

Integrating a Network Simulator with the High Level Architecture
for the Co-Simulation of Cyber-Physical Systems

Thomas Roth, Cuong Nguyen, and Martin Burns

Smart Grid and Cyber-Physical Systems Program Office
National Institute of Standards and Technology

Gaithersburg, MD 20899
thomas.roth@nist.gov, cuong.nguyen@nist.gov, martin.burns@nist.gov

Himanshu Neema

Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN 37212

himanshu.neema@vanderbilt.edu

Keywords:
cyber-physical systems, high level architecture, network simulation, smart grid

ABSTRACT: Cyber-physical systems (CPS) use logical computation informed by measurements of the
environment to actuate changes on the physical world. These systems have significant impact on people, and must
be designed for resilience against fault and attack. However, due to their large scale, assurance of CPS
trustworthiness is better suited to modeling and simulation than deployment of a real system. This paper describes
an approach to integrate a network simulator with the High Level Architecture (HLA) to investigate the effects of
different network conditions on CPS performance. Using this approach, an HLA interaction class can be
configured to use network simulation rather than the default reliable HLA delivery mechanism. A technique similar
to regions defined in HLA data distribution management is used to allow each federate to receive the same
interactions at different logical time steps, as simulated by the network simulator. This is implemented in a piece of
reusable code shared by federates that sits between the runtime infrastructure (RTI) and application code. The
implementation can be used to create a test harness around the federates that represent the operation of a CPS to
validate its behavior under unreliable network conditions.

1. Introduction

Cyber-physical systems (CPS) are smart systems that include engineered interacting networks of both physical and
computational components [1]. These systems have a high degree of complexity at numerous spatial and temporal
scales and need highly networked communications to integrate the computational and physical components. The
smart grid is an example of a CPS that is defined as the integration of digital computing and communication
technologies and services with the power-delivery infrastructure. The smart grid is often referred to as a system of
systems that enables the bi-directional flow of both communication and power. Because the smart grid integrates
information communication technology (ICT) with the electrical grid, network communication is one very
important system component.

Grid operations are becoming more complex with the widespread deployment of distributed energy resources
(DER) and distributed sensors that provide intelligence at the grid edge [2]. DER are comprised of many different
types of resources such as solar photovoltaic (PV), wind, battery, and electric vehicle (EV). Some of these

resources such as PV and wind have volatility in energy production, and grid operators need robust communication
capabilities to monitor and control them. Sensors distributed at the grid edge also have firm communication
requirements to collect data, report, and fulfill their intended functions.

There are common standard-based communication protocols in use for grid operations. For substation automation,
the two common protocols are IEC 61850 and Distributed Network Protocol 3 (DNP3). For DER communication,
common protocols include IEEE 2030.5, DNP3, and SunSpec Modbus. Distributed sensors use protocols similar to
both substation and DER. Beside these standardized protocols, there are manufacturer specific proprietary
protocols. The choice of communication protocol for smart grid deployment depends on its performance capability,
existing infrastructure, and the intended application. For example, if an operator plans to deploy an inverter for a
PV installation, they need to consider what communication protocol their system can support to communicate with
the inverter. If the operator plans to control DER, they will need a high-speed communication protocol for that
application instead of a low bandwidth protocol that is only sufficient for monitoring alone. Other considerations
may include whether the network connection between DER and the system is wired or wireless, and what
cybersecurity mechanisms are required to protect the communication that still allow for the performance
requirements.

Due to the complexity of the smart grid and its communication requirements, network simulation is essential and
needs to represent the distributed nature of the evolving grid architecture. Sophisticated network simulation
capabilities are needed to simulate the different communication protocols for the applications of interest to grid
operators. Although such capabilities could be integrated into the implementation of grid simulators, it’s more
intuitive to leverage the capabilities of existing network simulators. IEEE 1516-2010 High Level Architecture
(HLA) is a standard for the co-simulation of distributed processes [3], such as the joint simulation of an electric
grid and a network model. In HLA, the simulators that participate in a co-simulation are called federates, and the
set of federates in the joint simulation are called a federation. The federates communicate and coordinate using
software called the runtime infrastructure (RTI) that implements the common set of services described in the HLA
federate interface specification [4]. An alternative to HLA is the Functional Mock-up Interface (FMI) standard
often implemented by the developers of modeling tools [5]. Unlike HLA in which federates are independent
processes in distributed system, FMI uses a master-slave architecture in which the master algorithm imports each
simulator as a shared library and makes direct function calls into the slave code. The FMI standard for co-
simulation prescribes the function definitions that each slave must implement to be interoperable with the master
algorithm. This work uses HLA as its basis for co-simulation because it is more natural to consider a network
simulator and a grid model as independent processes rather than sub-modules of one master program. In addition,
networked co-simulation requires strict time management and distributed object management that are directly
defined in HLA.

The remainder of this paper is organized as follows. Section 2 provides the motivation for the need of network
simulation in the smart grid and lists the high level requirements that must be satisfied for network simulation to be
meaningful in this context. Section 3 gives an overview of related work in the area, and Section 4 describes the
specific approach to network simulation proposed by this work. The paper is then concluded in Section 5.

2. Motivation and Approach

For holistic system of systems evaluations, CPS require complex co-simulations including an integrated simulation
of the cyber communication network as well as hardware- and human-in-the-loop. Owing to their use in critical
system operations, the performance and trustworthiness of CPS must be evaluated under a variety of
communication network modes which include the extreme cases of failures and attacks. In the smart grid, there are
a variety of distributed sensors that are deployed at the system edge to provide situational awareness for
monitoring and control. These sensors provide the condition at various points in the grid to detect any potential
issues that could lead to system failure. One type of widely deployed sensor in the smart grid is the phasor
measurement unit (PMU) or synchrophasor. PMUs provide voltage and current phasor and frequency
measurements that are synchronized against a common time reference typically provided by global positioning

system (GPS) [6]. Since these sensors provide time sensitive measurements, they need reliable communication to
send the data to the grid control center. An attack on the timing infrastructure used by these devices could cause
them to provide erroneous data to the operator that could lead to incorrect operating decisions such as unnecessary
tripping of a line or not acting on a potential failure. Similarly, with the emergence of a plethora of innovative
Internet of Things (IoT) devices for industrial control systems, edge computing, remote system monitoring and
control, and home automation, it is equally critical to analyze the operational impacts of communication network
failures for systems that incorporate IoT devices.

In order to analyze how communication network failures impact the operation of CPS and IoT, a careful
consideration of the networked communication is necessary. In particular, analysis of a simple cyber attack might
consider the impact of delaying the network packets, data corruption, replaying or reordering network packets, and
packet loss. The HLA standard does not provide any direct means to support the co-simulation of these attack
effects and supports only two options for delivering messages: receive order and timestamp order. In receive order,
the messages are sent over UDP transport protocol and are delivered to the receiving federate with the best effort,
without any explicit guarantee that a given message will be eventually delivered. In timestamp order, the messages
are marked with a timestamp for delivery and are scheduled for delivery at that time to the receiving federate. A
naïve approach may involve simply adding a delay to the timestamp of the delivered messages via HLA, but that
does not realistically represent the behavior of unreliable message delivery. Even in cases in which a piece of
manual code could be added to associated HLA federates’ source code, this approach is highly inflexible and not
representative of the flow of network packets in a real network. This is in contrast to using a communication
network simulator that is integrated into the federation as a separate federate, where the networked communication
between federates flows through the network simulator. The use of an integrated network simulator achieves not
only faithful, high-fidelity network simulation, but also enables the realistic network characteristics such as
unreliable message delivery against which the CPS and IoT systems can be evaluated.

The remainder of this section summarizes several desirable features for approaches to network simulation of CPS
that are shown in Figure 1. The figure contains three federates, which consist of a federate implementation and the
local RTI component (LRC) at each federate that implements the HLA message bus. Each federate has a unique
representation in the simulated network model, depicted on the right. The remaining features in this figure are
described in the subsections that follow.

Figure 1: Approach to Network Simulation using the High Level Architecture (HLA)

2.1 The network model should contain nodes that represent a subset of the federates

At least two nodes from the network model should represent federates. The Network Simulation box from Figure 1
shows an example network model. A subset of the nodes in the network model indicated by labels F1 through F3

have a 1-to-1 correspondence to HLA federates. These federate nodes are connected through the simulated network
topology. Although Figure 1 shows one network topology, the network model must be reconfigurable to allow the
same federation to be executed with any number of different network configurations.

The network model does not need to define nodes to represent all federates in the federation. For instance, this
federation could have a Federate 4 without the network model containing a corresponding node labeled F4. In this
case, Federate 4 would not use the network simulation and all of its messages would use the default HLA
provisions for object management. The network model also does not need to be fully connected. For instance, if
node F1 cannot reach node F2 in the network topology, then none of the messages sent by Federate 1 using
network simulation will be delivered to Federate 2.

2.2 The network simulator should be synchronized with the federation logical time

One responsibility of the network federate is to synchronize time progression of the simulated network with HLA
federation logical time. The network federate is both time constrained and time regulating to operate in lock-step
with HLA logical time. It also defines a function that maps a unit of HLA logical time to an exact number of
seconds elapsed in the network simulation. This binding between the time representations of the federation and the
network simulation ensures that a message is delivered to a federate only when the corresponding network packet
is scheduled for delivery to that federate’s node in the network simulation.

The optimal value for the logical step size of the network federate depends on the timing requirements of the
federates using the simulated network. These timing requirements include concerns such as the smallest time
interval between generation of network messages, and the shortest possible delivery time for messages sent from
one federate to another. There is a trade-off between performance and simulation accuracy when choosing the
logical step size. If the step size is too large, there will be delays in the delivery of messages to federates when a
message arrives between time steps. If the step size is too small, the network simulator will synchronize more
frequently with the federation which will lead to slower progression of logical time.

2.3 Network simulation should be configurable by both message type and sender

Even when a federate has a corresponding node in the network model, not all messages that originate from that
federate are sent through the network simulation. A federate might want to coordinate with its peers or
communicate with a federate that does not use the network simulation. For this reason, the use of network
simulation is not configured per federate but rather per message that originates from a federate. This is shown in
Figure 1 with two alternative paths for message flow listed as Option 1 and Option 2. Option 1 represents the
normal HLA object management services where a federate can send and receive interactions and attribute updates
using the RTI. Option 2 is an alternative mode where specific messages are routed through a network simulator,
rather than the usual set of HLA services.

In an ideal implementation, the LRC would perform this function of re-routing certain messages from the normal
object management services into an alternative delivery mechanism based on the current network model. The RTI
Initialization Data (RID) file could be modified to list the interactions and object classes that use network
simulation. When the LRC received a message from the federate implementation, it would first check whether that
specific message was configured for network simulation. If the message used simulation network, the LRC would
send the message out-of-band to the network simulator. Otherwise, the LRC would continue to invoke the normal
set of HLA object management services.

In this paper, the network simulator is a federate and Option 2 is instead realized through re-encoding the message
into a special interaction class that represents network packets. The network federate re-creates the original
message once its corresponding network packet has propagated through the simulated network.

2.4 Federates should receive network simulated messages at different logical times

When the network federate receives a message from a LRC, it injects that message as one or more packets into the

network simulation with the source of the packet set to the node representing the sending federate. If the network
model is not based on multicast, then it is likely that one message will generate a unique packet for each federate
node configured to receive that message that is reachable in the network model. All these packets will experience
different delays, some may be dropped, and others might be modified through various forms of cyber-attacks. In
the end, each federate node can receive a different packet, at different times, and perhaps with different content.

It is essential for cases such as network congestion and packet loss to break the reliable and uniform delivery of
interactions and object classes guaranteed by HLA. Figure 1 shows an approach where this is implemented inside
the RTI rather than the federates to reduce the amount of implementation required for each federate. However, the
same effect could be achieved through implementation of a common library, shared by the federates, that sits
between the LRC and the federate business logic.

2.5 Federate implementations should be agnostic to the presence of network simulation

Reusability is a desirable trait for federates developed for both CPS and IoT applications. Suppose a federate was
developed to represent a PMU that reports time-synchronized voltage phasors measurements to some higher level
application. This implementation could be useful for a number of different federation designs for different smart
grid applications. Some of these applications might require realistic network delays to analyze the impacts of
network congestion, some might require use of a specific communication protocol for hardware-in-the-loop
testing, and some might just want to use a PMU with no network specific details. Despite differences in the
interface on how the PMU is used, its basic implementation remains unchanged between these different
applications.

While a typical HLA design flow might develop federations to achieve a specific purpose, in CPS and IoT
applications, it is better to produce a federate like this PMU that can be composed into different scenarios. How
this federate will be used is unknown at development time, and its implementation should support a broad range of
scenarios without the need to develop additional code. For that reason, support for network simulation must be
embedded into each federate as an option that can be enabled or disabled through configuration files. In addition,
for different CPS and IoT federates to be interoperable, all the federates must implement their approach to optional
network simulation using a consistent methodology.

3. Related Work

The integration of grid simulators and ICT into a co-simulation has over a decade of research. The first published
approach in this area is the electric power and communication synchronizing simulator (EPOCHS) which uses
HLA to integrate electromagnetic and electromechanical transient simulators with Network Simulator 2 (NS-2) [7].
Following EPOCHS, many co-simulation platforms were developed to integrate different grid simulators to
different network simulators using different middleware [8]. The integrated co-simulation of power and ICT
systems for real-time evaluation (INSPIRE) platform considers how to incorporate standard-based communication
protocols into the co-simulation to support wide area monitoring, protection, and control (WAMPAC) applications
[9]. The Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS) platform considers how to
address scalability to handle grid scenarios that contain tens of thousands of independent agents [10].

The US National Institute of Standards and Technology (NIST) researched the effectiveness of different smart grid
operating scenarios using the Framework for Network Co-Simulation (FNCS) developed by the Pacific Northwest
National Laboratory that provides an integration of GridLAB-D, MATPOWER, and Network Simulator 3 (NS-3)
[11]. The goal of this effort was to simulate a power grid segment that contained a substation and residential loads
using different scenarios such as demand response and dynamic pricing. The work provided benchmarking for
performance of the communication network under different operating conditions.

A follow-on work was on performance evaluation of DER and storage devices in terms of cost and impact on grid
reliability [12]. This work was done by applying network traffic routing concepts to the routing of power in a grid

segment with DER and storage devices. The premise for this work was that the resources are controllable, and the
energy can be routed like network traffic management.

Additional research combined the smart grid operating scenarios (demand response and dynamic pricing) with the
integration of DER in the grid [13]. This simulation work used a standard IEEE bus model with an integrated
simulation platform that included GridMat, FNCS, GridLAB-D, and NS-3. The intent was to evaluate the
performance of the grid with DER under different operating scenarios.

This paper attempts to address the feature from Section 2.4 on breaking the reliable delivery of HLA messages
based on the results of network simulation. Other approaches largely limit their scope to adding message delays,
and rarely consider the impact of packet loss or modification due to fault or cyber-attack.

4. Implementation Details

4.1 Universal CPS Environment for Federation (UCEF)

NIST has developed a software tool to expedite the development of federates and federations called the Universal
CPS Environment for Federation (UCEF) [14]. UCEF is distributed as an Ubuntu virtual machine pre-configured
with a suite of software useful in the development of different federate types. The latest 1.0.1 version of UCEF
includes support for Java and C++ federates, and several grid simulators including GridLAB-D, TRNSYS, and
EnergyPlus. The front end of UCEF is the Web-based Generic Modeling Environment (WebGME) developed at
Vanderbilt University that provides a graphical web environment where users can model federations using simple
building blocks. At the back end are JavaScript extensions to WebGME that perform code generation to transform
the federate models into stub code for the different supported federate types. A core concept of UCEF is the
separation of a federate implementation into two layers: a user layer that implements the intended function of the
federate, and an infrastructure layer generated from WebGME that implements shared boiler plate code.

The UCEF infrastructure layer handles functions such as joining a federation, declaring publication and
subscription interests, providing helper methods to send and receive interactions and object attributes, and other
application independent utility functions. It also prescribes a basic federate lifecycle with hooks that an application
developer can extend to customize the behavior of the federate at specific points in the HLA state machine, such as
after the grant of an advance time request. The WebGME generated code closely resembles the structure of a
Functional Mock-up Unit (FMU) as defined in the FMI standard for co-simulation.

Figure 2: The UCEF Architecture for Network Simulation

Figure 2 shows how network simulation is implemented in UCEF to satisfy the requirements enumerated in
Section 2. Rather than implement a new RTI, or modify an existing RTI, the logic related to network simulation
was implemented in the UCEF infrastructure layer. In the figure, the user application on the left sends an

interaction class A which has been flagged for network simulation. Before the UCEF layer passes this interaction
to the RTI, it converts it into a special NetworkPacket interaction class to ensure it is routed to the network
federate.

The network federate subscribes to the NetworkPacket interaction class, and encodes the received interaction
instance as one or more packets in a format compatible with the network simulation. These packets are injected
into the network simulation, where they propagate through the simulated network. When a packet arrives at its
destination, it is delivered back to the network federate along with the name of the destination node from the
network simulation. Then the network federate reconstructs the original interaction embedded inside the
NetworkPacket and watermarks this new interaction with the destination node name. The network federate is
implemented using a library called the UCEF Gateway [15], which enables it to create dynamic publications based
on the current federation object model. As such, the network federate is not bound to a specific data model and can
be used in any federation without code modification.

Because the network federate sends the watermarked interaction using the standard HLA services, all subscribed
federates will receive it. However, each federate is configured to know the name of its representation in the
network simulation, and the UCEF layer can use the watermark to check if an interaction was meant for its user
application. In this manner, even though the left most federate receives a copy of its own interaction Ai¸ this
interaction will be dropped at the UCEF layer before it reaches the user application.

One constraint of this approach is that all federates that use network simulation must have the same UCEF layer,
which means they must be code generated from the UCEF virtual machine. The benefit of the approach is that the
application never has to know about the network simulation and only must consider its native interaction class A.
When network simulation is required, the infrastructure will take care of it. The remainder of this section describes
how network simulation was embedded into the UCEF layer.

4.2 Network Configuration of UCEF Federates

There are three requirements to support network simulation in the UCEF layer: (1) the interaction classes that
require network simulation must be specified in a configuration file, (2) the NetworkPacket interaction class must
be defined, and (3) a filtering mechanism must be defined to ensure that interactions sent by the network federate
are received only by the intended federates.

The same configuration file for network simulation is shared by all federates, including the network federate. This
JavaScript Object Notation (JSON) file lists which interactions from which federates should use network
simulation and how those interactions should be routed through the network simulation. Figure 3 shows an
example instance of this configuration file. This JSON configuration was designed for use with the OMNeT++
network simulator using its INET Framework.

Figure 3: Example JSON for Network Configuration

The network configuration is a list of network rules. Each network rule defines the list of interactions for a given
source federate that are configured to use network simulation. These interactions are injected into the network
model at the source node and routed to each of the listed destinations. The same source federate can appear in
multiple network rules for the case when different interactions from the same source have different destinations.
This implementation assumes for simplicity that the federate name is identical to the host name of its equivalent
network node. Under this assumption, the host fields are both the federate name and the network node name.

A network node in the OMNeT++ INET Framework contains submodules for different network applications. For
example, a node could define a submodule for a Representational State Transfer (REST) server running on
localhost:8080. These network applications are identified using an application name (app) and an application or
submodule index (appIndex). The destination applications are bound to a specific network interface (interface) to
handle cases where a node has more than one available network interface.

Figure 4 shows the WebGME representations of the two interaction classes HLAinteractionRoot.InteractionBase
and HLAinteractionRoot.InteractionBase.NetworkPacket.

Figure 4: Example Object Model for Network Simulation

The UCEF layer encodes all interactions it sends to the network federate using the NetworkPacket interaction
class. Besides the federateFilter parameter that will be discussed later, this interaction class has three parameters.
The interactionClass and data parameters are used to embed the original interaction from the user application into
the NetworkPacket. When an instance of interaction class A is converted into a NetworkPacket, the
interactionClass parameter would be the fully qualified class path of A and the data parameter would be the
serialized parameters of A. These fields are used by the network federate to reconstruct the original interaction
after the packet propagates through the network simulation. The final parameter, networkHost, is set to the unique
identifier of the sending federate. This allows the network federate to inject the packet into the network simulation
at the correct node.

When the UCEF layer receives an interaction, it checks if that interaction was sent by the network federate. If the
interaction was sent by the network federate, then it is possible that it was only intended for receipt by a single
federate. The network federate uses the federateFilter parameter to specify this destination. If the federateFilter is
empty, then the UCEF layer processes the interaction as normal. Otherwise, the UCEF layer discards the
interaction unless the federateFilter is string equivalent to the federate’s own unique identifier.

4.3 Implementation of the UCEF Layer

Figure 5 shows a flowchart for how interaction classes are handled from both the sending and the receiving
federates. The first decision box at the top of the figure, whether to use network simulation, is determined by the
content of the JSON file from Figure 3. The second decision box at the bottom of the figure, whether the received
interaction should be delivered to this specific federate, performs the string comparison between the federateFilter
parameter from Figure 4 and the federate name of the receiving federate. If the federate filter parameter is set but
not equivalent to the receiving federate name, then the packet is dropped and not delivered to the user application.

This filtering mechanism allows different federates to receive the same interaction at different logical times,
dependent on the results of network simulation. An equivalent implementation could have been achieved using
regions from the HLA data distribution management (DMM) services instead of as a parameter of a base
interaction type. However, as the configuration management of regions can be quite cumbersome, this simple
filtering mechanism was implemented at the UCEF layer instead.

Figure 5: Flow of Interactions through the UCEF Layer

4.4 Implementation of the Network Federate

Algorithm 1 shows pseudocode for the network simulation from Figure 5. This algorithm uses the OMNeT++
network simulator, and extends the OMNeT++ cSimpleModule class which defines the step and handleMessage
methods. The step method executes each HLA logical time step and checks for either packets from the network
simulator or interactions from the federation. When an interaction is received, the step method parses the JSON
network configuration to create packets in the network simulation for each configured destination. These packets
propagate through the simulated network until they arrive at their destination, causing OMNeT++ to invoke the
handleMessage method. In handleMessage, a customized interaction is created for the node that received the
packet. The current implementation of time synchronization maps a unit of HLA logical time to a second of
network simulation time. The advanceTimeRequest method could be replaced with an alternative implementation
that uses a scaling function to make each logical time step some configurable multiple of seconds.

5. Conclusion

This paper proposed an approach to incorporate network simulation into the High Level Architecture (HLA).
Whether the proposed approach is HLA compliant depends on the interpretation of the rule that “During a
federation execution, all exchange of FOM data among federates shall occur via the RTI” [4]. From the federate
perspective, this rule is upheld because the NetworkPacket interaction is transmitted to the federation via the RTI.
However, from the user application perspective, the interaction that the user wants to send is automatically
converted into a different interaction class and the RTI is never used to transmit the data in its intended format.
This approach was chosen because co-simulation of CPS requires network simulations that support the concepts of
message delay and packet drop, and integrating the semantics of network simulation into each individual federate -
while feasible - is far too burdensome.

The next step is to complete the implementation of this approach in UCEF. An implementation that addresses the
need for packet loss and modification was developed by Vanderbilt University for their Command and Control
Wind Tunnel (C2WT) platform [16][17]. However, it requires source code modifications when changes are made
to the network configuration. Another implementation was released by Calytrix for their open-source Portico RTI
[18]. However, it requires the use of multiple network federates which leads to poor scalability for large federation
sizes, and the approach may be incompatible with the popular OMNeT++ INET Framework. Future work will
merge these implementations to produce one network federate configurable using JSON that is compatible with the
OMNeT++ INET Framework. This future work will aim to improve the time synchronization strategy to be more
flexible than a 1-to-1 equivalence between HLA logical time and the network simulator time.

6. Acknowledgement

Portions of this publication and research effort are made possible through the help and support of NIST via
cooperative agreement 70NANB19H100. Official contribution of the National Institute of Standards and
Technology; not subject to copyright in the United States. Certain commercial products are identified in order to
adequately specify the procedure; this does not imply endorsement or recommendation by NIST, nor does it imply
that such products are necessarily the best available for the purpose.

7. References

[1] Griffor, E. R., Greer, C., Wollman, D. A., & Burns, M. J. (2017). Framework for cyber-physical systems:
Volume 1, overview (NIST-SP-1500-201). doi: 10.6028/NIST.SP.1500-201

[2] Greer, C., Wollman, D., Prochaska, D., Boynton, P., Mazer, J., Nguyen, C., FitzPatrick, G., Nelson, T.,
Koepke, G., Hefner Jr., A., Pillitteri, V., Brewer, T., Golmie, N., Su, D., Eustis, A., Holmberg, D., & Bushby, S.
(2014). NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0. (NIST SP-
1108r3) doi: 10.6028/NIST.SP.1108r3

[3] Institute of Electrical and Electronics Engineers. (2010). IEEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA)-- Framework and Rules (IEEE Std 1516-2010) doi:
10.1109/IEEESTD.2010.5553440

[4] Institute of Electrical and Electronics Engineers. (2010). IEEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA)-- Federate Interface Specification (IEEE Std. 1516.1-2010) doi:
10.1109/IEEESTD.2010.5557728

[5] Functional Mock-up Interface for Model Exchange and Co-Simulation 2.0 (2014, July). Retrieved November
27, 2019 from http://fmi-standard.org

[6] Terzija, V. (2011). Wide-Area Monitoring, Protection, and Control of Future Electric Power Networks.
Proceedings of the IEEE, 99(1), 80-93. doi: 10.1109/JPROC.2010.2060450

[7] Hopkinson, K., Wang, X., Giovanini, R., Thorp, J., Birman, K., & Coury, D. (2006). EPOCHS: a platform for
agent-based electric power and communication simulation built from commercial off-the-shelf components. IEEE
Transactions on Power Systems, 21(2), 548-558. doi: 10.1109/TPWRS.2006.873129

[8] IEEE Task Force on Interfacing Techniques for Simulation Tools (2016). Interfacing Power System and ICT
Simulators: Challenges, State-of-the-Art, and Case Studies. IEEE Transactions on Smart Grid, 9(1), 14-24. doi:
10.1109/TSG.2016.2542824

[9] Georg, H., Müller, S. C., Rehtanz, C., & Wietfeld, C. (2014). Analyzing cyber-physical energy systems: The
INSPIRE cosimulation of power and ICT systems using HLA. IEEE Transactions on Industrial Informatics, 10(4),
2364-2373. doi: 10.1109/TII.2014.2332097

[10] Palmintier, B., Krishnamurthy, D., Top, P., Smith, S., Daily, J., & Fuller, J. (2017, April). Design of the
HELICS high-performance transmission-distribution-communication-market co-simulation framework. In 2017
Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES) (pp. 1-6). IEEE. doi:
10.1109/MSCPES.2017.8064542

[11] Moulema, P., Yu, W., Griffith, D., & Golmie, N. (2015). On Effectiveness of Smart Grid Applications Using
Co-Simulation. 24th International Conference on Computer Communication and Networks (ICCCN). doi:
10.1109/ICCCN.2015.7288438

http://fmi-standard.org/
http://fmi-standard.org/

[12] Xu, G., Yu, W., Griffith, D., Golmie, N., & Moulema, P. (2016). Towards Integrating Distributed Energy
Resources and Storage Devices in Smart Grid. IEEE Internet of Things Journal. 4(1): pp 192-204. doi:
10.1109/JIOT.2016.2640563

[13] Mallapuram, S., Yu, W., Moulema, P., Griffith, D., Golmie, N., & Liang, F. (2017). An Integrated Simulation
Study on Reliable and Effective Distributed Energy Resources in Smart Grid. Proceedings of the International
Conference on Research in Adaptive and Convergent Systems. pp 140-145. doi: 10.1145/3129676.3129684

[14] Burns, M., Roth, T., Griffor, E., Boynton, P., Sztipanovits, J., & Neema, H. (2018). Universal CPS
Environment for Federation (UCEF). In 2018 Winter Simulation Innovation Workshop.

[15] Roth, T., & Burns, M. (2018). A gateway to easily integrate simulation platforms for co-simulation of cyber-
physical systems. In 2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES)
(pp. 1-6). IEEE. doi: 10.1109/MSCPES.2018.8405394

[16] Hemingway, G., Neema, H., Nine, H., Sztipanovits, J., & Karsai, G. (2012). Rapid synthesis of high-level
architecture-based heterogeneous simulation: a model-based integration approach. Simulation, 88(2), 217-232. doi:
10.1177/0037549711401950

[17] Neema, H. (2018). Large-Scale Integration of Heterogeneous Simulations (Doctoral dissertation, Vanderbilt
University). Retrieved from https://www.isis.vanderbilt.edu/node/4925

[18] Federate Base (2019, July). Retrieved November 27, 2019 from https://github.com/openlvc/federate-base

Author Biographies

THOMAS ROTH leads development of the technology behind the cyber-physical systems testbed at the National
Institute of Standards and Technology as a member of its Smart Grid and Cyber-Physical Systems program office.
His research interests are in formal methods for the composition of cyber-physical systems, and the detection of
compromised cyber-physical devices through comparison of their reported behavior against the constraints of the
physical system.

CUONG NGUYEN leads the Smart Grid Testing and Certification Project in the Smart Grid and Cyber-Physical
Systems Program Office of the Engineering Laboratory at the National Institute of Standards and Technology. He
works with industry to support standards-based interoperability test programs to help accelerate smart grid
deployments. Cuong is the chair of the Smart Electric Power Alliance (SEPA) Testing and Certification Working
Group (TCWG). Cuong coordinates international outreach efforts through bilateral and multilateral engagements.

MARTIN BURNS is the Associate Director for the CPS/IoT Testbed in the Smart Grid and Cyber-Physical
Systems Program Office at NIST. With his background in IEC and ANSI standards development for semantic
models and data exchange, he has facilitated the development of the underlying Green Button technologies which
define energy usage information and APIs in the Smart Grid in the US and internationally. He co-chairs the data
interoperability working group for the NIST led Framework for Cyber-Physical Systems (CPS) and is a key
contributor to NISTs architecture for UCEF-federated testbeds for investigating the behaviors of CPS/IoT.

HIMANSHU NEEMA is a Research Assistant Professor of Computer Science at Vanderbilt University. He holds
a M.S. and Ph.D. in Computer Science from Vanderbilt University. Dr. Neema researches in the general area of
model-based design and modeling and simulation of Cyber-Physical Systems and their integrated simulation with
hardware- and humans- in the loop. His research interests include: Modeling & Simulation, Model-Integrated
Computing, Distributed Simulations, Artificial Intelligence, Constraint Programming, Planning & Scheduling,
Smart-Grids, Transactive Energy, Service-Oriented Architectures (SOAs), Semantic Web, and Automated
Document Analysis & Classification. Dr. Neema has 20 years of experience in research and development of
software applications covering the above areas and has co-authored ~50 publications.

https://www.isis.vanderbilt.edu/node/4925
https://www.isis.vanderbilt.edu/node/4925
https://github.com/openlvc/federate-base
https://github.com/openlvc/federate-base

	2.1 The network model should contain nodes that represent a subset of the federates
	2.1 The network model should contain nodes that represent a subset of the federates
	2.2 The network simulator should be synchronized with the federation logical time
	2.2 The network simulator should be synchronized with the federation logical time
	2.3 Network simulation should be configurable by both message type and sender
	2.3 Network simulation should be configurable by both message type and sender
	2.4 Federates should receive network simulated messages at different logical times
	2.4 Federates should receive network simulated messages at different logical times
	2.5 Federate implementations should be agnostic to the presence of network simulation
	2.5 Federate implementations should be agnostic to the presence of network simulation
	4.1 Universal CPS Environment for Federation (UCEF)
	4.1 Universal CPS Environment for Federation (UCEF)
	4.2 Network Configuration of UCEF Federates
	4.2 Network Configuration of UCEF Federates
	4.3 Implementation of the UCEF Layer
	4.3 Implementation of the UCEF Layer
	4.4 Implementation of the Network Federate
	4.4 Implementation of the Network Federate
	Author Biographies
	Author Biographies

