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We study the combined effects of spin transfer torque, voltage modulation of interlayer exchange
coupling and magnetic anisotropy on the switching behavior of perpendicular magnetic tunnel junc-
tions (p-MTJs). In asymmetric p-MTJs, a linear-in-voltage dependence of interlayer exchange cou-
pling enables the effective perpendicular anisotropy barrier to be lowered for both voltage polarities.
This mechanism is shown to reduce the critical switching current and effective activation energy.
Finally, we analyze the possibility of having switching via interlayer exchange coupling only.
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Magnetic tunnel junctions (MTJs) that can be
switched bidirectionally by electrical means are highly
desirable for low power consumption applications[1].
Current-induced magnetization reversal is one of the
most promising and reliable technologies available for
achieving bidirectional switching in MTJs[2–5].

Current-induced switching relies on spin transfer
torque (STT), where the interaction between current-
carrying spins which are misaligned with the magneti-
zation leads to magnetic dynamics and reversal[4]. In
addition to STT, a charge current modifies the interlayer
exchange coupling (IEC) between fixed and free layers via
an additional field-like torque[5–7]. Though frequently
called “field-like spin transfer torque component”, in this
work we refer to this torque component as interlayer ex-
change torque[6]. Denoting the free (pinned) magnetic
layer orientation by m (mp) [See inset Fig. 1(a)], the
total current-induced torque density is

N = TIECm×mp + TSTTm× (m×mp). (1)

Unlike in spin valves where the IEC torque is negligi-
ble, it has been demonstrated that TIEC is comparable
to TSTT in MgO-based MTJs, considerably affecting the
magnetization dynamics of the free layer[8–10]. However,
while the importance of TSTT for magnetization switch-
ing is well understood, the contribution of TIEC is often
omitted in many analyses and poorly explored.

For perpendicular MTJs (p-MTJs), the critical switch-
ing current Jc is directly proportional to the total effec-
tive perpendicular anisotropy Keff[11, 12]. Such propor-
tionality reflects the fundamental problem encountered in
memory technology, where one seeks to improve Keff for
better retention of information while reducing the criti-
cal switching current Jc for low-power consumption[12].
Particularly, the voltage control of magnetic anisotropy
(VCMA) is currently being quoted as one of the most
promising methods to circumvent this problem, as it
provides a mechanism to reduce the anisotropy barrier
KeffV, where V is the volume of the free layer, only when

a voltage is applied across the MTJ, enabling one to re-
duce Jc momentarily while maintaining a sizeable Keff

at zero applied voltage[12–15]. However, while it can re-
duce the critical switching current for a given applied
voltage by reducing Keff, it tends to increase Keff for
the opposite voltage polarity. The ability to overcome
the anisotropy barrier bidirectionally while decreasing
the critical current density is highly desirable, and re-
mains a long-standing goal in the search for low power
consumption spintronics.

In this work, we show that TIEC can assist STT switch-
ing by effectively reducing the anisotropy barrier for both
voltage polarities in asymmetric p-MTJs. We demon-
strate that TIEC directly competes with the total effective
intrinsic uniaxial anisotropy quantified by Keff, enabling
one to reduce the critical switching current bidirection-
ally by tuning the degree of asymmetry of the p-MTJ.
Our model includes the combined effects of STT, VCMA
and IEC effects on p-MTJs, which are all known to be
present in this kind of system[12, 16].

The total torque acting on the magnetization vector
of the free layer is decomposed into different contribu-
tions, as given by the Landau-Lifshitz-Gilbert (LLG)
equation[17]

dm

dt
= −γm×Heff + αm× dm

dt
+

γ

µ0MStfree
N , (2)

where m = M/MS , with M being the magnetization of
the free layer with saturation MS , γ is the gyromagnetic
ratio, α is the intrinsic damping parameter, µ0 is the
vacuum permeability and tfree is the thickness of the free
layer. The effective field is Heff = (2Keff(V )mz/µ0MS)z,
with z being the axis perpendicular to the free layer plane
and mz being the z component of m. The total effective
anisotropy coefficient is given by Keff(V ) = Keff(0) +
ξV with Keff(0) = Ki/tfree − µ0M

2
S/2 being the effective

perpendicular magnetic anisotropy at zero voltage with
interfacial anisotropy Ki. The VCMA coefficient is ξ
and V the applied voltage across the p-MTJ. We assume
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FIG. 1: (Color online) (a) MTJ band diagram. The param-

eter δ = ε
↑(↓)
L − ε

↑(↓)
R controls the asymmetry of the MTJ.

The bottom of the spin up (down) bands in the single orbital

tight-binding approach is ε↑(↓) − 6t, where t is the nearest
neighbor hopping parameter. The inset shows a sketch of an
asymmetric p-MTJ with m and mp corresponding to the unit
vectors in the direction of the magnetization of the free and
fixed layer, respectively. Panels (b) and (c) show the volt-
age dependence of spin transfer torque and non-equilibrium
interlayer exchange coupling, respectively, for different MTJ
asymmetries δ, as defined in (a).

mp = z, i.e., perpendicular to the interface.
The critical switching voltage Vc is given by the fol-

lowing implicit equation[18]

TSTT(Vc) = 2αtfree

(
Keff(Vc)mz − TIEC(Vc)

2tfree

)
, (3)

where mz = ±1 for magnetization initially in the parallel
(P, with mz = +1) or antiparallel (AP, with mz = −1)
configuration. This result reveals that while TSTT acts in
favor or against the intrinsic damping[4], TIEC competes
directly with the anisotropy torque, affecting the final
critical STT switching magnitude T cSTT = TSTT(Vc). Be-
fore analyzing the consequences of this equation from the
perspective of the quantum transport model, let’s sup-
pose, for simplicity, the following voltage dependencies
of the torques, i.e., TSTT = βSTTV , TIEC = C1V +C2V

2,
where the coefficients βSTT, C1 and C2 express the volt-
age modulation of the non-equilibrium torques to lowest

order in V. Our convention for the voltage is that V > 0
leads to an electron flow from the fixed layer to the free
layer. For symmetric p-MTJs, TIEC is an even function
of applied voltage, i.e., the spatial top-bottom symmetry
requires that C1 = 0 and C2 6= 0[19]. In this case, one
can solve Eq. (3) analytically for Vc to find

Vc = 2αtfree
βSTT

Keff(0)mz, (4)

where we have assumed ξ = 0, i.e., no VCMA effect, and
neglected terms of order α2. Interestingly, Eq. (4) shows
that Vc does not depend on C2 in this limit. Hence, this
result is consistent with the fact that TIEC has little or no
influence on the magnetization switching in conventional
symmetric p-MTJs.

The situation for asymmetric p-MTJs is different. In
this case, theoretical[7, 20] and experimental[21] analysis
have shown that C1 6= 0, giving a sizable linear voltage-
dependent contribution to TIEC. In this situation, TIEC

acts like a torque due to an effective field with sign de-
termined by V and direction aligned with the magneti-
zation of the fixed layer. For a given applied voltage V ,
this results in an unidirectional anisotropy, to be con-
trasted with the intrinsic uniaxial magnetic anisotropy.
We explore the consequences of this symmetry breaking
induced contribution by assuming, for simplicity, ξ = 0
and C2 = 0. Equation (3) can then be easily solved:

Vc = 2αtfree
βSTT

Keff(0)mz (1 + αC1/βSTT)
−1
, (5)

where Vc is reduced by a factor of 1 + αC1/βSTT. This
simple analysis shows the relevance of TIEC in reducing
the critical switching current. A comparison between
experiments from Refs. [8, 21] indicates that C1 = 0
and C1 ≈ 30 kA/m for symmetric and asymmetric
CoFeB/MgO/CoFeB MTJs, respectively. These results
show the possibility of tuning Vc via C1.

The above analysis, albeit qualitative, demonstrates
the possibility of reducing critical switching voltage when
TIEC exhibits strong asymmetric dependence on voltage,
i.e., C1 � 0. According to Eq. (5), the sign of C1/βSTT

must be positive in order to decrease the Vc. While βSTT

is usually positive, it was experimentally observed that
one can tune the sign and magnitude of C1 by control-
ling the relative composition between fixed and free mag-
netic layers[21]. In the following section, we first evaluate
the voltage modulation of both TSTT and TIEC within a
single orbital quantum transport model and explore the
dependence of the critical current density with p-MTJ
asymmetry.
Non-equilibrium torques. In the absence of spin-orbit

coupling[22], the torque exerted on the magnetization of
the i -th atomic plane of the free layer is related to the
spin current flux into that plane as Ti = −∇ · Qi =
Qi−1,i−Qi,i+1 where Qi,j is the spin-current density be-
tween atomic planes i and j. The total torque exerted
on the semi-infinite magnetic lead reads T =

∑
iTi =
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FIG. 2: (Color online) Critical current density as function of
the asymmetry parameter δ. The red circles (blue triangles)
show the trend for P to AP (AP to P) switching. (b) Normal-
ized effective activation energy as function of applied voltage
for different p-MTJ asymmetries for P to AP (V > 0) and
AP to P (V < 0) switching.

QOx/FM, where QOx/FM is the spin-current density pen-
etrating the magnetic lead at the oxide-ferromagnet
interface[7, 20]. Assuming a spin quantization axis along
the mp = z direction for the fixed layer, the TSTT

and TIEC components are obtained by extracting the
m × (m ×mp) and m ×mp components, respectively,
of the interface spin-current QOx/FM[7, 19, 20].

We employ the single-orbital tight-binding model and
express the spin-current density as[7, 19, 20]

Qi,j =
1

4π

∫
ΩB

d2k||

(2π)2

∫
dE Trσ[(HjiG

<
ij −HijG

<
ji)~σ],(6)

where ~σ = (σx, σy, σz) is the vector of Pauli matrices, Hij

is hopping matrix between sites i and j, G<ij is the lesser
Green’s function of the whole coupled system and the k||
integration is performed over the 2D in-plane Brillouin
zone ΩB . This model provides an accurate description of
the voltage dependence of the non-equilibrium torques in
systems such as in Fe/MgO/Fe MTJs[24–27].

In experiments, asymmetry in the ferromagnetic con-
tacts can be introduced through the use of different
metals[23], or by considering ferromagnets with different
compositions such as in Co40Fe40B20/MgO/Co49Fe21B20

MTJs[21]. In this work, we introduce asymmetry in the
ferromagnets by adjusting their band fillings. The sym-
metry breaking is controlled by the asymmetry param-

eter δ = ε
↑(↓)
R − ε↑(↓)L , where ε

↑(↓)
L(R) refers to the spin-up

(down) band filling of the left (right) magnetic lead, as
shown by the band diagram in Fig. 1(a). The exchange
splitting inside the ferromagnets are kept constant and
the same, i.e., ∆L = ∆R.

The voltage dependence of TSTT and TIEC for differ-
ent asymmetries (δ = 0.0 eV (solid black), δ = 0.6 eV
(dashed red) and δ = 1.8 eV (dot-dashed olive)) are
shown in Fig. 1(b) and (c), respectively. The angu-
lar dependencies of both torque components are sin(θ).

Hence, it suffices to show only their amplitudes. The
results of Fig. 1(b) show that TSTT presents an approx-
imately linear behavior for small applied voltages, i.e.,
TSTT ≈ βSTTV , with a slope that decreases as an in-
creasing function of the asymmetry parameter δ. In par-
ticular, for the most asymmetric case considered (δ = 1.8
eV), the voltage behavior of TSTT at negative V deviates
from linear and one can potentially achieve TSTT sign re-
versal under applied voltages for one of the polarities[19].
Figure. 1(c) indicates that TIEC is quadratic in V for sym-
metric p-MTJs, i.e TIEC ≈ C2V

2 with C2 < 0, as theoret-
ically predicted and observed experimentally [4, 7, 8, 20].
As one increases the asymmetry via δ, the voltage mod-
ulation of TIEC is enhanced while an additional linear-in-
voltage contribution develops, i.e TIEC ≈ C1V +O(V 2).
We also emphasize that the ratio C1/βSTT is positive if
one choose δ > 0.
Critical current density. The critical current density Jc

is computed by computing the current-voltage relation
using Landauer’s formula and non-equilibrium Green’s
function. This relation enables the previously computed
voltage-dependent TIEC and TSST to be converted to their
corresponding current-dependent. Figure 2(a) shows Jc
as a function of the asymmetry parameter δ for P to AP
(red circles) and AP to P (blue triangles) switching with
Ki ≈ 1.3 mJ/m2, and VCMA coefficient ξ = 20 kJ/V·m3.
The result clearly shows that Jc decreases with asym-
metry, which can be interpreted as follows: The pres-
ence of TIEC in asymmetric p-MTJs reduces Keff for both
voltage polarities, as qualitatively described by Eq. (5).
Therefore, the effective energy barrier between P and AP
configurations decreases and less current is necessary for
magnetization reversal.

The symmetry breaking also has important conse-
quences for thermally activated switching. Following
Ref. [28], we have derived expressions for the effective
activation energy in the presence of TIEC:

Ebeff = Eanis

(
1− TSTT

T c
STT

)(
1−mz

TIEC

2tfreeKeff

)
, (7)

from which one can extract the switching time τ−1 =
f0 exp(−Ebeff/kBT ), with f0 being an attempt frequency.
The anisotropy energy barrier Eanis(V ) = Keff(V )V
quantifies the thermal stability factor ∆ = Eanis(0)/kBT .
Figure 2(b) shows the voltage dependence of the nor-
malized effective energy barrier Ebeff/Eanis for P to AP
(V > 0) and AP to P (V < 0) switching considering sev-
eral different asymmetry parameters δ. In this plot we
use the voltage dependence of non-equilibrium torques
from the quantum transport model. As one can see, the
activation energy drops faster with V for asymmetric p-
MTJs, allowing for higher switching probabilities at a
given temperature T .
Switching by voltage control of IEC. So far, we have

shown that in asymmetric p-MTJ, TIEC can assist STT
switching by effectively reducing the anisotropy barrier
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FIG. 3: (Color online) Energy landscapes for (a) negative
and (b) positive current densities of absolute value 5 × 107

A/cm2 for different degrees of asymmetries δ. We define θ as
the angle between the magnetization of free and pinned layers
such that parallel and anti-parallel configuration, highlighted
as P and AP, are found in θ = 0 and θ = π, respectively.
We considered Keff(0) = 29.5 kJ/m3 and ξ = 20 kJ/(V ·
m3). The solid black curve shows contribution of perpendic-
ular anisotropy only, whereas the other curves show the total
energy landscape resulting from the sum of IEC and VCMA
contributions.

for both voltage polarities. Anisotropy and voltage de-
pendent IEC torques can be written as derivatives of an
effective energy, given by:

E(θ) = Keff sin(θ)2 + (TIEC/tfree) cos(θ), (8)

where θ is the angle between m and mp. Stable equilib-
rium points are found at energy minima, where the total
field-like torque vanishes.

Figures 3(a) and (b) show the energy landscape for
negative and positive current-density of J = 5 × 107

A/cm2 for different p-MTJ asymmetries. We have also
plotted the energy at zero applied voltage in black solid
lines for comparison purposes. One sees that Keff alone
gives rise to two metastable equilibrium configurations
with P (θ = 0) or AP (θ = π) alignment, emphasizing
the axial nature of perpendicular anisotropy.

Figure 3(a) shows the angular dependence of the total
energy for different asymmetries δ at applied V < 0. For
the symmetric case (δ = 0 eV), a negative bias voltage
gives rise to a negative TIEC [See Fig. 1(c)] while decreas-
ing Keff. The associated energy landscape for this case
is shown as a dashed blue curve in Fig. 3(a). One sees
that the stability of the P (AP) configuration is enhanced
(suppressed) due to the unidirectional nature of the IEC
torque. The dotted olive curve in Fig. 3(a) shows the
angular dependence of energy for the same current den-
sity considering an asymmetric p-MTJ with δ = 0.6 eV.
In this case, the previously metastable AP configuration
is now a maximum, indicating a current-induced insta-
bility and subsequent switching from θ = π to θ = 0.

The dash-dotted red curve shows that the effect is even
more pronounced if one further increases the asymmetry
to δ = 1.8 eV.

For V > 0, Keff now increases with V . For symmetric
p-MTJs, TIEC is an even function of the bias and, there-
fore, remains negative with positive applied voltage [See
Fig. 1(c)]. The resulting energy landscape is represented
by the dashed blue curve in Fig. 3(b), where one observes
an even greater stability in the P configuration, increas-
ing the difficulty to switch from P to AP. In asymmetric
p-MTJs, however, TIEC changes sign under reversal of
the voltage polarity. Such behavior results in the curves
corresponding to δ 6= 0 eV in Fig. 3(b). In these cases,
the P (AP) configuration tends to become more unstable
(stable) as one increases the asymmetry, favoring P to
AP switching. In particular, the case δ = 1.8 eV shows
that one can completely destabilize the P configuration,
showing pure IEC bidirectional bipolar switching.

Conclusion. We have studied the simultaneous impact
of VCMA, IEC and STT for p-MTJs. We demonstrated
that for asymmetric devices, linearly varying TIEC plays
an important role in STT switching by renormalizing the
effective anisotropy barrier. Such effect leads to reduced
critical switching current for magnetization reversal, and
can even lead to switching based on IEC alone.
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SINGLE ORBITAL TIGHT-BINDING AND NON-EQUILIBRIUM GREEN’S FUNCTIONS

We employ the single-orbital simple cubic tight-binding model in combination with the non-equilibrium Green’s
functions (NEGF) formalism as discussed in Refs. [1, 2]. The spin-current density reads

Qi,j =
1

4π

∫
ΩB

d2k||

(2π)2

∫
dE Trσ[(HjiG

<
ij −HijG

<
ji)~σ], (1)

where ~σ = (σx, σy, σz) is a vector of Pauli matrices, Hij is hopping matrix between sites i and j, G<ij is the Lesser
Green function of the whole coupled system and the k|| integration is performed over the 2D in-plane Brillouin zone
ΩB.

The band diagram is sketched in Fig. 1. The hopping matrices and the lesser Green’s functions for a given pair of

indexes i, j are both 2×2 matrices in spin space with elements Hσσ′

ij and G<,σσ
′

ij , respectively, with σ, σ′ =↑, ↓. In this
picture, the general block Hamiltonian element between sites i and j assuming a spin quantization axis along z′ rotated
by θ in relation to the z axis is H ′ij(θ) = R†(θ)HijR(θ), where R(θ) is the rotation operator and Hij = diag[H↑ij H↓ij ]
is the block Hamiltonian element in spin space with spin quantization along the z direction.

The spin dependent block Hamiltonian elements for each region is given in terms of spin-dependent onsite energy
εσ and nearest-neighbor hopping parameter tσ as Hσ

ij = εσδij + tσ(δi,j+1 + δi,j−1) (σ =↑, ↓), with Kronecker delta
δij . For the calculations presented in this letter, we assume ε↑ − EF = 3.0 eV, ε↓ − EF = 5.6 eV for the right lead
(free layer) with spin quantization axis along the z′ direction and ε↑ − EF = 3.0 + δ eV, ε↓ − EF = 5.6 + δ eV for
the left lead (fixed layer) with spin quantization axis along the z direction, where the Fermi level is fixed at EF = 0
eV and the parameter δ controls the asymmetry between the magnetic leads[See Fig. 1]. Additionally, the tunnel
barrier is assumed to be composed of N = 2 atomic planes with onsite energies ε↑ = ε↓ = 9.0 eV and the hopping
parameters assume the values t↑ = t↓ = −1.0 eV in all regions. The particular choice of parameters provides a good
estimate of the right order of magnitude of spin torques, exchange coupling and tunneling magneto resistance (TMR)
of Fe/MgO/Fe MTJs [3–5].

The Lesser Green’s function appearing in the spin-current density, Eq. (1), is determined by solving the Keldysh
equation G< = GrΣ<Ga, where Gr(a) is the retarded (advanced) Green’s function and the non-equilibrium self-energy
matrix is Σ< = ifLΓL + ifRΓR with the Fermi-Dirac distribution of left (L) and right (R) reservoirs at chemical
potentials µL(R) given by fL(R) = [exp(β(E − µL(R))) + 1]−1, being β = 1/kBT where kB is the Boltzmann constant
and the temperature is assumed to be T = 300 K in all results. The broadening functions ΓL(R) = i(ΣrL(R) − ΣaL(R))

are defined in terms of the self-energies Σ
r(a)
L(R) = HS,L(R)g

r(a)
L(R)HL(R),S, where g

r(a)
L(R) is the retarded (advanced) surface

Green’s function of the left (right) lead. Additionally, HS,L(R) connects the scattering region to the left (right)
magnetic leads. Finally, the retarded Green’s function for the scattering region, with Hamiltonian HS, is Gr =
(E − HS − ΣL − ΣR + iη)−1 with η → 0+ while the advanced Green function is Ga = (Gr)†. When the system is
driven out of equilibrium under an applied voltage µL − µR = eV we assume that the potential drops linearly inside
the oxide layer.

LANDAU-LIFSHITZ-GILBERT EQUATION

The Landau-Lifshitz-Gilbert (LLG) equation reads

dm

dt
= −γm×Heff + αm× dm

dt
+

γ

µ0MStfree
N , (2)
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FIG. 1: (Color online) Band diagram for the Magnetic Tunnel Junctions. The asymmetry is controlled by the parameter

δ = ε
↑(↓)
L − ε

↑(↓)
R , where ε

↑(↓)
L(R) refers to the spin-up (down) parameter controlling the band filling of the left (right) magnetic

lead. We assume N = 2 atomic planes in the oxide layer and the magnetic leads are semi-infinite.

with N = TIECm × mp + TSTTm × (m × mp), where m (mp) is the unit vector along the magnetization of the
free (pinned) layer. Here, TIEC and TSTT are the interlayer exchange coupling (IEC) and spin transfer torque (STT)
components of the non-equilibrium torque. We introduce the dimensionless time unit τ = γMSt, where γ = 2.4× 105

m/(A· s) is the gyromagnetic ratio and MS = 1270 kA/m [6] is the saturation magnetization. Since the length of
the magnetization vector of the free layer is unchanged, we can rewrite the equation in spherical coordinates with
m = sin θ cosφx + sin θ sinφy + cos θz, with Cartesian coordinate unit vectors x, y and z . The result is

dθ
dt + α sin θ dφdt = hφeff + τDL sin θ, (3)

sin θ dφdt − α
dθ
dt = −(hθeff + τFL sin θ),

where α = 0.2 [7] is the damping, τDL (FL) = TSTT (IEC)/tfreeµ0M
2
S and h

θ(φ)
eff is the polar (azimuth) component of the

dimensionless effective field heff = Heff/MS . We convert Eqs. (3) into the Landau-Lifshitz form

(1 + α2)dθdt = (hφeff + τDL sin θ) + α(hθeff + τFL sin θ), (4)

(1 + α2) sin θ dφdt = −(hθeff + τFL sin θ) + α(hφeff + τDL sin θ),

and solve it for mx = sin θ cosφ, my = sin θ sinφ and mz = cos θ with TSTT and TIEC obtained from the NEGF
calculations.

Critical switching current analysis

For a perpendicularly magnetized magnetic tunnel junctions (MTJ) with total effective perpendicular anisotropy

coefficient Keff, the dimensionless effective field, heff = Heff/MS , reads heff = hreffr̂ + hθeffθ̂ where

hreff = 2Keff

µ0M2
S

cos2 θ, hθeff = − 2Keff

µ0M2
S

sin θ cos θ, (5)

and hφeff = 0. Equations (4) assume the form

(1 + α2)dθdt =
[
(τDL + ατFL)− 2αKeff

µ0M2
S

cos θ
]

sin θ, (6)

(1 + α2)dφdt = (ατDL − τFL) + 2Keff

µ0M2
S

cos θ.

The switching dynamics is described by the first equation, which gives the rate of change of θ, the polar angle, as a
function of time. If the magnetization is initially pointing along the positive z direction, θ ≈ 0, switching will take
place if all torques conspire to give dθ/dt > 0. This condition is equivalent to (τDL + ατFL) > 2αKeff

µ0M2
S

, enabling us to

extract the minimum STT magnitude for achieving switching : τ cDL = α(2Keff/µ0M
2
S − τFL) or

T cSTT = 2αtfree

(
Keff − TIEC

2tfree

)
. (7)
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This result shows that the IEC torque directly reduces the critical STT by reducing the effective anisotropy barrier
Keff by TIEC/2tfree if TIEC > 0, as in is the case of the asymmetric MTJ under positive applied bias. Equation (7)
is the condition to determine the critical switching current for switching. For AP to P switching, the condition is
dθ/dt < 0, giving T cSTT = −2αtfree(Keff + TIEC/2tfree). Both expressions are unified by defining writing T cSTT =
2αtfree(Keffmz − TIEC/2tfree), where mz = ± is the z component of the unit magnetization vector in the P (+) or AP
(−) configuration.

We proceed by analyzing the critical applied voltage, Vc, necessary to equate both sides of the equation, taking into
account the non-equilibrium torques obtained from the NEGF simulations and the assumed voltage dependence of
the effective anisotropy coefficient. From the critical voltage Vc, one can then determine the critical current density Jc
from the NEGF IV curves. The figure in the main text show the result of this analysis for different MTJ asymmetries
δ.

Equation (7) can also be derived by following Ref. [8]. The critical switching current for a perpendicular MTJ
derived from Eq. 2 considering only N = TSTTm× (m×mp) is given by

Jc = 2e
~
αµ0Ms

η Heff , (8)

where Heff = |Heff|. We now consider the more general situation where N = TIECm×mp +TSTTm× (m×mp). The
fixed layer is also magnetized out-of-plane mp = z and Heff = (2Keff/µ0MS)mzz. This enable us to rewrite the LLG
equation as

dm

dt
= −γm×Beff + αm× dm

dt
+

γ

µ0MStfree
TSTTm× (m×mp), (9)

where we defined

Beff =
2Keff

µ0MS
mz −

TIEC

µ0MStfree
. (10)

Equation (7) has exactly the same form as the one considered by Sun[8] with a different effective field Beff. The
critical switching current is therefore modified by the presence of TIEC as

Jc = 2e
~
αµ0MS

η Beff = 4e
~
α
η

(
tfreeKeffmz − TIEC

2

)
. (11)

Therefore, the critical switching current-density directly depends on the IEC torque. In particularly, in asymmetric
MTJs the TIEC is positive for positive applied voltages, directly reducing Jc by subtracting an extra factor of TIEC/2tfree

from Keff in the parallel configuration, i.e., mz = 1. The same picture hold for a negative applied voltage in the
antiparallel configuration (mz = −1).

Equations (7) and (11) are shown to be equivalent by writing the critical STT efficiency as ηc = (2e/~)T cSTT/Jc.

Effective activation energy

The effective activation energy is modified by the presence of STT by a multiplicative factor of (1 − TSTT/T
c
STT),

where T cSTT is the critical STT magnitude for switching[9]. Therefore, the STT gives rise to an effective energy barrier
between parallel and antiparallel configurations given by

Eb = KeffV
(

1− TSTT

T c
STT

)
, (12)

where KeffV is the energy barrier due to perpendicular anisotropy only, where V is the volume of the free layer. The
thermal stability factor is defined as ∆ = Keff(0)V/kBT . From the previous analysis, the presence of TIEC gives rise to
a correction to the voltage-dependent anisotropy coefficient, i.e., Keff → Keff−mzTIEC/2tfree. Therefore, the effective
energy barrier for switching is

Ebeff = V
(

1− TSTT

T c
STT

)(
Keff −mz

TIEC

2tfree

)
, (13)

from where we can write down the switching time as τ−1 = f0 exp(−Ebeff/kBT ) or

τ−1 = f0 exp
[
− V
kBT

(
1− TSTT

T c
STT

)(
Keff −mz

TIEC

2tfree

)]
, (14)

for parallel to anti-parallel switching, where f0 is the attempt frequency.
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FIG. 2: (Color online) Total field-like torque for several different perpendicular magnetic anisotropies (PMA) Keff(0) for an
asymmetric magnetic tunnel junction with δ = 1.8 eV. We consider (a) negative and (b) positive applied bias voltage giving a
charge current-density of J = 5 × 107 A/cm2

PERPENDICULAR ANISOTROPY VERSUS NON-EQUILIBRIUM INTERLAYER EXCHANGE
COUPLING

In Figs. 2(a) and (b) we show the total field-like torque acting on the magnetization of the free layer considering
δ = 1.8 eV, ξ = 0 and different effective PMA constants Keff for negative and positive applied bias voltage, respectively.
One observes that the non-equilibrium IEC torque is able to overcome the anisotropy barrier bidirectionally for a large
range of perpendicular magnetic anisotropy (PMA) coefficients, enabling p-MTJs higher thermal stability factor.

SPIN TRANSFER TORQUE EFFICIENCY

We show in Figs. 3(a) and (b) the angular dependence of the charge current-density and STT efficiency, respectively,
considering an applied voltage of V = 250 mV and different lead asymmetries. The current is clearly a cosine function
of θ for the different degree of asymmetries considered and can be written in the general form J = J̄ + ∆J cos(θ),
with J̄ = (JP + JAP)/2 and ∆J = (JP − JAP)/2 being the average and asymmetry, respectively, of the charge
current-density in the parallel (P) and anti-parallel (AP) configurations. As one increases the asymmetry δ between
left and right leads, the total charge current-density decreases. We observe that J drops faster for roughly all θ > π/2
leading to states of even higher resistances in the AP configuration. Additionally, J tends to vary very little with
δ in the most asymmetric cases we have considered (δ = 1.2 eV and δ = 1.8 eV), where the corresponding curves
tend to superpose each other. Thus, the asymmetry decreases the charge current density for most of the angular
range including at θ = π/2, where the non-equilibrium torques assume their maximum values. Figure 3(b) shows the
angular dependence of the STT efficiency at V = 250 mV for the same asymmetries δ. As we increase δ, the STT
efficiency becomes more pronounced for θ > π/2. The angular dependence is given by TSTT sin(θ)/(J̄ + ∆J cos(θ)),
which gives the distorted shape shown in Fig. 3(b). At the vicinity of θ = π, the current density for the Asymmetric
MTJ is smaller than that of the symmetric case [See Fig. 3(a)]. At the same time, sin(θ) ≈ 0 such that TSTT sin(θ)
for different MTJ asymmetries are numerically close to each other. Therefore, the charge-current density drops faster
than the STT and the torque efficiency is enhanced. The situation is different for the highest asymmetric case we
have considered δ = 1.8 eV. Here, we notice that the STT efficiency drops in relation of the previous asymmetric case
(δ = 1.2 eV). This is due to the fact that J has essentially converged to that of δ = 1.2 eV while the STT magnitude
decreases. Therefore, the torque efficiency decreases.
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FIG. 3: (Color online) Enhancement of the spin transfer torque efficiency for asymmetric magnetic tunnel junctions. Angular
dependence of the (a) charge current-density and (b) spin transfer torque efficiency for different MTJ asymmetries δ at fixed
applied voltage V = 250 mV.
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