
 
 

 
 

  
 

 
 

Integrating a Network Simulator with the High Level Architecture 
for the Co-Simulation of Cyber-Physical Systems 

 
Thomas Roth, Cuong Nguyen, and Martin Burns 

Smart Grid and Cyber-Physical Systems Program Office 
National Institute of Standards and Technology 

Gaithersburg, MD 20899 
thomas.roth@nist.gov, cuong.nguyen@nist.gov, martin.burns@nist.gov 

 
Himanshu Neema 

Institute for Software Integrated Systems 
Vanderbilt University 
Nashville, TN 37212 

himanshu.neema@vanderbilt.edu 
 

Keywords: 
cyber-physical systems, high level architecture, network simulation, smart grid 

 
 
ABSTRACT: Cyber-physical systems (CPS) use logical computation informed by measurements of the 
environment to actuate changes on the physical world. These systems have significant impact on people, and must 
be designed for resilience against fault and attack. However, due to their large scale, assurance of CPS 
trustworthiness is better suited to modeling and simulation than deployment of a real system. This paper describes 
an approach to integrate a network simulator with the High Level Architecture (HLA) to investigate the effects of 
different network conditions on CPS performance. Using this approach, an HLA interaction class can be 
configured to use network simulation rather than the default reliable HLA delivery mechanism. A technique similar 
to regions defined in HLA data distribution management is used to allow each federate to receive the same 
interactions at different logical time steps, as simulated by the network simulator. This is implemented in a piece of 
reusable code shared by federates that sits between the runtime infrastructure (RTI) and application code. The 
implementation can be used to create a test harness around the federates that represent the operation of a CPS to 
validate its behavior under unreliable network conditions. 
 

1. Introduction 
 
Cyber-physical systems (CPS) are smart systems that include engineered interacting networks of both physical and 
computational components [1]. These systems have a high degree of complexity at numerous spatial and temporal 
scales and need highly networked communications to integrate the computational and physical components. The 
smart grid is an example of a CPS that is defined as the integration of digital computing and communication 
technologies and services with the power-delivery infrastructure. The smart grid is often referred to as a system of 
systems that enables the bi-directional flow of both communication and power. Because the smart grid integrates 
information communication technology (ICT) with the electrical grid, network communication is one very 
important system component. 
 
Grid operations are becoming more complex with the widespread deployment of distributed energy resources 
(DER) and distributed sensors that provide intelligence at the grid edge [2]. DER are comprised of many different 
types of resources such as solar photovoltaic (PV), wind, battery, and electric vehicle (EV). Some of these 



 
 

 
 

  
 

resources such as PV and wind have volatility in energy production, and grid operators need robust communication 
capabilities to monitor and control them. Sensors distributed at the grid edge also have firm communication 
requirements to collect data, report, and fulfill their intended functions. 
 
There are common standard-based communication protocols in use for grid operations. For substation automation, 
the two common protocols are IEC 61850 and Distributed Network Protocol 3 (DNP3). For DER communication, 
common protocols include IEEE 2030.5, DNP3, and SunSpec Modbus. Distributed sensors use protocols similar to 
both substation and DER. Beside these standardized protocols, there are manufacturer specific proprietary 
protocols. The choice of communication protocol for smart grid deployment depends on its performance capability, 
existing infrastructure, and the intended application. For example, if an operator plans to deploy an inverter for a 
PV installation, they need to consider what communication protocol their system can support to communicate with 
the inverter. If the operator plans to control DER, they will need a high-speed communication protocol for that 
application instead of a low bandwidth protocol that is only sufficient for monitoring alone. Other considerations 
may include whether the network connection between DER and the system is wired or wireless, and what 
cybersecurity mechanisms are required to protect the communication that still allow for the performance 
requirements. 
 
Due to the complexity of the smart grid and its communication requirements, network simulation is essential and 
needs to represent the distributed nature of the evolving grid architecture. Sophisticated network simulation 
capabilities are needed to simulate the different communication protocols for the applications of interest to grid 
operators. Although such capabilities could be integrated into the implementation of grid simulators, it’s more 
intuitive to leverage the capabilities of existing network simulators. IEEE 1516-2010 High Level Architecture 
(HLA) is a standard for the co-simulation of distributed processes [3], such as the joint simulation of an electric 
grid and a network model. In HLA, the simulators that participate in a co-simulation are called federates, and the 
set of federates in the joint simulation are called a federation. The federates communicate and coordinate using 
software called the runtime infrastructure (RTI) that implements the common set of services described in the HLA 
federate interface specification [4]. An alternative to HLA is the Functional Mock-up Interface (FMI) standard 
often implemented by the developers of modeling tools [5]. Unlike HLA in which federates are independent 
processes in distributed system, FMI uses a master-slave architecture in which the master algorithm imports each 
simulator as a shared library and makes direct function calls into the slave code. The FMI standard for co-
simulation prescribes the function definitions that each slave must implement to be interoperable with the master 
algorithm. This work uses HLA as its basis for co-simulation because it is more natural to consider a network 
simulator and a grid model as independent processes rather than sub-modules of one master program. In addition, 
networked co-simulation requires strict time management and distributed object management that are directly 
defined in HLA. 
 
The remainder of this paper is organized as follows. Section 2 provides the motivation for the need of network 
simulation in the smart grid and lists the high level requirements that must be satisfied for network simulation to be 
meaningful in this context. Section 3 gives an overview of related work in the area, and Section 4 describes the 
specific approach to network simulation proposed by this work. The paper is then concluded in Section 5. 
 

2. Motivation and Approach 
 
For holistic system of systems evaluations, CPS require complex co-simulations including an integrated simulation 
of the cyber communication network as well as hardware- and human-in-the-loop. Owing to their use in critical 
system operations, the performance and trustworthiness of CPS must be evaluated under a variety of 
communication network modes which include the extreme cases of failures and attacks. In the smart grid, there are 
a variety of distributed sensors that are deployed at the system edge to provide situational awareness for 
monitoring and control. These sensors provide the condition at various points in the grid to detect any potential 
issues that could lead to system failure. One type of widely deployed sensor in the smart grid is the phasor 
measurement unit (PMU) or synchrophasor. PMUs provide voltage and current phasor and frequency 
measurements that are synchronized against a common time reference typically provided by global positioning 



 
 

 
 

  
 

system (GPS) [6]. Since these sensors provide time sensitive measurements, they need reliable communication to 
send the data to the grid control center. An attack on the timing infrastructure used by these devices could cause 
them to provide erroneous data to the operator that could lead to incorrect operating decisions such as unnecessary 
tripping of a line or not acting on a potential failure. Similarly, with the emergence of a plethora of innovative 
Internet of Things (IoT) devices for industrial control systems, edge computing, remote system monitoring and 
control, and home automation, it is equally critical to analyze the operational impacts of communication network 
failures for systems that incorporate IoT devices. 
 
In order to analyze how communication network failures impact the operation of CPS and IoT, a careful 
consideration of the networked communication is necessary. In particular, analysis of a simple cyber attack might 
consider the impact of delaying the network packets, data corruption, replaying or reordering network packets, and 
packet loss. The HLA standard does not provide any direct means to support the co-simulation of these attack 
effects and supports only two options for delivering messages: receive order and timestamp order. In receive order, 
the messages are sent over UDP transport protocol and are delivered to the receiving federate with the best effort, 
without any explicit guarantee that a given message will be eventually delivered. In timestamp order, the messages 
are marked with a timestamp for delivery and are scheduled for delivery at that time to the receiving federate. A 
naïve approach may involve simply adding a delay to the timestamp of the delivered messages via HLA, but that 
does not realistically represent the behavior of unreliable message delivery. Even in cases in which a piece of 
manual code could be added to associated HLA federates’ source code, this approach is highly inflexible and not 
representative of the flow of network packets in a real network. This is in contrast to using a communication 
network simulator that is integrated into the federation as a separate federate, where the networked communication 
between federates flows through the network simulator. The use of an integrated network simulator achieves not 
only faithful, high-fidelity network simulation, but also enables the realistic network characteristics such as 
unreliable message delivery against which the CPS and IoT systems can be evaluated. 
 
The remainder of this section summarizes several desirable features for approaches to network simulation of CPS 
that are shown in Figure 1. The figure contains three federates, which consist of a federate implementation and the 
local RTI component (LRC) at each federate that implements the HLA message bus. Each federate has a unique 
representation in the simulated network model, depicted on the right. The remaining features in this figure are 
described in the subsections that follow. 
 

 
Figure 1: Approach to Network Simulation using the High Level Architecture (HLA) 

 
2.1 The network model should contain nodes that represent a subset of the federates 
 
At least two nodes from the network model should represent federates. The Network Simulation box from Figure 1 
shows an example network model. A subset of the nodes in the network model indicated by labels F1 through F3 



 
 

 
 

  
 

have a 1-to-1 correspondence to HLA federates. These federate nodes are connected through the simulated network 
topology. Although Figure 1 shows one network topology, the network model must be reconfigurable to allow the 
same federation to be executed with any number of different network configurations. 
 
The network model does not need to define nodes to represent all federates in the federation. For instance, this 
federation could have a Federate 4 without the network model containing a corresponding node labeled F4. In this 
case, Federate 4 would not use the network simulation and all of its messages would use the default HLA 
provisions for object management. The network model also does not need to be fully connected. For instance, if 
node F1 cannot reach node F2 in the network topology, then none of the messages sent by Federate 1 using 
network simulation will be delivered to Federate 2. 
 
2.2 The network simulator should be synchronized with the federation logical time 
 
One responsibility of the network federate is to synchronize time progression of the simulated network with HLA 
federation logical time. The network federate is both time constrained and time regulating to operate in lock-step 
with HLA logical time. It also defines a function that maps a unit of HLA logical time to an exact number of 
seconds elapsed in the network simulation. This binding between the time representations of the federation and the 
network simulation ensures that a message is delivered to a federate only when the corresponding network packet 
is scheduled for delivery to that federate’s node in the network simulation. 
 
The optimal value for the logical step size of the network federate depends on the timing requirements of the 
federates using the simulated network. These timing requirements include concerns such as the smallest time 
interval between generation of network messages, and the shortest possible delivery time for messages sent from 
one federate to another. There is a trade-off between performance and simulation accuracy when choosing the 
logical step size. If the step size is too large, there will be delays in the delivery of messages to federates when a 
message arrives between time steps. If the step size is too small, the network simulator will synchronize more 
frequently with the federation which will lead to slower progression of logical time. 
 
2.3 Network simulation should be configurable by both message type and sender 
 
Even when a federate has a corresponding node in the network model, not all messages that originate from that 
federate are sent through the network simulation. A federate might want to coordinate with its peers or 
communicate with a federate that does not use the network simulation. For this reason, the use of network 
simulation is not configured per federate but rather per message that originates from a federate. This is shown in 
Figure 1 with two alternative paths for message flow listed as Option 1 and Option 2. Option 1 represents the 
normal HLA object management services where a federate can send and receive interactions and attribute updates 
using the RTI. Option 2 is an alternative mode where specific messages are routed through a network simulator, 
rather than the usual set of HLA services. 
 
In an ideal implementation, the LRC would perform this function of re-routing certain messages from the normal 
object management services into an alternative delivery mechanism based on the current network model. The RTI 
Initialization Data (RID) file could be modified to list the interactions and object classes that use network 
simulation. When the LRC received a message from the federate implementation, it would first check whether that 
specific message was configured for network simulation. If the message used simulation network, the LRC would 
send the message out-of-band to the network simulator. Otherwise, the LRC would continue to invoke the normal 
set of HLA object management services. 
 
In this paper, the network simulator is a federate and Option 2 is instead realized through re-encoding the message 
into a special interaction class that represents network packets. The network federate re-creates the original 
message once its corresponding network packet has propagated through the simulated network. 
 
2.4 Federates should receive network simulated messages at different logical times 
 
When the network federate receives a message from a LRC, it injects that message as one or more packets into the 



 
 

 
 

  
 

network simulation with the source of the packet set to the node representing the sending federate. If the network 
model is not based on multicast, then it is likely that one message will generate a unique packet for each federate 
node configured to receive that message that is reachable in the network model. All these packets will experience 
different delays, some may be dropped, and others might be modified through various forms of cyber-attacks. In 
the end, each federate node can receive a different packet, at different times, and perhaps with different content. 
 
It is essential for cases such as network congestion and packet loss to break the reliable and uniform delivery of 
interactions and object classes guaranteed by HLA. Figure 1 shows an approach where this is implemented inside 
the RTI rather than the federates to reduce the amount of implementation required for each federate. However, the 
same effect could be achieved through implementation of a common library, shared by the federates, that sits 
between the LRC and the federate business logic. 
 
2.5 Federate implementations should be agnostic to the presence of network simulation 

 
Reusability is a desirable trait for federates developed for both CPS and IoT applications. Suppose a federate was 
developed to represent a PMU that reports time-synchronized voltage phasors measurements to some higher level 
application. This implementation could be useful for a number of different federation designs for different smart 
grid applications. Some of these applications might require realistic network delays to analyze the impacts of 
network congestion, some might require use of a specific communication protocol for hardware-in-the-loop 
testing, and some might just want to use a PMU with no network specific details. Despite differences in the 
interface on how the PMU is used, its basic implementation remains unchanged between these different 
applications. 
 
While a typical HLA design flow might develop federations to achieve a specific purpose, in CPS and IoT 
applications, it is better to produce a federate like this PMU that can be composed into different scenarios. How 
this federate will be used is unknown at development time, and its implementation should support a broad range of 
scenarios without the need to develop additional code. For that reason, support for network simulation must be 
embedded into each federate as an option that can be enabled or disabled through configuration files. In addition, 
for different CPS and IoT federates to be interoperable, all the federates must implement their approach to optional 
network simulation using a consistent methodology. 
 

3. Related Work 
 
The integration of grid simulators and ICT into a co-simulation has over a decade of research. The first published 
approach in this area is the electric power and communication synchronizing simulator (EPOCHS) which uses 
HLA to integrate electromagnetic and electromechanical transient simulators with Network Simulator 2 (NS-2) [7]. 
Following EPOCHS, many co-simulation platforms were developed to integrate different grid simulators to 
different network simulators using different middleware [8]. The integrated co-simulation of power and ICT 
systems for real-time evaluation (INSPIRE) platform considers how to incorporate standard-based communication 
protocols into the co-simulation to support wide area monitoring, protection, and control (WAMPAC) applications 
[9]. The Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS) platform considers how to 
address scalability to handle grid scenarios that contain tens of thousands of independent agents [10].  
 
The US National Institute of Standards and Technology (NIST) researched the effectiveness of different smart grid 
operating scenarios using the Framework for Network Co-Simulation (FNCS) developed by the Pacific Northwest 
National Laboratory that provides an integration of GridLAB-D, MATPOWER, and Network Simulator 3 (NS-3) 
[11]. The goal of this effort was to simulate a power grid segment that contained a substation and residential loads 
using different scenarios such as demand response and dynamic pricing. The work provided benchmarking for 
performance of the communication network under different operating conditions. 
 
A follow-on work was on performance evaluation of DER and storage devices in terms of cost and impact on grid 
reliability [12]. This work was done by applying network traffic routing concepts to the routing of power in a grid 



 
 

 
 

  
 

segment with DER and storage devices. The premise for this work was that the resources are controllable, and the 
energy can be routed like network traffic management. 
 
Additional research combined the smart grid operating scenarios (demand response and dynamic pricing) with the 
integration of DER in the grid [13]. This simulation work used a standard IEEE bus model with an integrated 
simulation platform that included GridMat, FNCS, GridLAB-D, and NS-3. The intent was to evaluate the 
performance of the grid with DER under different operating scenarios. 
 
This paper attempts to address the feature from Section 2.4 on breaking the reliable delivery of HLA messages 
based on the results of network simulation. Other approaches largely limit their scope to adding message delays, 
and rarely consider the impact of packet loss or modification due to fault or cyber-attack. 
 

4. Implementation Details 
 
4.1 Universal CPS Environment for Federation (UCEF) 
 
NIST has developed a software tool to expedite the development of federates and federations called the Universal 
CPS Environment for Federation (UCEF) [14]. UCEF is distributed as an Ubuntu virtual machine pre-configured 
with a suite of software useful in the development of different federate types. The latest 1.0.1 version of UCEF 
includes support for Java and C++ federates, and several grid simulators including GridLAB-D, TRNSYS, and 
EnergyPlus. The front end of UCEF is the Web-based Generic Modeling Environment (WebGME) developed at 
Vanderbilt University that provides a graphical web environment where users can model federations using simple 
building blocks. At the back end are JavaScript extensions to WebGME that perform code generation to transform 
the federate models into stub code for the different supported federate types. A core concept of UCEF is the 
separation of a federate implementation into two layers: a user layer that implements the intended function of the 
federate, and an infrastructure layer generated from WebGME that implements shared boiler plate code. 
 
The UCEF infrastructure layer handles functions such as joining a federation, declaring publication and 
subscription interests, providing helper methods to send and receive interactions and object attributes, and other 
application independent utility functions. It also prescribes a basic federate lifecycle with hooks that an application 
developer can extend to customize the behavior of the federate at specific points in the HLA state machine, such as 
after the grant of an advance time request. The WebGME generated code closely resembles the structure of a 
Functional Mock-up Unit (FMU) as defined in the FMI standard for co-simulation.  
 

 
Figure 2: The UCEF Architecture for Network Simulation 

 
Figure 2 shows how network simulation is implemented in UCEF to satisfy the requirements enumerated in 
Section 2. Rather than implement a new RTI, or modify an existing RTI, the logic related to network simulation 
was implemented in the UCEF infrastructure layer. In the figure, the user application on the left sends an 



 
 

 
 

  
 

interaction class A which has been flagged for network simulation. Before the UCEF layer passes this interaction 
to the RTI, it converts it into a special NetworkPacket interaction class to ensure it is routed to the network 
federate. 
 
The network federate subscribes to the NetworkPacket interaction class, and encodes the received interaction 
instance as one or more packets in a format compatible with the network simulation. These packets are injected 
into the network simulation, where they propagate through the simulated network. When a packet arrives at its 
destination, it is delivered back to the network federate along with the name of the destination node from the 
network simulation. Then the network federate reconstructs the original interaction embedded inside the 
NetworkPacket and watermarks this new interaction with the destination node name. The network federate is 
implemented using a library called the UCEF Gateway [15], which enables it to create dynamic publications based 
on the current federation object model. As such, the network federate is not bound to a specific data model and can 
be used in any federation without code modification. 
 
Because the network federate sends the watermarked interaction using the standard HLA services, all subscribed 
federates will receive it. However, each federate is configured to know the name of its representation in the 
network simulation, and the UCEF layer can use the watermark to check if an interaction was meant for its user 
application. In this manner, even though the left most federate receives a copy of its own interaction Ai¸ this 
interaction will be dropped at the UCEF layer before it reaches the user application. 
 
One constraint of this approach is that all federates that use network simulation must have the same UCEF layer, 
which means they must be code generated from the UCEF virtual machine. The benefit of the approach is that the 
application never has to know about the network simulation and only must consider its native interaction class A. 
When network simulation is required, the infrastructure will take care of it. The remainder of this section describes 
how network simulation was embedded into the UCEF layer. 
 
4.2 Network Configuration of UCEF Federates 
 
There are three requirements to support network simulation in the UCEF layer: (1) the interaction classes that 
require network simulation must be specified in a configuration file, (2) the NetworkPacket interaction class must 
be defined, and (3) a filtering mechanism must be defined to ensure that interactions sent by the network federate 
are received only by the intended federates. 
 
The same configuration file for network simulation is shared by all federates, including the network federate. This 
JavaScript Object Notation (JSON) file lists which interactions from which federates should use network 
simulation and how those interactions should be routed through the network simulation. Figure 3 shows an 
example instance of this configuration file. This JSON configuration was designed for use with the OMNeT++ 
network simulator using its INET Framework. 
 

  
Figure 3: Example JSON for Network Configuration 

 
The network configuration is a list of network rules. Each network rule defines the list of interactions for a given 
source federate that are configured to use network simulation. These interactions are injected into the network 
model at the source node and routed to each of the listed destinations. The same source federate can appear in 
multiple network rules for the case when different interactions from the same source have different destinations. 
This implementation assumes for simplicity that the federate name is identical to the host name of its equivalent 
network node. Under this assumption, the host fields are both the federate name and the network node name.  



 
 

 
 

  
 

 
 
A network node in the OMNeT++ INET Framework contains submodules for different network applications. For 
example, a node could define a submodule for a Representational State Transfer (REST) server running on 
localhost:8080. These network applications are identified using an application name (app) and an application or 
submodule index (appIndex). The destination applications are bound to a specific network interface (interface) to 
handle cases where a node has more than one available network interface. 
 
Figure 4 shows the WebGME representations of the two interaction classes HLAinteractionRoot.InteractionBase 
and HLAinteractionRoot.InteractionBase.NetworkPacket. 
 

 
Figure 4: Example Object Model for Network Simulation 

 
The UCEF layer encodes all interactions it sends to the network federate using the NetworkPacket interaction 
class. Besides the federateFilter parameter that will be discussed later, this interaction class has three parameters. 
The interactionClass and data parameters are used to embed the original interaction from the user application into 
the NetworkPacket. When an instance of interaction class A is converted into a NetworkPacket, the 
interactionClass parameter would be the fully qualified class path of A and the data parameter would be the 
serialized parameters of A. These fields are used by the network federate to reconstruct the original interaction 
after the packet propagates through the network simulation. The final parameter, networkHost, is set to the unique 
identifier of the sending federate. This allows the network federate to inject the packet into the network simulation 
at the correct node. 
 
When the UCEF layer receives an interaction, it checks if that interaction was sent by the network federate. If the 
interaction was sent by the network federate, then it is possible that it was only intended for receipt by a single 
federate. The network federate uses the federateFilter parameter to specify this destination. If the federateFilter is 
empty, then the UCEF layer processes the interaction as normal. Otherwise, the UCEF layer discards the 
interaction unless the federateFilter is string equivalent to the federate’s own unique identifier.  
 
4.3 Implementation of the UCEF Layer 
 
Figure 5 shows a flowchart for how interaction classes are handled from both the sending and the receiving 
federates. The first decision box at the top of the figure, whether to use network simulation, is determined by the 
content of the JSON file from Figure 3. The second decision box at the bottom of the figure, whether the received 
interaction should be delivered to this specific federate, performs the string comparison between the federateFilter 
parameter from Figure 4 and the federate name of the receiving federate. If the federate filter parameter is set but 
not equivalent to the receiving federate name, then the packet is dropped and not delivered to the user application. 
 
This filtering mechanism allows different federates to receive the same interaction at different logical times, 
dependent on the results of network simulation. An equivalent implementation could have been achieved using 
regions from the HLA data distribution management (DMM) services instead of as a parameter of a base 
interaction type. However, as the configuration management of regions can be quite cumbersome, this simple 
filtering mechanism was implemented at the UCEF layer instead. 



 
 

 
 

  
 

 

 
Figure 5: Flow of Interactions through the UCEF Layer 

 
 
4.4 Implementation of the Network Federate 
 
Algorithm 1 shows pseudocode for the network simulation from Figure 5. This algorithm uses the OMNeT++ 
network simulator, and extends the OMNeT++ cSimpleModule class which defines the step and handleMessage 
methods. The step method executes each HLA logical time step and checks for either packets from the network 
simulator or interactions from the federation. When an interaction is received, the step method parses the JSON 
network configuration to create packets in the network simulation for each configured destination. These packets 
propagate through the simulated network until they arrive at their destination, causing OMNeT++ to invoke the 
handleMessage method. In handleMessage, a customized interaction is created for the node that received the 
packet. The current implementation of time synchronization maps a unit of HLA logical time to a second of 
network simulation time. The advanceTimeRequest method could be replaced with an alternative implementation 
that uses a scaling function to make each logical time step some configurable multiple of seconds. 



 
 

 
 

  
 

 
 

5. Conclusion 
 
This paper proposed an approach to incorporate network simulation into the High Level Architecture (HLA). 
Whether the proposed approach is HLA compliant depends on the interpretation of the rule that “During a 
federation execution, all exchange of FOM data among federates shall occur via the RTI” [4]. From the federate 
perspective, this rule is upheld because the NetworkPacket interaction is transmitted to the federation via the RTI. 
However, from the user application perspective, the interaction that the user wants to send is automatically 
converted into a different interaction class and the RTI is never used to transmit the data in its intended format. 
This approach was chosen because co-simulation of CPS requires network simulations that support the concepts of 
message delay and packet drop, and integrating the semantics of network simulation into each individual federate - 
while feasible - is far too burdensome. 
 
The next step is to complete the implementation of this approach in UCEF. An implementation that addresses the 
need for packet loss and modification was developed by Vanderbilt University for their Command and Control 
Wind Tunnel (C2WT) platform [16][17]. However, it requires source code modifications when changes are made 
to the network configuration. Another implementation was released by Calytrix for their open-source Portico RTI 
[18]. However, it requires the use of multiple network federates which leads to poor scalability for large federation 
sizes, and the approach may be incompatible with the popular OMNeT++ INET Framework. Future work will 
merge these implementations to produce one network federate configurable using JSON that is compatible with the 
OMNeT++ INET Framework. This future work will aim to improve the time synchronization strategy to be more 
flexible than a 1-to-1 equivalence between HLA logical time and the network simulator time. 
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