑈Ë ≈
Ì°wÍÎÏ
¿Ð

= 𝐾È         (18) 

Using a Taylor series expansion of the energy about equilibrium in two dimensions, we end up 
with a non-equilibrium energy density Δ𝑈Ê associated with the domain dilation ∆𝑤Ë of 

Δ𝑈Ë ≅ 2𝐾È �
∆¿Ó
¿Ó
�
F
        (19) 

The factor of two comes from the fact that a change in the linear density of the domain wall 
density causes a change in the two-dimensional energy density. For the measured domain 
expansion of 6%, we have Δ𝑈Ë = 0.7 kJ m-3, in which case the kinetic energy of the electrons is 
more than sufficient to drive the observed domain dilation. The excess electron energy can drive 
further widening of the domain walls that is not compensated by domain dilation, which could 
further explain the observed broadening of the domain-walls. 

Appealing again to the Taylor series expansion approach, the non-equilibrium energy 
density Δ𝑈Ê associated with domain-wall broadening without a compensating change in domain 
density is 
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Δ𝑈Ê ≅ 𝐾È �
∆¿Ð
¿Ð

�
F
        (20) 

If we assume that all the excess electron energy drives domain-wall broadening, then the 
resultant broadening would be 

�∆¿Ð
¿Ð

� = ÕÌkcFÖ×Ø
∆ÙÓ
ÙÓ

Ú
�

Ö×
≅ 15%            (21) 

By fitting of our data to the hyperbolic tangent model, we measured a broadening of 31% 
within 1.6 ps. Thus, half of the observed ultrafast broadening of the domain walls can be attributed 
to the residual electronic kinetic energy after momentum transfer to the domain structure is taken 
into account. 
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