
 

Hilbert-Space Fragmentation from Strict Confinement

Zhi-Cheng Yang ,1,2,* Fangli Liu,1,2 Alexey V. Gorshkov ,1,2 and Thomas Iadecola3,†
1Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
2Joint Center for Quantum Information and Computer Science, NIST/University of Maryland,

College Park, Maryland 20742, USA
3Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

(Received 16 December 2019; accepted 5 May 2020; published 22 May 2020)

We study one-dimensional spin-1=2 models in which strict confinement of Ising domain walls leads to
the fragmentation of Hilbert space into exponentially many disconnected subspaces. Whereas most
previous works emphasize dipole moment conservation as an essential ingredient for such fragmentation,
we instead require two commuting U(1) conserved quantities associated with the total domain-wall number
and the total magnetization. The latter arises naturally from the confinement of domain walls. Remarkably,
while some connected components of the Hilbert space thermalize, others are integrable by Bethe ansatz.
We further demonstrate how this Hilbert-space fragmentation pattern arises perturbatively in the confining
limit of Z2 gauge theory coupled to fermionic matter, leading to a hierarchy of timescales for motion of the
fermions. This model can be realized experimentally in two complementary settings.
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Introduction.—Generic nonintegrable quantum many-
body systems eventually reach thermal equilibrium under
unitary time evolution from initial states having a finite
energy density with respect to the Hamiltonian [1]. Such
behavior arises in models satisfying the eigenstate thermal-
ization hypothesis (ETH) [2,3], which posits that highly
excited eigenstates of generic Hamiltonians at the same
energy density are indistinguishable in the thermodynamic
limit as far as local observables are concerned.
Recent experimental and theoretical investigations

indicate that ETH in its strongest form can be violated
even in nonintegrable systems with translation symmetry.
Experiments on Rydberg-atom chains, where persistent
revivals in quench dynamics starting from certain initial
states are observed [4], led to the identification of certain
atypical eigenstates that are embedded in an otherwise
thermalizing spectrum [5,6]. Another mechanism leading
to ETH violations is dynamical constraints. Fractonic
systems, where such constraints manifest themselves in
the restricted mobility of excitations, turn out to be natural
candidates along this direction [7–10]. Mobility restrictions
in fractonic systems can be implemented by imposing both
charge (Q) and dipole moment (P) conservation [11,12],
providing a simple guiding principle for systematic studies
of constrained models. It is shown in Refs. [13–16] that
these two conservation laws cause the Hilbert space to
fracture into disconnected subspaces that are invariant (i.e.,
closed) under the action of the Hamiltonian; moreover,
these invariant subspaces cannot be distinguished by their
ðQ;PÞ quantum numbers alone [17]. This “fragmentation”
of Hilbert space [14,15,18–23] leads to a broad distribution
of the eigenstate entanglement entropies within an energy
window, violating the strong ETH.

Fractonic systems bear a phenomenological resemblance
to lattice models exhibiting quasiparticle confinement [24].
One simple example is the one-dimensional (1D) Ising
model in transverse and longitudinal magnetic fields, where
the latter induces a confining potential for pairs of Ising
domain-wall excitations that grows linearly with their
separation [25,26]. Recent studies of confining systems
have mainly focused on physics near the ground state,
where domain walls and their bound states are well-defined
quasiparticles [24,27–36]. This leaves open the question of
the effects of confinement at finite energy density, where
there are generically no well-defined quasiparticles.
In this Letter, we show that Hilbert-space fragmentation

(HSF) can arise in models conserving both domain-wall
number ðnDWÞ and total magnetization (Sz). These two
commuting U(1) conserved quantities naturally arise from
strict confinement, where isolated domain walls cannot
move without changing the Sz quantum number, naturally
leading to HSF. We exemplify this phenomenon with a 1D
spin-1=2 model that features exponentially many invariant
subspaces. These include exponentially many frozen con-
figurations (i.e., subspaces of dimension one), as well as
exponentially large subspaces generated by certain “root
configurations” that we enumerate. The pattern of HSF that
we find is extremely rich, featuring large subspaces within
which the dynamics is thermalizing, as well as others
spanning entire ðnDW; SzÞ sectors that are integrable by
Bethe ansatz. We further demonstrate how the same HSF
pattern arises perturbatively in the extreme confining limit of
a 1D nDW-conserving spin model that maps exactly ontoZ2

gauge theory coupled to fermionicmatter [31,37],which can
be realized experimentally using state-of-the-art techniques
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in cold atoms [38,39]. We show that HSF gives rise to a
complex hierarchy of timescales for quench dynamics that
depends crucially on the initial state. Our results thus
establish HSF as a mechanism for slow dynamics in gauge
theories at finite energy density.
Model.—To see how the simultaneous conservation of Sz

and nDW gives rise to HSF, we study a simple model

H ¼
XL−1

i¼2

½JPi−1;iþ2ðσþi σ−iþ1 þ σ−i σ
þ
iþ1Þ þ Δ2σ

z
iσ

z
iþ2�; ð1Þ

where Pi−1;iþ2 ¼ 1þ σzi−1σ
z
iþ2 projects out configurations

with opposite spins on sites i − 1 and iþ 2 (see also
Ref. [27]). Note that ½H; σz1;L� ¼ 0, so that we can fix the
two edge spins to point down. Adopting the notation 1≡ ↑,
0≡ ↓ for the local spin states, we see that the kinetic term
in Eq. (1) hops a magnon while preserving nDW:
0100 ↔ 0010, and 1011 ↔ 1101. Since the nearest-neigh-
bor Ising interaction couples to the conserved quantity nDW,
we add a next-nearest-neighbor Ising interaction Δ2 to
make the model more generic (see below). Equation (1) has
two U(1) conserved quantities ðnDW; SzÞ; for our choice of
boundary conditions, we have nDW ¼ 0; 2;…; L − 2, and
Sz¼−LþnDW;−LþnDWþ2;…;L−nDW−2 for nDW ≠ 0.
This gives rise to

P
L−2
nDW¼2ðL−nDWÞþ1¼ðL=2ÞðL=2−1Þþ

1 sectors labeled by these two quantum numbers. As we
show later [see Eq. (3)], one can think of Hamiltonian (1)
as describing an nDW-conserving spin-1=2 system in a
uniform confining longitudinal field h

P
i σ

z
i in the strict-

confinement limit h → ∞. In this limit, Sz becomes a
conserved quantity. Isolated domain walls (“quarks”)
cannot move without changing Sz, costing infinite energy.
However, tightly bound pairs of domain walls (magnons, or
“mesons”) can move without violating Sz conservation.
Strong HSF.—Naively, one would expect that the Hilbert

space of Hamiltonian (1) organizes into OðL2Þ symmetry
sectors. In Fig. 1(a), we visualize the symmetry sector
ðnDW ¼ 8; Sz ¼ −2Þ as a graph whose nodes are z-basis
configurations and whose edges correspond to nonzero
matrix elements of H. We find that the Hilbert space within
this symmetry sector further fractures into many discon-
nected emergent subsectors (invariant subspaces) of various
sizes. In particular, there are isolated nodes in Fig. 1(a),
indicating the existence of frozen configurations constitut-
ing subsectors of dimension one. In Fig. 1(b) we show that
Hamiltonian (1) exhibits strong HSF as defined in
Ref. [15]: the ratio of the dimension of the largest emergent
subsector within the largest ðnDW; SzÞ sector to that of the
whole sector decreases exponentially with L. This implies
that, in the thermodynamic limit, even the largest emergent
subsector constitutes a vanishing fraction of the full
ðnDW; SzÞ sector. Intriguingly, the same HSF pattern arises
in a different context in Ref. [22], which studies a
disordered fermionic system with strong nearest-neighbor
interactions.

We now develop an understanding of the pattern of HSF
evident in Fig. 1, starting with the origin of the frozen states
in Fig. 1(a). As discussed below Eq. (1), the only nonzero
off-diagonal matrix elements of H are between configura-
tions differing by the nearest-neighbor exchange of a single
magnon. This immediately implies that the kinetic term in
Eq. (1) annihilates any configuration containing no isolated
magnons and that such configurations are disconnected
from all others. Since an isolated magnon is equivalent to a
pair of domain walls occupying neighboring bonds, it
follows that any configuration in which no two neighboring
bonds host a domain wall is frozen (see Supplemental
Material [40]). This nearest-neighbor exclusion is some-
times called the “Fibonacci constraint,” which also arises in
systems of Rydberg atoms with strong interactions [4]. The
number of states satisfying this constraint grows as φL,
where φ is the golden ratio. Configurations in which every
bond is occupied by a domain wall (e.g., 0101…) are also
frozen because domain walls are hardcore objects; how-
ever, the number of such configurations is independent of
system size [40].
Next, we identify a class of root configurations from

which each connected subsector can be built. Consider
configurations of the following form:

0 frozen state|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
L−2−2k

0101 � � � 01|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2k

0; ð2Þ

which are constructed by appending a Néel state of length
2k to the right of any magnon-free frozen state. The two
outermost zeros denote the edge spins that remain fixed.
Since the Néel region contains k magnons, we shall call (2)
a “k-magnon state.” One can explicitly check that, although
the two constituent subsystems are both frozen, the
boundary between them becomes active once they are
joined together [40]. To show that any connected subsector
can be built from a k-magnon state, we first point out an
important property in our system that is in stark contrast to
spin-1 systems with ðQ;PÞ conservation [14,15,44].

(a) (b)

10 14 18 22 26

10-2

10-1

FIG. 1. (a) Connectivity within the sector ðnDW ¼ 8; Sz ¼ −2Þ
for L ¼ 18. This sector has a total Hilbert-space dimension of
4410. (b) Ratio of the size of the largest emergent subsector
within the largest ðnDW; SzÞ sector to that of the entire sector, for
different system sizes.
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Whereas these models allow mobile excitations to be
contained within a finite domain by constructing appro-
priate “shielding regions,” there are no such regions in the
model (1): an isolated mobile magnon can propagate all the
way to the boundary of the system. Therefore, the model
(1) does not support spatially separated thermal and non-
thermal domains, while fractonic systems do [14,15,44].
Using this fact, one can then prove [40] that any configu-
ration that is not frozen can be brought into the form (2) by
propagating all mobile magnons to the right boundary
using Eq. (1). Therefore, any connected subsector can be
built from an appropriate k-magnon state.
Subsector thermalization and integrability.—The frac-

turing of the Hilbert space into exponentially many dis-
connected subsectors indicates that the eigenstates of
Hamiltonian (1) strongly violate ETH, as can be diagnosed
from the entanglement entropy. In Fig. 2(a), we plot the
entanglement entropy of the eigenstates within an ðnDW; SzÞ
symmetry sector. There is clearly a broad distribution in the
entanglement entropy, even for eigenstates that are close in
energy. In particular, the frozen states have exactly zero
entanglement entropy although they reside in the middle of
the energy spectrum. Moreover, the maximal value of the
entanglement entropy stays far below the “Page value,” i.e.,
that of a random state in the corresponding ðnDW; SzÞ sector
[45]. The nonthermalizing behavior of the full Hamiltonian
also manifests itself in quantum quenches starting from
random initial product states that do not belong to any
particular symmetry sector. In Fig. 2(b), we find that the final
entanglement entropy under time evolution only saturates to
70% of the Page value, confirming that the system does not
thermalize under time evolution.
The fragmentation of Hilbert space seems to suggest that

a more appropriate comparison of the entanglement
entropy might be the Page value restricted to a connected
subsector. To this end, we extract the effective Hilbert-
space dimensions of the left and right halves of the
chain DL and DR within the largest emergent subsector,

and then compute the corresponding Page value using the
exact formula:

P
mn
k¼nþ1ð1=kÞ − ðm − 1Þ=ð2nÞ, where

m ¼ min½DL;DR�, and n ¼ max½DL;DR� [45]. As shown
in Fig. 2(a) (green dashed line), the maximal eigenstate
entanglement entropy is close to the Page value restricted
to the largest subsector. This strongly indicates that the
system thermalizes within each invariant subspace [16].
Testing this scenario numerically requires larger system
sizes with bigger subsector dimensions. Fortunately,
armed with the knowledge of the root configurations (2),
one can directly construct the projection of Hamiltonian
(1) into an arbitrary emergent subsector. In Fig. 3(a), we
show the entanglement entropy for eigenstates within a
connected subsector built from the root configuration
0111111000000 0101010101010. It is clear that the
eigenstate entanglement entropy within this subsector
forms a narrow ETH-like band, with maximal value close
to the subspace-restricted Page value. Moreover, we com-
pute the average energy level spacing ratio for the eige-
nenergies of the projected Hamiltonian: ri¼minfδi;δiþ1g=
maxfδi;δiþ1g, where δi ¼ Ei − Eiþ1 is the gap between
adjacent energy levels [46]. We find hri ≈ 0.532, consistent
with the Gaussian orthogonal ensemble in random matrix
theory [46]. Taken together, these facts suggest that there is
indeed a notion of “subsector thermalization” in the present
model. In the absence of Δ2 in Eq. (1), we numerically find
that the spectral properties strongly deviate from non-
integrability, which confirms the necessity of including a
nonzero Δ2.
At this point, it may seem that all sufficiently large

connected subsectors at finite energy density thermalize
when considered separately. However, as we now show,
this is not the case. Consider the sequence of symmetry
sectors ðnDW ¼ 2k; Sz ¼ −Lþ 2kÞ, which have the small-
est possible Sz for a given nDW. These sectors can be
generated from root configurations 000 � � � 0 0101 � � � 010

0 10 20
0

0.2

0.4

0.6

0.8

1

(a) (b)

FIG. 2. (a) Entanglement entropy of the eigenstates within the
sector ðnDW ¼ 8; Sz ¼ −2Þ under an equibipartitioning of the
system. Red line, Page value of the ðnDW; SzÞ sector; green line,
Page value of the largest connected subsector. (b) Entanglement
entropy growth (normalized by the Page value) after a quantum
quench starting from random product states, averaged over 200
initial states.

FIG. 3. (a) Entanglement entropy of eigenstates within
an emergent subsector built from the root configuration
0111111000000 0101010101010 for system size L ¼ 26. This
subsector has dimension 12 376 and is nonintegrable. (b) Entan-
glement entropy of eigenstates within an emergent subsector built
from the root configuration 0000000000000 0101010101010 for
system size L ¼ 26. This subsector has dimension 27 132 and is
integrable. Red lines mark the Page value of the corresponding
subsector.
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and are, in fact, fully connected; i.e., they do not fracture
into subsectors. The projection of Hamiltonian (1) into
these symmetry sectors yields a constrained XXZ model in
which neighboring up spins are separated by at least two
sites [31,47]. For Hamiltonian (1) this constraint is auto-
matically satisfied within these symmetry sectors, since
bringing two up spins next to one another annihilates a pair
of domain walls, which is forbidden by nDW conservation.
Remarkably, the constrained XXZ model, although inter-
acting, is exactly solvable via Bethe ansatz, and hence
integrable [47]. This is also seen numerically in Fig. 3(b),
where the entanglement entropy does not form an ETH-like
band, and where hri ≈ 0.385 indicates Poissonian energy
level statistics characteristic of integrability [46]. Notice
from Fig. 3(b) that, although these sectors are integrable,
they reside within the same energy window as the non-
integrable subsectors.
HSF in gauge theory.—We now show how the pattern of

HSF described above arises in the strict-confinement limit
of Z2 gauge theory coupled to fermionic matter and study
its breakdown as the strict-confinement limit is relaxed. We
first demonstrate that the pattern of HSF observed in
Hamiltonian (1) naturally arises in the nDW-conserving
model [31,37]

HZ2
¼

X

i

½λðσxi − σzi−1σ
x
i σ

z
iþ1Þ þ hσzi �: ð3Þ

As shown in Ref. [31], this model maps exactly onto Z2

gauge theory coupled to spinless fermions in 1D, where the
Ising domain-wall number operator in the spin model is
reinterpreted as the fermion number operator in the gauge
theory. With this in mind, we will henceforth use the terms
“domain wall” and “fermion” interchangeably. The kinetic
term in Eq. (3) induces nearest-neighbor hopping of
domain walls, while the longitudinal field introduces a
linearly confining potential. This model can be realized
experimentally in two complementary settings. The spin
model (3) can be realized by Floquet engineering in
periodically driven transverse-field Ising chains [48,49],
while the gauge theory itself can be realized in ultracold
atomic gases [50]. Experimental steps toward the latter
have already been reported in Refs. [38,39].
To understand the effect of confinement in Eq. (3), we

work in the limit h ≫ λ. At h ¼ ∞, the energy spectrum of
Hamiltonian (3) becomes highly degenerate, with each Sz

sector forming a degenerate manifold. The dynamics at h ¼
∞ is trivial; the leading nontrivial behavior is determined
by performing degenerate perturbation theory in λ=h.
Formally, this is carried out by a Schrieffer-Wolff trans-
formation [40], which yields an effective Hamiltonian

Heff ¼
P

n H
ðnÞ
eff , where HðnÞ

eff is of order ðλ=hÞn and con-
serves nDW and Sz by construction. Strictly speaking this
analysis is valid up to an order n� ∼ h=λ (up to logarithmic
corrections), which sets an exponentially long prethermal
timescale ∼ecn� for some constant c [51].

The leading contribution in perturbation theory appears
at second order [40],

Hð2Þ
eff ¼

λ2

h

X

i

½σzi−1Pi−1;iþ2ðσþi σ−iþ1 þ H:c:Þ − σzi−1σ
z
iσ

z
iþ1�:

ð4Þ

The kinetic term in Eq. (4) coincides with that of Eq. (1) up
to a configuration-dependent local sign due to the extra
factor of σzi−1; this only affects the signs of certain matrix
elements, so that Eqs. (4) and (1) exhibit the same pattern of
HSF. Moreover, although Eq. (4) sports a three-body rather
than a two-body interaction, this has no effect on the (non)
integrability of the various (sub)sectors. In the integrable
sectors, the spin between any two up spins must point down
by ðnDW; SzÞ conservation. The three-body interaction in

Hð2Þ
eff thus reduces (up to a constant shift) to Δ2 upon setting

σzi ¼ −1 in σzi−1σ
z
iσ

z
iþ1. Moreover, the nonintegrable sub-

sectors remain nonintegrable regardless of whether Δ2 or
the three-body term is used. In the Supplemental Material
[40], we numerically verify the above claims by reproduc-

ing Figs. 2 and 3 using Hð2Þ
eff .

Corrections to the pattern of HSF discussed so far arise
for n > 2, where further-neighbor domain-wall hopping
processes appear [40]. Such processes reduce the strong
HSF of Eq. (4) to weak HSF, defined in Ref. [15]; in
particular, each ðnDW; SzÞ sector collapses into an expo-
nentially large connected cluster that remains disconnected
from a set of exponentially many frozen configurations.
The base of the exponential number of such frozen
configurations depends on the order in perturbation theory
being considered; for example, at n ¼ 4 the number of
frozen states grows as 1.466L [40]. One can show that a pair
of domain walls separated by a distance dDW becomes
mobile at order ðλ=hÞ2dDW in perturbation theory [24,40].
Thus, a configuration containing two domain walls with
dDW > 1, which is frozen at second order, remains frozen
for any n < 2dDW. Frozen configurations with nDW > 2
unfreeze at order n ¼ minðdDWÞ, where the minimum is
taken over all pairs of domain walls.
The preceding considerations indicate that the thermal-

ization time when evolving with Eq. (3) from a configu-
ration with minimum domain-wall separation dDW will be
lower bounded by a timescale t� ∼ ðh=λÞ2dDW. In Fig. 4(a),
we show the evolution under Eq. (3) of hσzL=2ðtÞi, starting
from initial configurations with two well-separated pairs
of domain walls: 00 � � � 011 � � � 1|fflfflffl{zfflfflffl}

dDW

00 � � � 011 � � � 1|fflfflffl{zfflfflffl}
dDW

00 � � � 0.

Indeed, we find that, even for reasonably small h=λ ¼ 2,
the timescale for the local observable to saturate to the
diagonal ensemble value [52] expected at late times is
longer for initial states with a larger dDW. Scaling analysis
of this timescale is also in agreement with the prediction
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t� ∼ ðh=λÞ2dDW, as shown in Fig. 4(b). We thus find that the
above reasoning provides a basis to estimate relaxation
timescales in the confining limit of the gauge-theory model
(3) and the correlations between these timescales and the
initial state. Deeper investigations of these timescales could
be carried out in experimental realizations of the model (3).
Conclusion.—In this Letter, we demonstrate that HSF

naturally arises in lattice models exhibiting strict confine-
ment. We uncover a highly unusual feature in the models
we study, namely, the coexistence of nonintegrable emer-
gent subsectors with Bethe-ansatz integrable fully con-
nected symmetry sectors. This Letter also elucidates the
role of HSF in determining the hierarchy of relaxation
timescales in the confining phases of lattice gauge theories
and related spin models in 1D, paving the way for
experimental tests of these ideas in emerging quantum
simulation platforms. These ideas can be generalized to
higher dimensions, e.g., by allowing magnons to hop only
if they remain isolated. We leave this for future work.
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(b) Scaling of the saturation timescale t� as a function of dDW.
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I. COUNTING OF FROZEN STATES

In this section, we prove that Hamiltonian (1) harbors exponentially many exactly frozen eigenstates in its spectrum.
The proof follows from an inductive method analogous to Ref. [1]. Starting from L = 4, it is easy to enumerate
explicitly that there are 12 frozen states. Suppose we have a frozen state of size L and we would like to increase its
size by one, going from L to L+1, such that the longer chain remains frozen. Since the kinetic term in Hamiltonian (1)
involves at most four spins, the new dynamics introduced by the added spin only depends on the last three spins
close to the edge of the original chain. For example, if the last three spins of the original chain are 000, then the
added spin can be either 0 or 1, and the new state of size L + 1 remains frozen. However, if the last three spins are
001 instead, the added spin must be 1 otherwise the new state becomes active. It is straightforward to enumerate all
23 = 8 possibilities of the last three spins’ configurations and the allowed state(s) of the added spin, which we list
below:

spin configuration of the last three sites of system size L added spin state can be

000 0 or 1

001 1

010 1

011 0 or 1

100 0 or 1

101 0

110 0

111 0 or 1

Let Nabc(L) be the number of frozen states in a system of size L with spin configurations of the last three sites
being abc. Then Nabc(L+ 1) can be obtained from Nabc(L) using Table I as following:

N000

N001

N010

N011

N100

N101

N110

N111


L+1

=



1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1





N000

N001

N010

N011

N100

N101

N110

N111


L

. (1)

This matrix can be diagonalized to obtain all of its eigenvalues and eigenvectors, which, combined with the initial
value Nabc(4), can be used to calculate exactly the number of frozen states at arbitrary L. However, the asymptotic
behavior in the large L limit is controlled by the largest eigenvalue of this matrix α, and the number of frozen states

goes as ∼ |α|L. In this case, we find α = 1+
√

5
2 ≡ ϕ ≈ 1.618L, which coincides with the asymptotic behavior of the

Fibonacci sequence. In Fig. 1, we check this scaling form numerically and find good agreement.
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FIG. 1. Scaling of the total number of frozen states as a function of the system size. The result agrees with the scaling form
y ∼ 1.618L.

As explained in the main text, there is indeed an emergent “Fibonacci constraint” in the frozen subspaces, namely,
there cannot be two adjacent domain walls. In the present case, there is one exception to this constraint, which is
the Néel state · · · 010101 · · · . Nevertheless, one can see from Eq. (1) that N010 and N101 form an independent block,
and hence are not important in the asymptotics. Indeed, we find that the corresponding eigenvector of ϕ has zero
amplitude on these two components. Therefore, one can ignore the Néel configurations as far as only the asymptotics
are concerned.

II. PROOF OF THE EXISTENCE OF “k-MAGNON STATE” IN EACH EMERGENT SUBSECTOR

We point out in the main text that each emergent subsector can be constructed from the k-magnon root state of
the following form:

0 frozen state︸ ︷︷ ︸
L−2−2k

0101 · · · 01︸ ︷︷ ︸
2k

0, (2)

where we append a Néel state of length 2k to the right of any magnon-free frozen state. By construction, the two
subsystems are both inert by themselves. However, the boundary between the two regions will become active. At
the boundary of the two regions, the only possible configurations are 00|0101, 11|0101, or 10|0101 (by definition 01|01
cannot be the boundary), and one can see the in any case the boundary contains mobile magnons.

We now prove that each connected subsector contains a k-magnon root state of this form. In other words, any
configuration that is not frozen can be brought to a k-magnon state under Hamiltonian (1). We start by showing the
following fact in our model: an isolated mobile magnon inserted in the system can tunnel through the entire system.
That is to say, there is no “shielding region” that can localize a mobile magnon within a certain spatial region, which
is in stark contrast to previously studied spin-1 models with (Q,P ) conservation.

Consider a single mobile magnon of the form 0100 or 1011 embedded in the system. Consider the configuration of
its two neighboring spins to the right (the left can be analyzed in a symmetric way). The two neighboring spins can
be 01, 10, 00, or 11. Let us inspect what happens after the mobile magnon moves 1 step:

0100 | 01 → 0 010 | 0︸ ︷︷ ︸ 1

01 00 | 10︸ ︷︷ ︸ → 0010 | 10

0100 | 00 → 0 010 | 0︸ ︷︷ ︸ 0

0100 | 11 → 00 10 | 11︸ ︷︷ ︸,
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and

10 11 | 01︸ ︷︷ ︸ → 1101 | 01

1011 | 10 → 1 101 | 1︸ ︷︷ ︸ 0

1011 | 00 → 11 01 | 00︸ ︷︷ ︸
1011 | 11 → 1 101 | 1︸ ︷︷ ︸ 1.

(3)

In each case above, we denote in brackets the new mobile region that emerges at the boundary of the original mobile
region and its neighboring sites. It is thus obvious that, in any case, there will always be new active regions induced
by embedding a single mobile magnon into the system. By carrying out the above analysis iteratively, one can
demonstrate that this single active magnon can propagate all the way to the right boundary. When the magnon
reaches the boundary, since the boundary spin at the right edge is fixed to be zero, the only possible scenarios are the
2nd and 3rd lines in the above processes. For each of these cases, we can check that it can be brought into the form
of a k-magnon state:

01001|0 → 00101|0
01000|0 → 00100|0 → 00010|0 → 00001|0
10111|0 → 11011|0 → 11101|0
10110|0 → 11010|0 → 11001|0

Thus, we have shown that the k-magnon state exists in each connected subsector, and each subsector can also be
constructed using the k-magnon state as the root configuration.

III. DISTINCTIONS FROM FRACTONIC SYSTEMS AND CENTER-OF-MASS CONSERVING
SYSTEMS

In this section, we highlight the key distinctions in the mechanism leading to Hilbert-space fragmentation between
our model and previously studied fractonic systems [1, 2] and center-of-mass conserving systems [3].

In fractonic systems, there exist two flavors (±) of charge excitations that can neutralize into vacuum while pre-
serving the total charge, whereas in our model there is only one type of domain wall excitation. This distinction
leads to different allowed local moves in these two models. For example, in fractonic systems, an isolated charge can
move at the expense of emitting a dipole, i.e. 0 + 0 ↔ + − +. However, such local moves are completely absent in
our model. As a consequence, in fractonic systems mobile excitations can be contained within a finite domain by
constructing appropriate “shielding regions” that essentially cut the chain into disconnected segments. For example,
consider a local configuration ++++ embedded in an arbitrary configuration. While the outer two + charges can
move by absorbing dipoles, one can easily show that the inner two charges are always immobile. This leads to a spatial
coexistence of thermalizing and frozen regions in the same physical system. However, in our model, an isolated mobile
magnon sprinkled into a frozen region can propagate all the way to the boundary of the system. Hence there cannot
be spatially separated thermal and non-thermal domains coexisting within a single sample of our model. In fact, it
is precisely the particular type of quantum dynamics in our model that enables us to label all emergent subsectors
using a simple class of root configurations, which cannot be simply done in fractonic systems.

Recently, Ref. [3] studied a 1D interacting fermion model where particle number and center-of-mass conservation
lead to Hilbert-space fragmentation. Despite the apparent similarity, the moves allowed by the kinetic terms in our
model are in fact different from Ref. [3]. Separating a pair of domain walls in a center-of-mass-preserving manner will
necessarily leave a string of either 1’s or 0’s in between: 010→ 01110 or 101→ 10001, which violates Sz conservation.
This gives rise to completely different pattern of fragmentation, as well as the structure of the emergent subsectors. In
fact, the model in Ref. [3] shares many common features with fractonic models as opposed to ours (e.g. the existence
of “shielding regions”), and can be mapped to an extended fractonic model by defining composite degrees of freedom.
Moreover, the integrable sectors in Ref. [3] are all described by the XX model (or, equivalently, a free fermion model);
in contrast our integrable sectors map to an interacting model which is not obviously integrable.

Therefore, the mechanism for Hilbert-space fragmentation and its consequence in quantum dynamics in our model
are truly distinct from previously studied fractonic systems and center-of-mass conserving systems.
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IV. EFFECTIVE HAMILTONIAN FROM SCHRIEFFER-WOLFF TRANSFORMATION

We analyze the effects of confinement in HZ2 at large h using degenerate perturbation theory in the small parameter
λ/h based on the Schrieffer-Wolff (SW) transformation [4, 5]. This is formulated in terms of a unitary transformation

Heff = eS H e−S = H + [S,H] +
1

2!
[S, [S,H]] +

1

3!
[S, [S, [S,H]]] + · · · =

∞∑
n=0

H
(n)
eff , (4)

where the SW generator S is antiunitary and where H
(n)
eff is of order (λ/h)n. The choice of S is based on the

decomposition

H = H0 + V (5a)

H0 = h
∑
i

σz
i (5b)

V = λ
∑
i

(σx
i − σz

i−1σ
x
i σ

z
i+1). (5c)

In the local z-basis, H0 is diagonal while V is strictly off-diagonal. In particular, V connects blocks of configurations
that differ by a single spin flip, whose energies with respect to H0 differ by ∼ h and whose magnetizations Sz differ
by 2. The goal is to choose S such that block-off-diagonal contributions to Heff can be consistently eliminated order

by order in λ/h, so that [H
(n)
eff , Sz] = 0 for each n.

Formally, this can be accomplished by writing

S =

∞∑
n=1

S(n), (6)

where S(n) is of order (λ/h)n. Inserting this expression into Eq. (4) and grouping terms according to their order in
λ/h yields

Heff = H0+
(

[S(1), H0]+V
)

+

(
[S(2), H0]+[S(1), V ]+

1

2!
[S(1), [S(1), H0]]

)
(7)

+

(
[S(3), H0]+[S(2), V ]+

1

2!

(
[S(1), [S(1), V ]]+[S(1), [S(2), H0]]+[S(2), [S(1), H0]]

)
+

1

3!
[S(1), [S(1), [S(1), H0]]]

)
+. . . .

S(n) is then chosen such that [S(n), H0] cancels all block-off-diagonal (i.e., non-Sz-conserving) terms at order n. This
strategy is well-defined and straightforward to automate on a computer (see, e.g., Ref. [6]), however it is cumbersome
to write out explicitly.

Another (completely equivalent) strategy is to set S(n) = 0 for n ≥ 2 and manually project out non-Sz-conserving
terms at each order. S(1) is still chosen to satisfy [S(1), H0] + V = 0, which is accomplished with the choice

〈σ|S(1)|σ′〉 =
〈σ|V |σ′〉

〈σ|H0|σ〉 − 〈σ′|H0|σ′〉
. (8)

This gives rise to the leading-order effective Hamiltonian

H
(2)
eff = P

(
[S(1), V ] +

1

2!
[S(1), [S(1), H0]]

)
P (9a)

=
λ2

h

∑
i

[σz
i−1Pi−1,i+2(σ+

i σ
−
i+1 + H.c.)− σz

i−1σ
z
i σ

z
i+1], (9b)

where the first line contains the projection operator P that eliminates non-Sz-conserving processes and the second
line is the result quoted in the main text.

This procedure can be straightforwardly extended to higher orders. It is readily seen from substituting Eq. (8) into

Eq. (7) and setting S(n) = 0 for n ≥ 2 that H
(3)
eff = 0 due to the strictly block-off-diagonal nature of V and hence
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S(1). (This pattern extends to arbitrary odd orders.) The leading correction to H
(2)
eff thus arises at fourth order and

is given by

H
(4)
eff = P

(
1

3!
[S(1), [S(1), [S(1), V ]]] +

1

4!
[S(1), [S(1), [S(1), [S(1), H0]]]]

)
P (10a)

=
λ4

2h3

∑
i

{(
σz
i−1 + σz

i+3

) [3

2
− 5

4

(
σz
i−1σ

z
i+1 + σz

i+1σ
z
i+3

)] (
σ+
i σ
−
i+2 + H.c.

)
+
(
σz
i−1 + σz

i+4

) (
σ+
i σ
−
i+2 + H.c.

) (
σ+
i+1σ

−
i+3 + H.c.

)
(10b)

−
(
σz
i−1 + σz

i+4

) (
1− σz

i+1σ
z
i+2

) (
σ+
i σ
−
i+1 + H.c.

) (
σ+
i+2σ

−
i+3 + H.c.

)}
+ . . . ,

where . . . denotes the omission of subleading corrections to matrix elements induced at second order and diagonal
terms (i.e., additional interactions) that do not affect Hilbert space connectivity. The first line of Eq. (10b) induces
matrix elements for processes like 01100↔ 00110, while the second line leads to processes like 011000↔ 000110. The
third line allows for correlated hopping of nearby single magnons, i.e. 01010↔ 00101. We thus see that domain walls
separated by two sites become mobile at order (λ/h)4, as discussed in the main text and in Appendix VI below.

V. NUMERICAL RESULTS ON THE EFFECTIVE HAMILTONIAN H
(2)
eff

In this section, we present numerical results demonstrating that the key features of Hamiltonian (1) discussed in

the main text can be reproduced by the effective Hamiltonian H
(2)
eff .

In Fig. 2, we reproduce Figs. 2 & 3 shown in the main text, using H
(2)
eff instead. We have set the overal energy scale

in front of H
(2)
eff to unity. Indeed, we find good qualitative agreement between Fig. 2 and those in the main text. In

Fig. 2(a), we again find a broad distribution in the entanglement entropy for eigenstates that are close in energy. The
maximal value stays far below the Page value for the given symmetry sector. The entanglement entropy evolution
after quantum quenches starting from random product states also saturates only to 70% of the Page value, indicating

non-thermal behavior in the long time dynamics under H
(2)
eff [Fig. 2(b)].

We further check that the nonintegrable and integrable (sub)sectors remain the same as Hamiltonian (1), despite the
slight differences in the sign structure of the kinetic term and the interactions. In Fig. 2(c), we plot the entanglement
entropy of the eigenstates within an emergent subsector. We again find an ETH-like band in the entanglement entropy,
with the maximal value close to the subsector-restricted Page value. Moreover, the average energy level spacing ratio
gives 〈r〉 ≈ 0.5272, which agrees with that of the Gaussian orthogonal ensemble in random matrix theory. This
indicates that the same nonintegrable subsector of Hamiltonian (1) in the main text remains nonintegrable under

H
(2)
eff . As we have also explained in the main text, when projected to the integrable sectors, H

(2)
eff once again reduces

to a constrained XXZ model which is integrable. In Fig. 2(d), we plot the entanglement entropy of eigenstates within
an integrable sector of Hamiltonian (1). We see that the behavior strongly deviates from that of ETH, and the
average energy level spacing ratio yields 〈r〉 ≈ 0.385, indicating a Poisson distributed energy spectrum. Therefore, we
conclude that the key features of Hamiltonian (1) are indeed captured by Hamiltonian HZ2 in the confining limit.

VI. H
(4)
eff AND “NARAYANA CONSTRAINT”

We now briefly examine the Hilbert space structure of the effective Hamiltonian at fourth-order H
(4)
eff . Under

H
(4)
eff , pairs of domain walls separated by distance two become mobile. We find that there are still exponentially many

frozen states in the spectrum. However, other than these frozen states, each (nDW, S
z) sector becomes fully connected.

Therefore, in this case, we no longer have Hilbert space fragmentation. Instead, we now have exponentially many
“scar” states with exactly zero entanglement entropy embedded in the spectrum.

One can carry out a similar inductive counting procedure as outlined in the previous section of this Supplemental
Material. However, if one is only interested in the asymptotic behavior in the limit of large system size L, one can show
that the frozen space subspace satisfies a generalized Fibonacci constraint which we call the “Narayana constraint”.

Since under H
(4)
eff , domain walls separated by distance two are no longer frozen, the new constraint now becomes:

there cannot be two next-nearest-neighbor domain walls in the frozen subspace. Let us denote a domain wall by |•〉,
and the absence of a domain wall by |◦〉. If a frozen configuration of size L has its boundary in state | · · · ◦〉, it could
have been obtained by appending ◦ to any frozen state of size L − 1. However, if its boundary is in state | · · · •〉, it
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FIG. 2. (a) Entanglement entropy of the eigenstates of H
(2)
eff within the sector (nDW = 8, Sz = −2) under an equi-bipartitioning

of the system in the middle. Orange line: Page value of the (nDW, Sz) sector; green line: Page value of the largest connected
subsector. (b) Entanglement entropy growth (normalized by the Page value) after a quantum quench starting from random
product states, averaged over 200 initial states. (c) Entanglement entropy of eigenstates within an emergent subsector built

from the root configuration 0 111111000000 010101010101 0 for system size L = 26. This subsector has dimension 12376
and is nonintegrable. (d) Entanglement entropy of eigenstates within an emergent subsector built from the root configuration

0 000000000000 010101010101 0 for system size L = 26. This subsector has dimension 27132 and is integrable. Orange lines
mark the Page value of the corresponding subsector.

can only be obtained by appending ◦ ◦ • to a frozen state of size L− 3. Therefore the Hilbert space dimension of the
frozen subspace grows according to dL = dL−1 + dL−3, which is known as the Narayana sequence. The asymptotic
behavior of this sequence can be obtained from the characteristic polynomial, from which we obtain dL ∼ 1.466L.
Numerical verfication of this scaling is shown in Fig. 3, where we find good agreement.
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FIG. 3. Scaling of the total number of frozen states in H
(4)
eff as a function of the system size. The result agrees with the scaling

form y ∼ 1.466L.
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