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ABSTRACT 
Manufacturing processes have become increasingly 

sophisticated leading to greater usage of robotics. Sustaining 

successful manufacturing robotic operations requires a strategic 

maintenance program. Without careful planning, maintenance 

can be very costly. To reduce maintenance costs, manufacturers 

are exploring how they can assess the health of their robot 

workcell operations to enhance their maintenance strategies. 

Effective health assessment relies upon capturing appropriate 

data and generating intelligence from the workcell. Multiple 

data streams relevant to a robot workcell may be available 
including robot controller data, a supervisory programmable 

logic controller data, maintenance logs, process and part quality 

data, and equipment and process fault and failure data. This data 

can be extremely informative, yet the sheer volume and 

complexity of this data can be overwhelming, confusing, and 

sometimes paralyzing. Researchers at the National Institute of 

Standards and Technology have developed a test method and 

companion sensor to assess the health of robot workcells which 

will yield an additional and unique data stream. The intent is that 

this data stream can either serve as a surrogate for larger data 

volumes to reduce the data collection and analysis burden on the 

manufacturer; or add more intelligence to assessing robot 

workcell health. This article presents the most recent effort 

focused on verifying the companion sensor. Results of the 

verification test process are discussed along with preliminary 

results of the sensor’s performance during verification testing.  
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1. INTRODUCTION 

Every product used in daily life is manufactured in some 

way; from the clothes that are worn, to the automobiles that are 

driven, and the cell phones that are used. Each of these products, 

and many more, are being offered with more customizable 

configurations and options. Coupling the concept of product 

customization with the evolution of manufacturing technologies 

has led to manufacturing processes becoming increasingly 

flexible and complex [1-3]. To enable greater flexibility and 

handle increased task complexity, manufacturers have turned to 

robotic technologies. Robots can offer manufacturers numerous 

benefits (e.g. increase accuracy, precision, repeatability, 

efficiency) as compared to conventional manufacturing 

automation or manual capabilities [4-6]. 

As robots have become more adept at providing a broader 
range of manufacturing capabilities, they are presenting more 

operational complexity. More complexity typically leads to 

greater opportunity for faults and failures in the process and 

equipment. In turn, this spurs more unplanned maintenance or 

more planned maintenance routines to lessen the potential for 

unexpected faults or failures [7-9]. Manufacturers, from small to 

large, recognize that strategic and scripted maintenance 
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strategies are critical to maximize process and equipment 

availability [10, 11].  

Personnel from the National Institute of Standards and 

Technology (NIST) are conducting research to develop 

measurement science products (e.g., test methods, performance 

metrics, reference datasets) to promote the verification and 

validation of monitoring, diagnostic, and prognostic 

technologies within manufacturing operations as part of NIST’s 
Smart Manufacturing programs [12-14]. These measurement 

science products are intended to decrease equipment and process 

downtime and increase reliability for smart manufacturing 

systems. A critical output of the effort is the dissemination and 

adoption of these products by the manufacturing community. A 

specific measurement science product being developed is a test 

method, along with a companion sensor to be used within the test 

method, to assess the degradation of the workcell’s kinematic 

chain (i.e. the assembly of individual rigid bodies at joints) [15, 

16]. When applied by industry to operational manufacturing 

robot workcells, the test method can identify and isolate 

degradations, within the workcell, that are negatively impacting 

the accuracy of the process. Ultimately, the test method, along 

with the sensor, will be made publicly-available to industry for 

widespread adoption and implementation. Before this can be 

achieved, the overall test method, including the sensor, require 

testing and verification. 
This publication presents NIST’s latest efforts to verify the 

performance of the companion sensor. Early work focused on 

manually testing the sensor. This proved overly time-consuming 

and prone to human error. Current efforts have focused on 

automating the testing process to cover more test points in a 

faster manner, as compared to manual testing. The remainder of 

this article is organized as follows. The Background section 

presents the motivation for this effort. The Test Method and 

Sensor Description section describe the test method in detail and 

discuss how the sensor is integrated with the test method. The 

Experimental Design section talks about the design and 

development of the automated measurement test stand. The 

Testing and Results section highlight the tests that were 

conducted. The Lessons Learned Section analyzes the 

preliminary results from two perspectives – how well did the 

automated measurement test stand perform and how well did the 

companion sensor perform. Lastly, the Future Efforts section 
describes the expected next steps of this research effort.   

 
2. BACKGROUND 
 Maintenance is typically a critical factor to ensure long-

term, acceptable operation for any process or piece of equipment. 

Although important, maintenance can at times be expensive and 

cumbersome [17, 18]. Without sufficient intelligence regarding 
the health of their manufacturing operation, which would include 

resident robot workcells (defined to include the robot, end-of-

arm tooling, sensors, controller(s), and other supporting 

automation), manufacturers cannot make informed decisions 

about the most cost-effective and efficient maintenance 

strategy(ies) by which to maintain their operations. The 

discipline of monitoring, diagnostics, and prognostics to enhance 

decision-making surrounding maintenance activities is known as 

prognostics and health management (PHM) [19-22]. The optimal 

maintenance schedule includes striking a balance between 

preventative maintenance (PM) (performing specific 

maintenance activities at set intervals of time, cycles, or other 

measurable unit) and predictive maintenance (PdM) (performing 

specific maintenance activities only when the current condition 

of equipment predicts that maintenance is necessary) all in an 
effort to minimize reactive maintenance (RM) (“fix it when it 

breaks”) [23]. Preventive maintenance can become excessive 

leading to wasted time and money. However, minimizing or 

trivializing preventive maintenance can lead to too much 

reactive maintenance. Unexpected shutdowns resulting from 

reactive maintenance can lead to lost revenue and even lost 

customers. 

 Tracking the health of robot workcells allows manufacturers 

to make informed decision about the type of maintenance needed 

and the schedule at which it should be performed. Data is 

required to generate intelligence regarding robot workcell health. 

Multiple data streams are likely to exist that are relevant to 

identifying the health of a robot workcell. They include: 

• Robot-level data – Many robot controllers capture a 

range of information including robot joint and tool 

center positions, velocities, and accelerations; joint 

temperatures; joint currents; and joint voltages. This 
data is usually quantitative. 

• Process-level data – This type of data could be captured 

from the overall process controller or from a 

supervisory Programmable Logic Controller (PLC). 

Time data is an example of process-level data, where 

time can include overall task time, sub-task time, and 

takt time. This data is usually quantitative. 

• Quality data – As measured of the part produced once 

the workcell has completed its operation. This data 

could be quantitative or qualitative.  

• Operational configuration data – Information 

describing the workcell’s configuration and operations. 

This can include the make and model of equipment, 

technologies, and sensors critical to the workcell’s 

function. This information can also describe the 

workcell’s operation (e.g., Robot Arm 01 lifts a 2 kg 

box, puts it down, then lifts a 5 kg box, puts it down, 
etc.). This can be both quantitative and qualitative 

descriptive data. 

• Fault and failure data – For any fault or failure that 

presents itself within a manufacturing operation, it is 

almost always documented. This documentation could 

be done by multiple individuals including the 

equipment and process operator, maintenance 

technician, or supervisor. Fault and failure data can be 

quantitative from sensor and equipment readings (e.g., 

the current peaked at 18 A). It can also be descriptive – 

e.g., smoke started rising from the motor, I then heard a 

loud crack, and the motor stopped running.    
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• Maintenance logs – Most manufacturers document their 

maintenance activities, whether it results from planned 

maintenance (predictive or preventive) or from 

unplanned maintenance (reactive). Maintenance 

records can include what specific work was performed 

and a descriptive of the restorative state that the 

equipment is now in.  

 Effectively turning all of this data into health intelligence is 
non-trivial, especially as it relates to robot workcells [24]. 

Multiple algorithms exist that dictate how to fuse or analyze the 

data to discover new intelligence. Each method comes with its 

advantages and disadvantages. Generating the appropriate 

amount of intelligence can be paramount to an organization. Too 

little intelligence can lead to vast uncertainty and present an 

excessive amount of options to maintenance decision-makers. 

An over-abundance of intelligence can be costly, both in the time 

to generate and required resources. For highly critical processes 

or equipment, a cost-benefit analysis could dictate the need for 

more, as opposed to less, intelligence. The right amount of 

intelligence can prevent degradations that force part quality or 

process productivity to unacceptable levels while still promoting 

cost effective operations [25, 26]. NIST has developed the 

Identification and Isolation of Robot Workcell Accuracy 

Degradation test method and companion Position Verification 

Sensor with Discrete Output (U.S. Patent Pending, Serial 
Number 16/572,847) to provide a new stream of direct 

intelligence that can localize where faults and failures are 

occurring in a workcell’s kinematic chain; and offer additional 

data that can be fused with the afore-mentioned data to offer a 

richer understanding of the workcell’s health. The following 

section describes the test method, position verification sensor, 

and the need for sensor verification.    

 

3. TEST METHOD AND SENSOR DESCRIPTION 
 The Identification and Isolation of Robot Workcell Accuracy 

Degradation test method was developed in concert with a multi-

robot testbed at NIST [27].  FIGURE 1 presents the NIST’s PHM 

for Robot Systems testbed with many representative features of 

a manufacturing robot workcell including robots, controllers, 

and end-of-arm tools. The testbed features two six-degree-of-

freedom (6DOF) Universal Robots, each with industrial 
controllers. The smaller robot, a UR3 (shown on the left in 

FIGURE 1), is configured to perform path planning operations 

including drawing several unique patterns) while the larger 

robot, a UR5 (shown on the right in FIGURE 1), is configured to 

perform a material handling operation. The UR3 is configured 

with a pen at its tool-center-position using a specially-designed 

mount. The UR5 is configured with an RG2 gripper that is 

controlled through the UR5’s controller. Supervisory commands 

are issued to both the UR3 and UR5 by a single Beckhoff PLC. 

 The testbed’s primary manufacturing-relevant use case is for 

the larger robot to physically place test parts on fixtures within 

reach of the path planning robot for this smaller robot to draw on 

the test part. This drawing activity is analogous to welding, 

adhesive application, and additive manufacturing processes 

performed by six-degree-of-freedom robot systems. Additional 

information on the testbed and use case is shown in [15, 27]  

 The Identification and Isolation of Robot Workcell Accuracy 
Degradation test method involves testing the positioning 

repeatability, and therefore the health, of different components 

along the robot workcell’s kinematic chain. The test method uses 

the NIST-developed Position Verification Sensor with Discrete 

Output (PVS) sensor (depicted in FIGURE 2) to measure the 

positioning of the components in question [16]. The test method 

is robot agnostic; it can be integrated and executed with any 

6DOF robot workcell. When different measurement points along 

Path Planning
Robot

Material Handling Robot

FIGURE 1: NIST PHM FOR ROBOT SYSTEMS TESTBED 
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the kinematic chain are tested, the test method’s results aim to 

isolate any source(s) of the error so the responsible component 

can be appropriately addressed. Implementing the test method 

first involves affixing mechanical keys at strategic locations 

along the workcell’s kinematic chain that can present positional 

degradation. The PVS is physically installed within the 

workcell’s work volume. The keys are commercial-off-the-shelf 

(COTS) items with precise geometries. The dimensions of the 

keys are in English units so the sensor’s clearance dimension is 

manufactured in English units.  

 In the case of the NIST testbed, keys have been attached to 

multiple elements including the robot’s tool flange, physical 

mount of the gripper jaws, and the movable gripper jaws, 

themselves (shown in FIGURE 2 3). Once the keys are installed, 

the robot, along with the other movable elements in the 

kinematic chain (e.g., gripper), are systematically programmed 

to ‘insert’ their keys into the PVS. The PVS is designed such that 

the key can be successfully inserted within a specific tolerance 

as determined by the dimensions of the key and the opening of 

the PVS. If the key’s position is inaccurate beyond the tolerance 

of the PVS’ opening, then the test of that specific point will fail. 

Otherwise, if the movement of the key is within the tolerance of 
the PVS’ opening, then the key will be successfully inserted into 

the PVS and this specific point will pass. The element to which 

the key is attached when a failure is observed highlights the 

approximate location of the degradation within the kinematic 

chain. More details are available in [16, 28].  

 The insertion of the key into the PVS is being verified to 

determine what uncertainty, if any, exists regarding the known 

tolerances of the fit. For example, if the clearance between the 

key and the PVS are designed to 25 μm, then the ideal scenario 

is that the key has a range of motion of 25 μm regarding its 

insertion into the PVS. Realistically speaking, uncertainties exist 

including manufacturing tolerances of the key and the PVS, the 

setup error of the key with respect to the PVS, etc.  

 As noted earlier, the PVS provides binary output, meaning 

that the element being tested either passes or fails its specific 

positioning test. If all elements can insert the key into the PVS 

then the workcell is considered healthy to the designed tolerance 
between the key and the PVS. If an element fails, then that data 

can be used to determine specifically where within the workcell 

a change or degradation has occurred. By itself, or coupled with 

other data from the workcell’s operations, this data can be used 

to then efficiently respond to that change. The declaration that 

the workcell is healthy to the designed tolerance is only true if 

all uncertainties are known and quantified. If not, for example, a 

kinematic chain that successfully passes all tests with a tolerance 

of 25 μm may only be healthy to 50 μm or larger. Whatever it 

may be, it is critical for the manufacturer to know exactly what 

they are testing. The verification testing of the PVS is a core step 

in ultimately determining the uncertainty of the overall test 

method.    

4. EXPERIMENTAL DESIGN 
 The PVS’ performance needs to be verified to understand its 

capability and measurement uncertainties as it’s used within the 

test method. The PVS is actively being tested to gather this 

information. A verification test process has been developed using 

an automated, linear, three-axis stage. The test stand is set up 

such that a standard key is mounted to the three-axis stage and a 

PVS is mounted directly below (as shown in FIGURE 4). The 

stage can then be commanded to move and insert the key into the 

PVS at different locations in an attempt to achieve a positive 

response from the PVS (i.e., the key is successfully inserted into 

the sensor). This test stand simulates robot movement with an 

attempt to insert the key into the PVS and the repeatability 

uncertainties that exist within them.  

This test process was previously performed manually where 

there was a desire to automate the process because of the manual 
process being tedious, cumbersome, and susceptible to human 

FIGURE 2: POSITION VERIFICATION SENSOR 

WITH DISCRETE OUTPUT 

FIGURE 3: NIST TESTBED KEY MOUNTING 

LOCATIONS 
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error. Stage movement had previously been controlled using 

manual micrometers, for the X and Y axis, and a lever for the Z 

axis (shown in FIGURE 5). The X and Y movements test 

different locations or points of the sensor while the Z axis 

movement is used to engage or disengage the key from the PVS. 

The chosen units enabled the user to move the stage in 

increments of one micrometer at a time providing very granular 

control of the stage’s movements. To automate the movement of 

the stage, the micrometers and lever have been replaced with 

three motor controllers that are connected to three actuators 

(shown in FIGURE 4). This new hardware has the same range of 

motion and resolution as the manually-driven stage. 

 A Matlab program (running off a laptop PC that is connected 

via USB to the motor controllers of the linear stage) provides a 

test grid encompassing the top hole of the PVS. This grid consists 

of points to be tested, with the size and resolution of the grids 

(i.e., number of points to be tested and spacing between points) 

determined by user input. The program then selects the order for 

which the test points are evaluated by using one of three user-

selected methods (i.e., random pattern, vertical movement 
testing each Y-column before moving onto the next, or horizontal 

movement testing each X-row before moving onto the next) and 

commands the stage to move the key to those points. At each 

point, the stage will attempt to insert the key into the PVS. The 

PVS’ digital output is connected to an oscilloscope, which is 

used to determine the success of each attempted insertion. The 

oscilloscope measures the output voltage of the sensor at each 

test point, which is then input into the Matlab program. The 

oscilloscope is connected to the same PC laptop via USB 

connection. Upon receiving the signal input from the 

oscilloscope, the program can determine if the insertion was 

successful or not based on the captured voltage value (high 

voltage indicates success). Each test result is recorded within the 

program. Sample output from the Matlab is shown in FIGURE 

6. Movements of the stage are programmed via Matlab in 

English Units given the English dimensions of the COTS key.  

 The results of the insertion at each point are stored, 
formatted into grids, and exported into MS Excel ®. Each point 

in the grid contains either a green “1” (indicating a successful 

test point) or a red “0” (indicated failed test point). These grids 

advance the understanding of how the sensor performs. Due to 

the circular shape of the mating hole on the sensor, it is expected 

that the results from each test will be a grid with a tight center 

circle of successful test points surrounded by unsuccessful test 

points. FIGURE 7 present results of random, horizontal, and 

vertical ordered tests with a 12x12 grid (for 144 total test points) 

and a stated key and sensor tolerance of 25 μm. 

 

5. TESTING AND RESULTS 
 Preliminary sensor testing has been performed using this 

new automated test method. Testing was performed on two 

unique PVS’s that differed in the material of a single internal 

component; one sensor’s component is made from 3D printed 

plastic and the other sensor’s component is made from machined 

stainless steel (SS). The PVS with the SS component was found 

to be of much higher precision than the PVS with the 3D printed 

plastic component. 

 Testing of the measurement test stand, along with capturing 

preliminary verification results of the PVS, began by conducting 

55 total tests on a single PVS. These tests consisted of grid size 

XX and resolution YY. The order that the individual observations 

were collected varied across the 55 tests such that 19 tests were 

collected in random order, 18 tests in vertical order, and 18 tests 

in horizontal order. Ideally, it is expected that the successful 

sensor results would create a precise circular pattern, within the 

resolution of the test grid, with a diameter equal to the diameter 
of the key. All other areas of the test grid should result in 

Test Key

Linear, Three-axis
Stage

PVS

Manually-driven
micrometer

Lever for Z-movement

FIGURE 5: MANUAL TEST STAND 

FIGURE 4: AUTOMATED TEST STAND 
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unsuccessful sensor results.”  The results of the testing done with 

this PVS deviated from the expected results. The circle of 

successful test observations encompassed most of the grid as 

opposed to the tight, expected center region. This led to the 

dissection of the first PVS revealing the internal 3D printed 

component. Given this material type is less precise than the 

machined SS, the SS PVS was then integrated into the 

measurement test stand. Fifteen total tests were run with the SS 

PVS: five random order, six vertical order, and four horizontal 

order; each with grid size XX and resolution YY. The grids 

created using this sensor were more closely aligned with what 

was originally anticipated; the grid was comprised of 

unsuccessful insertion tests, while the center of the grid was 

comprised of a tight, circular shape of successful tests.  In total, 

71 tests have been completed as of the preliminary development 

of this publication; 25 random order, 24 vertical order, and 22 

horizontal order. These tests ranged in size from 12 observations 

(a very preliminary 3 x 4 grid to confirm the Matlab code) to 

2500 observations. Test times ranged in duration from about five 

minutes to about 13 hours. 
 Some tests had unexpected anomalies; there were 

unsuccessful insertions in the middle of the grid where 

successful insertions were expected or successful insertions on 

the outside of the grid where failed insertions were expected. 

This was a very common problem that was faced throughout the 

entire testing process. FIGURE 7 presents three, 12 x 12 grid test 

results from random, horizontal, and vertical tests using the SS 

PVS that had a designed key/sensor tolerance of 25 μm. This 

means that the PVS opening is nominally 25 μm larger than the 

diameter of the key. For the specific tests that have been run and 

are discussed below, the PVS circular opening has a machined 

tolerance of 6.375 mm -0.0 to +12 μm while the tolerance of the 

cylinder key is 6.350 mm -0 to +5.08 μm. The non-binary 

numbers in FIGURE 7 represent the position, in millimeters, in 

the X and Y directions of travel from the X, Y coordinate origin 

of the key that is mated to the test stand. 

 Other tests included larger grid dimensions, such as 20 x 20 
grids. FIGURE 8 presents a composite result of five separate, 20 

x 20 tests that were performed. The results of the five tests were 

overlaid onto one another. The number provided at each 

individual point on the grid in FIGURE 8 is the number of total 

tests (out of 5) for which a successful insertion was observed. 

For example, a 3 represents a 60 % success rate where 3 

insertions were successful while 2 insertions failed at the same 

point across five separate tests.  

6. DISCUSSION 
 The material that is used to fabricate the two precision 

components of a single PVS was found to have a significant 

impact on the result of the test. 3D printed plastic yields less 
precise parts as compared to its machined SS counterpart. SS is 

a much stronger material that can be machined to tight tolerances 

making it a more advantageous material to use for the PVS’s 

precision components. The PVS with the 3D printed plastic 

component has been removed from all further testing and 

workcell implementations. All PVS’ in operation contain 

precision components made out of machined SS.  

 Further analysis uncovered additional deficiencies:  1) 

inconsistencies with the oscilloscope being used, 2) a defective 

automated linear stage, and 3) the geometry of the key. First, the 

oscilloscope that is used to measure the voltage from the PVS 

sensor would often emit a significant amount of electronic noise. 

This noise would cause the voltage values from the sensor to 

fluctuate to a degree that prevented the Matlab program from 

discerning between a successful and unsuccessful insertion test, 

leading to inaccurate results. Second, additional error stemmed 

from a breakdown of the linear, multi-axis stage that was used to 
move the pin to different points. The malfunction of the stage 

FIGURE 6. SAMPLE MATLAB OUTPUT 

FIGURE 7: TEST RESULTS FROM 12X12 GRID TEST OF A 

0.001" TOLERANCE BETWEEN THE KEY AND SS PVS 
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limited its range of motion and prevented it from moving to the 
desired location when commanded to do so by the Matlab 

program, which significantly impacted the results of some of the 

tests. The malfunctioning stage was replaced with a new, 

identical stage and testing continued. Lastly, it is important to 

note that the keys inserted into the PVS are COTS high precision 

cylinders with notionally known dimensions. Unfortunately, the 

cylinder contains a very small chamfer at the cylindrical edges. 

This chamfer feature likely resulted in several additional 

boundary test points being successful, as opposed to failing, 

since this chamfer would allow the pin to ‘slide in’ if the pin was 

slightly out of tolerance.  

 The impacts of these deficiencies were obvious for several 

tests whose results have been discarded entirely, however, the 

deficiencies may have also affected tests that have been 

considered “good”. The results of the insertion process at one or 

more points in these “good” tests could have been changed due 

to these shortcomings. The malfunctioning stage issue has been 
resolved and will have minimal effect on future testing. The 

oscilloscope issue is still being investigated in order to find a 

solution to the problem, which may involve changing 

oscilloscope settings or changing the method used to measure 

sensor voltage. Regarding the COTS keys with slight chamfer, 

these keys are still in use until a viable replacement is 

determined. One potential solution is to machine custom keys of 

similarly tight tolerances with no chamfer, yet there will have to 

be some type of finishing operation performed on the edges of 

the cylinders to remove any sharp edges. This would provide a 

natural, yet slight chamfer. It’s possible that the long-term 

solution is to continue to use the COTS keys and appropriately 

adjust the subsequent results. For example, a known, designed 

tolerance of 25 μm between the COTS key and the PVS could 

translate into successful insertion test results demonstrating a 

63.5 μm tolerance. 

 The optimal test (i.e., size of grid, spacing between points, 
and optimal point selection process) for verification of the PVS 

is still being determined. Ideally, this verification test would 
provide enough information on the behavior and integrity of the 

PVS to generate a quantifiable confidence in its measurement 

capability; and be performed within a reasonable amount of time.  

The grid sizes that have been used so far have ranged from 3 x 4 

to 50 x 50 and the resolution of the spacing between points has 

ranged from 100 μm to 5 μm. The results of the tests performed 

at each of these sizes and resolutions varied between the three 

different selection methods. The three order of observations 

methods (random, vertical, and horizontal) were applied at each 

of grid sizes and resolutions considered. More detailed grids 

generate more data on the PVS and its behavior, until a capacity 

is achieved where no new information can be gathered. 

 Overall, the preliminary test efforts proved insightful, both 

in terms of developing an initial understanding of the PVS’ 

performance and the capability of this specific verification test 

method. From preliminary test results, including several 

composites that have been produced, it’s evident that a key and 
PVS pairing with a designed 25 μm clearance will have 

successful insertion tests greater than 25 μm due to the factors 

discussed earlier in this section.  

 
7. FUTURE EFFORTS 

More testing is still required before reaching the end goal of 

releasing the sensor to industry for ubiquitous use. All the testing 

that has been performed so far has been done using PVS’ with 

the specific clearance of 25 μm relative to the key. Future efforts 

will involve more testing of sensors with a key clearance of 25 

μm, as well as other sensors with larger key clearances (e.g. 50 

μm, 100 μm, 254 μm etc.). With additional testing and 

improvements, the PVS can be verified for implementation and 

use in manufacturing environments. The ultimate goal is for the 

Identification and Isolation of Robot Workcell Accuracy 

Degradation test method and the PVS to be used by industry to 

monitor and respond to changes in the health of their robot 
workcells. 

FIGURE 6. Sample Matlab Output 

FIGURE 8: COMPOSITE TEST RESULTS FROM 20X20 GRID TEST OF A 0.001" TOLERANCE BETWEEN THE KEY AND PVS 
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The Matlab program used in the testing process will also be 

updated to add three new functionalities: a graphical user 

interface (GUI), an option to test grid boundary conditions (the 

regions where the test results change from successful to 

unsuccessful), and an expanded analysis and visualization 

capability within the Matlab platform. The GUI will make the 

testing process more user friendly for personnel who are not 

familiar with the program. The GUI is currently in the very early 
stages of development. The boundary testing functionality will 

allow the user to move the stage to the boundary points of the 

center circle and increment outwards by very small amounts (less 

than the distance between points) until reaching a point where 

the key and sensor are no longer able to mate. This will give the 

user a more accurate distribution, along with a more accurate 

representation of how the PVS behaves and crystallize the PVS’ 

boundaries in terms of where successful tests become 

unsuccessful. This testing approach will gather new information 

about the PVS, such as a more accurate representation of the 

room for error that is acceptable to successfully insert the key 

into the PVS. 

The current PVS that is being used in the test method is a 

binary sensor. It can communicate to users that an element along 

the workcell’s kinematic chain either passes or fails the test, 

indicating whether the workcell is healthy or not. A new PVS is 

being developed with the ability to communicate a greater 
granularity of workcell health. For example, the workcell is 

healthy and no maintenance is needed, the workcell health is 

degrading but it is not affecting part quality, or the workcell is 

unhealthy and part quality is negatively impacted (this scenario 

would require immediate attention). This new PVS design 

expands upon the initial iteration adding another inner button and 

nesting a second outer circle of specific diameter. Additional 

details on the sensor are discussed in [28]. This intelligence 

would better enable manufacturers to optimize their maintenance 

efforts and schedules. This new generation of PVS will also 

require testing and verification. Future efforts will involve using 

the same, or a similar, process to test and verify this new sensor 

for release to manufacturers. 

Lastly, it is intended that the data from the execution of the 

Identification and Isolation of Robot Workcell Accuracy 

Degradation will augment process and equipment intelligence 

with respect to health and maintenance activities. The PVS’ 
binary output (pass or fail) of key elements along a robot 

workcell’s kinematic chain, could be coupled with one or more 

of the data types presented in the BACKGROUND section to 

enhance overall maintenance intelligence of a manufacturing 

operation or speed deeper troubleshooting of a workcell. Once 

the PVS is further verified through additional testing, it’s 

continued use within manufacturing facilities will present 

opportunities to capture binary test method data with real 

manufacturing data. This data will be correlated to better 

understand degradation trends and relationships among data 

types. Identifying redundant or inconsequential data can have a 

substantial impact on future data collection and analysis efforts. 

Ideally, manufacturers will only capture data from specific 

sources to acquire targeted intelligence leading to decisive and 

cost-effective maintenance actions. 
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