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Abstract

Elliptic curves are typically defined by Weierstrass equations. Given
a kernel, the well-known Vélu’s formula shows how to explicitly write
down an isogeny between Weierstrass curves. However, it is not clear
how to do the same on other forms of elliptic curves without isomor-
phisms mapping to and from the Weierstrass form. Previous papers
have shown some isogeny formulas for (twisted) Edwards, Huff, and
Montgomery forms of elliptic curves. Continuing this line of work, this
paper derives explicit formulas for isogenies between elliptic curves in
(twisted) Hessian form. In addition, we examine the numbers of op-
erations in the base field to compute the formulas. In comparison

*This author is supported by the PREMA project in Subsaharan Africa sponsoserd by
The Simons Foundation
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with other isogeny formulas, we note that our formulas for twisted
Hessian curves have the lowest costs for processing the kernel and our
X-affine formula has the lowest cost for processing an input point in
affine coordinates.

1 Introduction

An elliptic curve is defined as a nonsingular irreducible projective curve of
genus one, with a specified point as additive identity on the curve. An elliptic
curve is said to be defined over a field k if the curve is defined over k and the
specified point additive identity is k-rational.

Let E be an elliptic curve defined over k with the specified point additive
identity O. It is well known that there exist functions x, y ∈ k(E) such that
the rational map φ defined over k by φ = (x : y : 1) is an isomorphism from
E to an elliptic curve in Weierstrass form:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

and φ(O) = (0 : 1 : 0), where a1, a2, . . . , a6 ∈ k (see [31, III.3.1]). There-
fore, elliptic curves are typically identified with curves defined by such a
Weierstrass equation with the specified point additive identity (0 : 1 : 0).

Let E and E ′ be elliptic curves with specified point additive identities
O and O′ respectively. An isogeny from E to E ′ is defined as a morphism
φ : E → E ′ such that φ(O) = O′. It is a theorem (see [31, III.4.8]) that
an isogeny is also a group homomorphism. As a corollary, the kernel of
an isogeny is a finite subgroup of the domain. Conversely, if F is a finite
subgroup of E, there exists an elliptic curve E ′ and a separable isogeny
φ : E → E ′ such that the kernel of φ is F (see [31, III.4.12]). Given E and
F , Vélu’s formula in [34] shows an explicit expression for φ and E ′, where E
and E ′ are both in Weierstrass form.

However, the Weierstrass equation is only one way to represent an el-
liptic curve. Other forms of elliptic curves are possible and have been pro-
posed, some with applications in cryptography. Examples include Mont-
gomery curves in [25, 29], (twisted) Edwards curves in [9, 3, 1], Huff curves
in [20, 36], and (twisted) Hessian curves in [2]. The first formulas for iso-
genies defined directly for non-Weierstrass curves was for (twisted) Edwards
curves and Huff curves [27]. Shortly thereafter, similar work, [6] and [30],
showed formulas for computing isogenies on Montgomery curves. In this
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paper, we derive a formula for isogenies on twisted Hessian curves and con-
sider the computational cost of computing image points. Furthermore, in our
main proof, we make explicit and rigorous the techniques and justifications
that are required but omitted in proving isogeny formulas in previous works.
Compared to other isogeny formulas, we note that our formulas for twisted
Hessian curves have the lowest costs for preprocessing the kernel points to de-
termine the rational map prior to input evaluation, and our X-affine formula
has the lowest cost for processing an input point in affine coordinates.

Isogenies have found applications in counting the number of points on an
elliptic curve over a finite field (e.g. see [17, 23]), analyzing the complexity
of elliptic-curve discrete logarithms in [18], and cryptographic constructions
(e.g. [33, 5, 7]). More efficient isogeny formulas could lead to performance
benefits in the above applications.

The organization of the paper is as follows. Section 2 introduces Hessian
curves and their generalization called twisted Hessian curves. A summary of
the point addition formulas on twisted Hessian curves is included. Section 3
derives formulas for 3-isogenies. Section 4 states and proves the main result
for isogenies with a kernel of size ` 6≡ 0 (mod 3). Finally, Section 5 examines
the main formula’s computational cost of computing image points. Some
open problems and directions for future work are given in Section 6.

2 Twisted Hessian Curves

A Hessian curve in projective coordinates is defined by the equation

X3 + Y 3 + Z3 = dXY Z

with 27 − d3 6= 0. The Hessian form of elliptic curves has been studied, for
example, in [32, 15, 16, 12], to optimize point addition and scalar multipli-
cation formulas, as well as to optimize pairing computations. In addition,
as a step towards resistance against side-channel attacks, the Sylvester addi-
tion formula (described below) on Hessian curves can also be used for point
doubling and subtraction after a permutation of input coordinates [19]. A
generalization of Hessian curves, called twisted Hessian curves, is defined by
the equation

aX3 + Y 3 + Z3 = dXY Z

with a(27a − d3) 6= 0. Twisted Hessian curves were used in [2] to provide
a complete unified addition formula and improve efficiency for point dou-
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bling and tripling over fields of arbitrary characteristic. Other works that
optimized arithmetic on (twisted) Hessian curves include [10, 11, 22].

Definition 1. A twisted Hessian curve over a field k is a projective curve
H(a, d) defined by the polynomial aX3+Y 3+Z3 = dXY Z with the specified
point (0 : −1 : 1) as additive identity in the projective space P(k)2, with
a, d ∈ k and a(27a− d3) 6= 0. If a = 1, the curve is called a Hessian curve.

As an elliptic curve, each twisted Hessian curve must be isomorphic over k
to a curve given by a Weierstrass equation. Over a finite field of characteristic
not equal to 3, we can find an explicit isomorphism from any twisted Hessian
curve to a Weierstrass curve, and conversely, from any Weierstrass curve with
a k-rational point of order 3 to a twisted Hessian curve. Such isomorphisms
are given in [2, Theorem 5.3 and 5.4] and [28].

For convenience, we summarize below the formulas for point addition on
twisted Hessian curves. Let (X1 : Y1 : Z1) and (X2 : Y2 : Z2) be points on
H(a, d). The inverse of (X1 : Y1 : Z1) is

−(X1 : Y1 : Z1) = (X1 : Z1 : Y1).

The (Sylvester) standard addition formula is given by:

X3 = X2
1Y2Z2 −X2

2Y1Z1,

Y3 = Z2
1X2Y2 − Z2

2X1Y1,

Z3 = Y 2
1 X2Z2 − Y 2

2 X1Z1.

If (X3, Y3, Z3) 6= (0, 0, 0), then (X1 : Y1 : Z1)+(X2 : Y2 : Z2) = (X3 : Y3 : Z3).
Another addition formula, called rotated addition, is defined by the formula:

X ′3 = Z2
2X1Z1 − Y 2

1 X2Y2,

Y ′3 = Y 2
2 Y1Z1 − aX2

1X2Z2,

Z ′3 = aX2
2X1Y1 − Z2

1Y2Z2.

If (X ′3, Y
′
3 , Z

′
3) 6= (0, 0, 0), then (X1 : Y1 : Z1)+(X2 : Y2 : Z2) = (X ′3 : Y ′3 : Z ′3).

The completeness follows because (X3, Y3, Z3) 6= (0, 0, 0) or (X ′3, Y
′
3 , Z

′
3) 6=

(0, 0, 0) by [2, Theorem 4.7]. Moreover, if a is not a cube in k, then (X ′3, Y
′
3 , Z

′
3) 6=

(0, 0, 0) [2, Theorem 4.5].
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3 3-isogenies

In this section, we show how to compute 3-isogenies on twisted Hessian
curves, and in the next section, we provide a formula for `-isogenies with
` 6≡ 0 (mod 3). To compute an isogeny with kernel of size divisible by 3, we
can write the kernel as an internal product of a subgroup of size ` not divis-
ible by 3 and one or more subgroups of size 3, and compose the formulas for
each factor. Together, these formulas are sufficient for kernels of any size. In
particular, to obtain an isogeny with kernel of size 3r` where ` 6≡ 0 (mod 3),
we can compose an `-isogeny with r isogenies of degree 3.

To derive the result for 3-isogenies, we begin by characterizing all points
of order 3 on a twisted Hessian curve. Let c be a cubic root of a. It can
be easily verified that the point (1 : 0 : −c) and its inverse (1 : −c : 0)
both have order 3. In addition, if ω3 = 1 and ω 6= 1, then (0 : −ω : 1) and
its inverse (0 : 1 : −ω) have order 3. The verification has been done in [2,
Theorem 5.1]. In fact, based on the cardinality of the 3-torsion on elliptic
curves (e.g. see [35, Theorem 3.2]), these are the only points of order 3 on
a twisted Hessian curve. Moreover, using the defining equation of H(a, d),
it can be easily verified that the 3-torsion is the precisely the set of points
(X : Y : Z) such that XY Z = 0.

We now turn to formulas for 3-isogenies of twisted Hessian curves. As seen
in the preceding paragraph, a kernel of size 3 is either generated by (0 : −ω :
1) with ω3 = 1 and ω 6= 1 or by (1 : −c : 0) with c3 = a. First, we consider
3-isogenies with their kernel generated by (0 : −ω : 1). Such a map can be
obtained by composing the 3-isogeny given in [2, Theorem 5.4] from a twisted
Hessian curve to a Weierstrass curve of the form Y 2Z+a1XY Z+a3Y Z

2 = X3

with the isomorphism given in [2, Theorem 5.4] between such a Weierstrass
curve and a twisted Hessian curve. The result of such composition is stated
in Theorem 1.

Theorem 1. Let ω3 = 1 and ω 6= 1. The map

(X : Y : Z) 7→ (XY Z : aX3 + ω2Y 3 + ωZ3 : aX3 + ωY 3 + ω2Z3)

is an isogeny from H(a, d) to H(d3 − 27a, 3d) with the kernel

〈(0 : −ω : 1)〉 = 〈(0 : −ω2 : 1)〉 = {(0 : −1 : 1), (0 : −ω : 1), (0 : −ω2 : 1)}.

Proof. We leave the straightforward verification to the reader.
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Next, we consider 3-isogenies with kernel generated by the point (1 : −c :
0) with c3 = a. The only formula for such isogenies that we are aware of
is given in [14, Proposition 4] for Hessian curves over characteristic 3. We
restate the result here.

Theorem 2. Let k have characteristic 3. The map σ : H(1, d3
i+1

) →
H(1, d3

i
) defined by

σ(X : Y : Z) = (d2·3
i

XY Z : Y 2Z +X2Y +XZ2 : XY 2 +X2Z + Y Z2)

is an isogeny. Moreover, f : H(1, d3
i
) → H(1, d3

i+1
) defined by f(X : Y :

Z) = (X3 : Y 3 : Z3) is an isogeny, and f ◦ σ(P ) = 3P for each P on
H(1, d3

i+1
). The kernel of σ is {(0 : −1 : 1), (−1 : 1 : 0), (−1 : 0 : 1)}.

We generalize Theorem 2 to 3-isogenies on twisted Hessian curves H(a, d)
over any characteristic with kernel 〈(1 : −c : 0)〉, where c3 = a.

Theorem 3. The rational map

φ =
(
XY Z : c2X2Z + cXY 2 + Y Z2 : c2X2Y + cXZ2 + Y 2Z

)
.

is an isogeny from H(a, d) to H(A,D), where c3 = a,

A = d2c+ 3dc2 + 9a and D = d+ 6c

with kernel

〈(1 : −c : 0)〉 = 〈(1 : 0 : −c)〉 = {(0 : −1 : 1), (1 : −c : 0), (1 : 0 : −c)}.

Proof. Let f = xy, g = c2x2 + cxy2 + y, and h = c2x2y + cx + y2 be the
dehomogenized coordinate maps of φ. Also let A and D be as given in the
theorem statement. Then,

Af 3 + g3 + h3 −Dfgh = (ax3y3 − cdx2y2 + ax3 + y3)(ax3 + y3 + 1− dxy).

This shows that the range of the rational map φ is indeed H(A,D). It
remains to check that the kernel is as claimed. Let P = (X : Y : Z) and
suppose φ(P ) = (0 : −1 : 1), then XY Z = 0.

1. If X = 0, then Y Z2 = −Y 2Z, i.e. Z = −Y and P = (0 : −1 : 1).

2. If Y = 0, then c2X2Z = −cXZ2, i.e. cX = −Z and P = (1 : 0 : −c).

3. If Z = 0, then cXY 2 = −c2X2Y , i.e. Y = −cX and P = (1 : −c : 0).

Conversely, by straightforward calculation, we see that φ(P ) = (0 : −1 : 1)
for each such P .
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4 Isogenies of degree ` 6≡ 0 (mod 3)

In this section, we look at the `-isogeny formulas, where ` 6≡ 0 (mod 3). One
approach for obtaining such an `-isogeny between twisted Hessian curves is to
compose the isogeny given by Vélu’s formula with isomorphisms to and from
Weierstrass curves. This approach, however, doesn’t lead to a simple formula.
Moreover, the resulting codomain twisted Hessian curve is dependent on the
choice of point of order 3 on the codomain Weierstrass curve produced by
Vélu’s formula. We prove our main twisted Hessian isogeny result as follows.

Theorem 4. Let F = {(0 : −1 : 1)}∪ {(si : ti : 1)}ni=1 be a finite subgroup of
H(a, d) of size ` = n+ 1, where ` is not divisible by 3. Then, F is the kernel
of an isogeny from H(a, d) to H(A,D) defined by

φ(P ) =

(∏
R∈F

X(P +R) :
∏
R∈F

Y (P +R) :
∏
R∈F

Z(P +R)

)
.

where A = a` and

D =
(1− 2n)d+ 6

∑n
i=1 1/(siti)∏n

i=1 si
.

Note that in the equation for φ, for each point P + R, the choice of
representative of P + R in projective coordinates does not affect the result
φ(P ). Moreover, siti 6= 0 for each i ∈ {1, 2, . . . , n}.

Proof. Without loss of generality, let k be algebraically closed. We start by
writing down a rational form of the map φ given in the theorem, which is
derived from the standard addition formula. Let

φY :=
y

x

n∏
i=1

xy − siti
s2i y − tix2

and φZ :=
1

x

n∏
i=1

t2ix− siy2

s2i y − tix2
.

That is, φ(x : y : 1) = (1 : φY : φZ). Define

G = A+ φ3
Y + φ3

Z −DφY φZ ∈ k(H),

where A,D ∈ k are to be determined.
Our goal is show that G = 0 for A,D ∈ k as stated in the theorem. To

this end, by Proposition [31, II.1.2], it suffices to show that G has no poles
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and G(Q) = 0 for some Q on H. By the definitions of φY and φZ , if P is
a pole of G, then X(φ(P )) = 0, which is equivalent to X(P + R) = 0 for
some R ∈ F . Let Q = P + R. From the formula of φ, it can be seen that
φ is invariant under translation by any point in F . So φ(P ) = φ(Q) and
X(Q) = 0. Therefore, if G has a pole at some point P , then G also has
a pole at some point Q with X(Q) = 0. By subsituting X = 0 into the
defining equation of H, we find that the only points Q with X(Q) = 0 are
{(0 : −ω : 1) | ω3 = 1}.

Let P = (0 : −ω : 1) with ω3 = 1. We’ll show that P is not a pole of G for
some A and D in k and hence by the arguments in the preceding paragraph,
G has no pole at all and thus is constant.

First, we assume that the characteristic of k is not 3. We need the
following facts:

� k[H]P is a discrete valuation ring and x is a uniformizer of k[H]P by
[13, Theorem 1 of Chapter 3].

� k[H]P has the unique maximal ideal MP := {q ∈ k[H]P | q(P ) = 0}
(see [13, Section 2.4]).

� k(H) is the field of quotients of k[H]P .

� The field k is a subring of k[H]P , and the map b 7→ b + Mp from k to
k[H]p/MP is a field isomorphism.

We can conclude that the function that maps each element in k(H) to its
Laurent series expansion in k((x)) is a one-to-one ring homomorphism [13,
Problem 2.32]. We write f =

∑r
i=m cix

i where m ∈ Z and r ∈ Z ∪ {∞} to
mean that f has the Laurent series expansion

∑r
i=m cix

i. We also denote by
O(xn) any unspecified series of order at least n.

Next, we find the series expansion of y in terms of x. The order of y at
P is ordP (y) = 0, since y is defined and is nonzero at P . Thus y has a power
series expansion y =

∑∞
i=0 cix

i. As ax3 + y3 + 1 − dxy is zero in k(H) and
the function that maps each element in k(H) to its Laurent series expansion
is a one-to-one ring homomorphism,

ax3 + (
∞∑
i=0

cix
i)3 + 1− dx(

∞∑
i=0

cix
i) = 0.
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Since y − c0 vanishes at P , we have c0 = −ω. Then, solving for c1 and c2
gives

y = −ω − d

3ω
x+O(x3).

Then,

xy − siti
s2i y − tix2

=
ti
ωsi

+

(
3− dsiti

3s2i

)
x+

(
9t2i − d2s2i ti

9ω2s3i

)
x2 +O(x3),

t2ix− siy2

s2i y − tix2
=
ω

si
+

(
3t2 − ds

3ωs2

)
x+

(
dsit

2
i − 3t

3s3i

)
x2 +O(x3).

Note that by the characterization of the 3-torsion in the preceding section,
that the kernel does not contain a point of order 3 is equivalent to siti 6= 0.
In the remainder of the proof, we use the definition S :=

∏n
i=1 si, and since

−(si : ti : 1) = (si/ti : 1/ti : 1), we have

n∏
i=1

ti = 1,
n∑

i=1

t2i
si

=
n∑

i=1

1

siti
, and

∑
1≤i<j≤n

t2i t
2
j

sisj
=

∑
1≤i<j≤n

1

sisjtitj
. (1)

Moreover, we also use the following formula for the product of power series:

n∏
i=1

c
(0)
i +c

(1)
i x+ c

(2)
i x2 +O(x3)

=
n∏

i=1

c
(0)
i +

( n∏
i=1

c
(0)
i

)( n∑
i=1

c
(1)
i

c
(0)
i

)
x

+
( n∏

i=1

c
(0)
i

)( n∑
i=1

c
(2)
i

c
(0)
i

+
n∑

1≤i<j≤n

c
(1)
i c

(1)
j

c
(0)
i c

(0)
j

)
x2 +O(x3),

assuming
∏n

i=1 c
(0)
i 6= 0.

Thus, we have

n∏
i=1

xy − siti
s2i y − tix2

= U0 + U1x+ U2x
2 +O(x3),
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where

U0 =
n∏

i=1

ti
ωsi

=
1

ωnS
,

U1 =
( n∏

i=1

ti
ωsi

) n∑
i=1

( ω

siti
− d

3

)
=

1

ωn−1S

(
− nd

3
+

n∑
i=1

1

siti

)
,

U2 =
n∏

i=1

ti
ωsi

( n∑
i=1

( d2
9ω
− ti
ωs2i

)
+

∑
1≤i<j≤n

(ω2(3− dsiti)(3− dsjtj)
9sisjtitj

))
=

1

ωnS

( n∑
i=1

( d2
9ω
− ti
ωs2i

)
+

∑
1≤i<j≤n

(d2ω2

9
− dω2

3siti
− dω2

3sjtj
+

ω2

sisjtitj

))
=

1

ωn+1S

(n(n+ 1)

2

d2

9
−

n∑
i=1

ti
s2i
− (n− 1)d

3

∑
i

1

siti
+

∑
1≤i<j≤n

1

sisjtitj

)
.

Moreover,

n∏
i=1

t2ix− siy2

s2i y − tix2
= V0 + V1x+ V2x

2 +O(x3),

where

V0 =
n∏

i=1

ω

si
=
ωn

S
,

V1 =
ωn

S

n∑
i=1

d

3ω2
− t2i
ω2si

=
ωn−2

S

(nd
3
−

n∑
i=1

t2i
si

)
,

V2 =
ωn

S

( n∑
i=1

( dt2i
3ωsi

− ti
ωs2i

)
+

∑
1≤i<j≤n

(dsi − 3t2i )(dsj − 3t2j)

9ω4sisj

)
=
ωn

S

( n∑
i=1

( dt2i
3ωsi

− ti
ωs2i

)
+

∑
1≤i<j≤n

d2

9ω
− dt2i

3ωsi
−

dt2j
3ωsj

+
t2i t

2
j

ωsisj

)
=
ωn−1

S

(n(n− 1)

2

d2

9
−

n∑
i=1

ti
s2i

+
(2− n)d

3

n∑
i=1

t2i
si

+
∑

1≤i<j≤n

t2i t
2
j

sisj

)
.
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Substitution into G, with some additional simplifying using (1), yields

G = G−3x
−3 +G−2x

−2 +G−1x
−1 +O(1),

where

G−3 = 0,

G−2 =
ω

S3

(
(2n− 1)d− 6

n∑
i=1

1

siti
+DS

)
,

G−1 =
ω2d

3S3

(
(2n− 1)d− 6

n∑
i=1

1

siti
+DS

)
.

Hence, G−2 = G−1 = 0 if

D =
(1− 2n)d+ 6

∑n
i=1

1
siti

S
;

i.e. G has no pole and thus is constant.
Finally, we consider the case when k has characteristic 3. In particular, x

is not a uniformizer for k[H]P . Instead, ω = 1, and u = y+1 is a uniformizer
for k[H]P . Since x is defined and vanishes at P , i.e. ordP (x) ≥ 1, x has a
power series expansion x =

∑∞
i=0 biu

i with b0 = 0. Hence,

a(
∞∑
i=0

biu
i)3 + (u− 1)3 + 1− d(

∞∑
i=0

biu
i)(u− 1) = 0.

Solving for b1, b2, . . . , we get

x = −1

d
(u3+u4+· · ·+u8)+a− d

3

d4
(u9+· · ·+u11)+−a− d

3

d4
(u12+u13+u14)+O(u15).

Note that in characteristic 3, by the definition of twisted Hessian curves,
d 6= 0. Then,

(
xy − siti
s2i y − tix2

)3 =
t3i
s3i

(1 + u3 + u6) +O(u9),

(
t2ix− siy2

s2i y − tix2
)3 =

1

s3i
(1− u3) +O(u9),

xy − siti
s2i y − tix2

· t
2
ix− siy2

s2i y − tix2
=

1

s2i

(
ti +

t3i + 2

dsi
u3 +

t3i
dsi

u6
)

+O(u9).
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Therefore,
n∏

i=1

(
xy − siti
s2i y − tix2

)3 =
1

S3

(
1 + nu3 +

n(n+ 1)

2
u6
)

+O(u9),

n∏
i=1

(
t2ix− siy2

s2i y − tix2
)3 =

1

S3

(
1− nu3 +

n(n− 1)

2
u6
)

+O(u9),

n∏
i=1

xy − siti
s2i y − tix2

· t
2
ix− siy2

s2i y − tix2
=

1

S2

(
1 +

n∑
i=1

t3i + 2

dsiti
u3
)

+O(u6).

Using the identities in (1), since

n∑
i=1

(t3i + 2)

dsiti
=

1

d

( n∑
i=1

t2i
si
−

n∑
i=1

1

siti

)
= 0,

we obtain the simplified expression
n∏

i=1

xy − siti
s2i y − tix2

· t
2
ix− siy2

s2i y − tix2
=

1

S2
+O(u6).

Substitution into the definition of G, with additional simplification in char-
acteristic 3, yields

G =
d2DS + (2n− 1)d3

S3
u−6 +

−d2DS + (1− 2n)d3

S3
u−3 +O(1).

Therefore, if D = (1− 2n)d/S, G = O(1) and thus is constant.
We have proved that for the value of D stated in theorem, G is constant.

So if G(Q) = 0 for some Q, then G = 0. Next, we find A ∈ k such that G
vanishes at Q = (1 : −c : 0) ∈ H where c3 = a. By [2, Theorem 4.1], i.e.
(X : Y : Z) + (1 : −c : 0) = (Y : cZ : c2X),

φ(Q) =

(∏
R∈F

X(Q+R) :
∏
R∈F

Y (Q+R) :
∏
R∈F

Z(Q+R)

)

=

(∏
R∈F

Y (R) : c`
∏
R∈F

Z(R) : c2`
∏
R∈F

X(R)

)

=

(∏
R∈F

Y (R)/Z(R) : c` : 0

)
= (−1 : c` : 0).
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So G(Q) = A− c3` = A− a`. Solving G(Q) = 0 for A gives A = a`.
It remains to check that the kernel of φ is indeed F . It’s clear that

φ(P ) = (0 : −1 : 1) if P ∈ F . For the converse, suppose φ(P ) = (0 : −1 : 1).
Then X(Q) = 0 where Q = P + R for some R ∈ F . So Q = (0 : −1 : 1)
or Q = (0 : −ω : 1) for some ω 6= 1 such that ω3 = 1. If Q = (0 : −1 : 1),
P = −R ∈ F . Else, by [2, Theorem 4.6],

φ(Q) = φ(0 : −ω : 1) = (0 : −ω` : 1) 6= (0 : −1 : 1)

since 3 - `. However, this contradicts φ(Q) = φ(P ) = (0 : −1 : 1). That
concludes the proof.

5 Rational-map representations

In this section, we derive efficient rational-map representations of the isogeny
in Theorem 4 and examine their computational complexity by counting the
number of multiplications, squarings, and inversions. We denote by S,M,Ma,
and I the cost of squaring, multiplication, multiplication by a, and inversion
respectively.

In general, the computational cost depends on many factors, for examples,
how the points are represented: projective, affine, or both (mixed), how much
we want to avoid inversions, how the coordinate maps are represented (e.g.
polynomials or rational functions), and the particular applications and their
amortized running time. In our analysis, we will work with purely affine
coordinates or purely projective coordinates, and allow up to one inversion
operation. Furthermore, we separate the computation into two parts: one
that involves only the kernel and one that requires the input point.

5.1 Affine coordinates

Due to the symmetry between the Z and Y coordinates, we have a choice
whether to work with the X-affine and Z-affine patch. We will analyze both
cases.
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5.1.1 Z-affine coordinates

Lemma 1. If ax3 + y3 + 1 = dxy and aα3 + β3 + 1 = dαβ, then,

(xy − αβ)(β2xy − α) = (βy2 − aα2x)(βx2 − α2y), (2)

(β2y − aαx2)(y − aαβx2) = (βy2 − aα2x)(β − aα2xy), (3)

(αy2 − β2x)(αβy2 − x) = (α2y − βx2)(aα2xy − β). (4)

Proof. The lemma is implied by the following polynomial identities:

(xy − αβ)(β2xy − α)− (βy2 − aα2x)(βx2 − α2y) =

α2β(ax3 + y3 + 1− dxy)− αxy(aα3 + β3 + 1− dαβ),

(β2y − aαx2)(y − aαβx2)− (βy2 − aα2x)(β − aα2xy)

aα2βx(ax3 + y3 + 1− dxy)− aαx2y(aα3 + β3 + 1− dαβ),

(αy2 − β2x)(αβy2 − x)− (α2y − βx2)(aα2xy − β) =

α2βy(ax3 + y3 + 1− dxy)− αxy2(aα3 + β3 + 1− dαβ).

Corollary 1. Let F = {(0,−1)}∪{(α̃i, 1)}ri=1∪{(αi, βi), (αi/βi, 1/βi)}si=1 be
a subgroup of H(a, d) and |F | 6≡ 0 (mod 3), where (αi, βi) has order greater
than 2 and (α̃i, 1) has order 2. Let φ be the isogeny in Theorem 4 with kernel
F . Then,

φ =
(
x

r∏
i=1

α̃i − xy
aα̃ix2 − y

s∏
i=1

βix
2 − α2

i y

βi − aα2
ixy

, y
r∏

i=1

y2 − aα̃2
ix

aα̃ix2 − y

s∏
i=1

βiy
2 − aα2

ix

βi − aα2
ixy

)
(5)

=
(
x

r∏
i=1

α̃2
i y − x2

x− α̃iy2

s∏
i=1

α2
i y − βix2

aα2
ixy − βi

, y
r∏

i=1

xy − α̃i

x− α̃iy2

s∏
i=1

aα2
ix− βiy2

aα2
ixy − βi

)
. (6)

Proof. Equation (5) follows from Theorem 4, the rotated addition formula,
and simplification using equations (2) and (3) in Lemma 1. Equation (6)
follows from Theorem 4, the standard addition formula, and simplification
using equations (2) and (4) in Lemma 1.

In counting the number of operations, we separate the computation into
two parts: one that involves only the kernel and one that requires the input
point. First, we look at (5).
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� To process the kernel, we compute the following values: {α2
i , aαi, aα

2
i }si=1

and {aα̃i, aα̃
2
i }ri=1. This step takes sS + (2s+ r)Ma + rM .

� Then, we compute xy, x2, y2 for 2S + 1M .

� Next, we compute {βix2 − α2
i y, βiy

2 − aα2
ix, βi − aα2

ixy}si=1 and {y2 −
aα̃2

ix, aα̃ix
2 − y}ri=1 for (5s+ 2r)M

� The products x(
∏r

i=1 α̃i−xy)(
∏s

i=1 βix
2−α2

i y), y(
∏r

i=1 y
2−aα̃2

ix)(
∏s

i=1 βiy
2−

aα2
ix), and (

∏r
i=1 aα̃ix

2−y)(
∏s

i=1 βi−aα2
ixy) take additional (3r+3s−

1)M .

� A final step takes 2M + 1I.

In total, processing the kernel takes sS + (2s + r)Ma + rM and the
input point takes 2S + (8s + 5r + 2)M + 1I. By similar counting, using
(6), processing the kernel takes (r + s)S + 2sMa and the input point takes
2S + (8s+ 5r + 2)M + 1I.

5.1.2 X-affine coordinates

Lemma 2. If a+ y3 + z3 = dyz and a+ β3 + γ3 = dβγ, then,

(γ2yz − aβ)(β2yz − aγ) = (az − βγy2)(ay − βγz2), (7)

(γ2y − βz2)(β2y − γz2) = (az − βγy2)(yz − βγ), (8)

(β2z − γy2)(γ2z − βy2) = (yz − βγ)(ay − βγz2). (9)

Proof.

(γ2yz − aβ)(β2yz − aγ)− (ax− βγy2)(ay − βγz2) =

aβγ(a+ y3 + z3 − dyz)− ayz(a+ β3 + γ3 − dβγ),

(γ2y − βz2)(β2y − γz2)− (ax− βγy2)(yz − βγ) =

βγz(a+ y3 + z3 − dyz)− yz2(a+ β3 + γ3 − dβγ),

(β2z − γy2)(γ2z − βy2)− (yz − βγ)(ay − βγz2) =

βγy(a+ y3 + z3 − dyz)− y2z(a+ β3 + γ3 − dβγ).
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Corollary 2. Let F = O ∪ {(β̃i, β̃i)}ri=1 ∪ {(βi, γi), (γi, βi)}si=1 be a subgroup
of H(a, d) and |F | 6≡ 0 (mod 3), where (βi, γi) has order greater than 2 and
(β̃i, β̃i) has order 2. Let φ be the isogeny in Theorem 4 with kernel F . Then,

φ =
(
y

r∏
i=1

β̃2
i y

2 − az
β̃i(z2 − β̃iy)

s∏
i=1

az − βiγiy2

yz − βiγi
, z

r∏
i=1

a− β̃iyz
z2 − β̃iy

s∏
i=1

ay − βiγiz2

yz − βiγi

)
(10)

=
(
y

r∏
i=1

β̃2
i y − β̃iz2

yz − β̃2
i

s∏
i=1

az − βiγiy2

yz − βiγi
, z

r∏
i=1

β̃2
i z − β̃iy2

yz − β̃2
i

s∏
i=1

ay − βiγiz2

yz − βiγi

)
.

(11)

Moreover, using the notation of Theorem 4,

D =
r∏

i=1

β̃i

(
s∏

i=1

βiγi

(
(1− 2r + 2s)d+ 6

r∑
i=1

β̃i

)
− 6a

s∑
i=1

∏
j 6=i

βjγj

)
.

Note that the expression for D doesn’t involve any inversion.

Proof. Equation (10) follows from Theorem 4, the rotated addition formula,
and simplification using equations (7) and (8) in Lemma 2. Equation (11)
follows from Theorem 4, the standard addition formula, and simplification
using equations (8) and (9) in Lemma 2. The expression for D follows be-
cause, using the notation in Theorem 4,

n∏
i=1

1

siti
=

s∑
i=1

β3
i + γ3i
βiγi

+
r∑

i=1

β̃i =
s∑

i=1

dβiγi − a
βiγi

+
r∑

i=1

β̃i

= sd− a
s∑

i=1

1

βiγi
+

r∑
i=1

β̃i,

1/
n∏

i=1

si =
s∏

i=1

βiγi

r∏
i=1

β̃i.

16



By rewriting (10) and (11) as

φ =
(
y

r∏
i=1

1

β̃i

r∏
i=1

β̃2
i y

2 − az
z2 − β̃iy

s∏
i=1

az − βiγiy2

yz − βiγi
, z

r∏
i=1

β̃i

β̃i

r∏
i=1

a− β̃iyz
z2 − β̃iy

s∏
i=1

ay − βiγiz2

yz − βiγi

)
(12)

=
(
y

r∏
i=1

β̃i

r∏
i=1

β̃iy − z2

yz − β̃2
i

s∏
i=1

az − βiγiy2

yz − βiγi
, z

r∏
i=1

β̃i

r∏
i=1

β̃iz − y2

yz − β̃2
i

s∏
i=1

ay − βiγiz2

yz − βiγi

)
(13)

and straightforward counting as before, the costs of (12) and (13) are given
in Table 1.

5.2 Projective coordinates

Corollary 3. Let F = O∪{(α̃i : β̃i : β̃i)}ri=1 ∪{(αi : βi : γi), (αi : γi : βi)}si=1

be a subgroup of H(a, d) and |F | 6≡ 0 (mod 3), where (αi : βi : γi) has order
greater than 2 and (α̃i : β̃i : β̃i) has order 2. Let φ be the isogeny in Theorem
4 with kernel F . Then,

φ =
(
X

r∏
i=1

β̃2
iXY − α̃iβ̃iZ

2

s∏
i=1

α2
iY Z − βiγiX2 :

Y
r∏

i=1

aα̃2
iXZ − β̃2

i Y
2

s∏
i=1

aα2
iXZ − βiγiY 2 :

Z
r∏

i=1

β̃2
i Y Z − aα̃iβ̃iX

2

s∏
i=1

aα2
iXY − βiγiZ2

)
(14)

=
(
X

r∏
i=1

α̃2
iY Z − β̃2

iX
2

s∏
i=1

α2
iY Z − βiγiX2 :

Y

r∏
i=1

β̃2
iXY − α̃iβ̃iZ

2

s∏
i=1

aα2
iXZ − βiγiY 2 :

Z
r∏

i=1

β̃2
iXZ − α̃iβ̃iY

2

s∏
i=1

aα2
iXY − βiγiZ2

)
(15)

Proof. The corollary follows by projectivizing the expressions in previous
corollaries.
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Process kernel Process input point
Z-affine (5) sS + rM + (r + 2s)Ma 2S + (8s+ 5r + 2)M + 1I
Z-affine (6) (r + s)S + 2sMa 2S + (8s+ 5r + 2)M + 1I
X-affine (12) rS + (r + s− 1)M 2S + (6r + 5s+ 4)M + 2Ma + 1I
X-affine (13) rS + (r + s− 1)M 2S + (5r + 5s+ 4)M + 2Ma + 1I
Projective (14) (2r + s)S + (r + s)M + (s+ 2r)Ma 3S + (9s+ 9r + 3)M
Projective (15) (2r + s)S + (r + s)M + sMa 3S + (9s+ 9r + 3)M

Table 1: Computational cost of our isogeny formulas on twisted Hessian
curves.

By straightforward counting, (15) takes (2r + s)S + (r + s)M + sMa to
process the kernel and (9s + 9r + 3)M + 3S for the input point, and (14)
takes additional 2rMa for processing the kernel. The results are summarized
in Table 1.

5.3 Comparison with other formulas

For comparison, consider the isogeny formula from [27] for Edwards curves,
which is the most efficient to our knowledge so far. We note that the authors
reported the cost of (6s+1)M+2S+I in affine coordinates or (6s+3)M+4S
in mixed coordinates (the kernel is in affine coordinates and the input point
is in projective coordinates), for computing an image point. However, in each
case, up to sI were required for preprocessing the kernel points. Here, we
consider a different approach that avoids inversions entirely in the projective
case and uses only 1 inversion in the affine case. First, we consider the
projective case. Suppose the kernel is

F = {(0 : 1 : 1)} ∪ {(αi : βi : γi)}si=1 ∪ {(−αi : βi : γi)}si=1.

The isogeny is
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(x : y : z) 7→
(
x

s∏
i=1

β2
i γ

4
i x

2z2 − α2
i γ

4
i y

2z2 :

y

s∏
i=1

β2
i γ

4
i y

2z2 − α2
i γ

4
i x

2z2 :

z

s∏
i=1

β2
i γ

4
i z

4 − d2α2
iβ

4
i x

2y2
)
.

For processing the kernel, one can compute β2
i γ

4
i , α

2
i γ

4
i , and d2α2

iβ
4
i , for all

i, with (5s + 1)S + 4sM . For computing the image point, x2z2, y2z2, x2y2,
and z4, take 3M and 4S. If the characteristic is not 2, By the definition of
(twisted) Edwards curves, the characteristic is not 2, and we can compute
each pair of 2(β2

i γ
4
i x

2z2 − α2
i γ

4
i y

2z2) and 2(β2
i γ

4
i y

2z2 − α2
i γ

4
i x

2z2) for the x
and y coordinates with only 2M using the identities:

2(ax− by) = (a− b)(x+ y) + (a+ b)(x− y) and

2(ay − bx) = (a− b)(x+ y)− (a+ b)(x− y).

Each factor β2
i γ

4
i z

4 − d2α2
iβ

4
i x

2y2 in the z coordinate takes 2M , and let
cost(2s) be the cost of computing 2s. Multiplication of all the factors in
the x and y coordinates takes 2sM , and multiplication of the factors in the z
coordinate including 2s takes (s+1)M . Therefore, the total cost of computing
an image point is 4S + (7s+ 4)M + cost(2s).

Similarly, in affine coordinates, we can compute the Edwards isogeny map

(x, y) 7→

(
x

s∏
i=1

β2
i x

2 − α2
i y

2

β2
i − d2α2

iβ
4
i x

2y2
, y

s∏
i=1

β2
i y

2 − α2
ix

2

β2
i − d2α2

iβ
4
i x

2y2

)

using (3s+1)S+2sM for processing the kernel and (6s+1)M+2S+I+cost(2s)
for the input point.

The comparison is summarized in Table 2, where we assume the kernel size
is odd and 1S = 0.8M . We note that our formulas for twisted Hessian curves
have the lowest costs for processing the kernel and our X-affine formula has
the lowest cost for processing an input point in affine coordinates.
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Formula Process kernel Process input point
twisted Hessian (Z-affine) [this work] 0.8sM + 2sMa (8s+ 3.6)M + 1I
twisted Hessian (X-affine) [this work] (s− 1)M (5s+ 5.6)M + 2Ma + 1I
twisted Hessian (projective) [this work] 1.8sM + sMa (9s+ 5.4)M
Edwards (affine) [27] + [this work] (4.4s+ 0.8)M (6s+ 2.6)M + 1I + cost(2s)
Edwards (projective) [27] + [this work] (8s+ 0.8)M (7s+ 7.2)M + cost(2s)
Huff (affine) [27] (3.6s+ 1.6)M (6s− 0.4)M + 2I
Vélu’s [34] 9.8M (13s+ 1.8)M + 1I

Table 2: Comparison of the computational costs for various isogeny formulas.
We denote by cost(2s) the cost of computing 2s.

6 Conclusion

In this work we looked at computing isogenies between elliptic curves rep-
resented as twisted Hessian curves. There still exist other models of curves
for which direct isogeny formulas are not known, such as Jacobi quartics and
Jacobi intersections [4, 24]. It would be interesting to see if simple isogeny
formulas exist for these models. We note that the original Velu isogeny for-
mulas are expressed as a sum, while the more recent Edwards, Hessian, and
Montgomery formulas all involve a product of expressions involving the ker-
nel points. Is there a multiplicative version of Velu’s formulas? Or additive
expressions for isogenies of the alternate models of elliptic curves?

We leave it as future work to further optimize the formulas presented and
integrate them into specific applications. For example, this could include
efficient computation of low degree isogenies. Low-degree isogenies are used
in post-quantum cryptographic isogeny schemes, and if optimized formulas
can be found, they may lead to implementing these isogeny cryptosystems
using twisted Hessian curves. In particular, it may be interesting to compute
the 9-isogeny formulas for Hessian curves, similar to the work on 4-isogenies
over Montgomery and Edwards models [7, 21].

It would also be interesting to use low degree isogenies to compute scalar
multiplication formulas on Hessian curves for small scalars like 2, 3, and 5,
as done in [8, 26], especially for curves with j-invariant zero.
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