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Abstract

First-principles predictions play an important role in understanding chemistry at the electrochemical interface. Electronic
structure calculations are straightforward for vacuum interfaces, but do not easily account for the interfacial fields and
solvation that fundamentally change the nature of electrochemical reactions. Prevalent techniques for first-principles
prediction of electrochemical processes range from expensive explicit solvation using ab initio molecular dynamics,
through a hierarchy of continuum solvation techniques, to neglecting solvation and interfacial field effects entirely.
Currently, no single approach reliably captures all relevant effects of the electrochemical double layer in first-principles
calculations.

This review systematically lays out the relation between all major approaches to first-principles electrochemistry,
including the key approximations and their consequences for accuracy and computational cost. Focusing on ab initio
methods for thermodynamic properties of aqueous interfaces, we first outline general considerations for modeling elec-
trochemical interfaces, including solvent and electrolyte dynamics and electrification. We then present the specifics of
various explicit and implicit models of the solvent and electrolyte. Finally, we discuss the compromise between compu-
tational efficiency and accuracy, and identify key outstanding challenges and future opportunities in the wide range of
techniques for first-principles electrochemistry.
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Abbreviations and Symbols

DFT Density Functional Theory
PCM Polarizable Continuum Model
GCS Gouy-Chapman-Stern
CHE Computational Hydrogen Electrode
SHE Standard Hydrogen Electrode
AIMD Ab initio molecular dynamics
QM/MM Quantum Mechanics/Molecular Mechanics
mPB Modified Poisson Boltzmann
µe Electron chemical potential
Φ Grand free energy
A Helmholtz free energy
C Differential capacitance
kBT Thermal energy at temperature T
Ne Number of electrons
φ Electrode potential
φ0 Potential of zero charge
σ Surface charge density
Ez Electric field normal to surface
εo Dielectric permittivity of vacuum
εb Relative permittivity of bulk material

1. Introduction

1.1. Motivation and Scope

The electrochemical environment strongly affects re-
actions at the electrochemical interface. Precise control
of electrochemical processes, from energy conversion and5

storage [1, 2], to electrochemical wastewater treatment [3–
5], corrosion [6], and electrodeposition [7], relies on un-
derstanding and manipulating the properties of the dou-
ble layer region. Computational design of new materi-
als for these applications requires an accurate description10

of both chemical interactions from first-principles calcula-
tions and the effects of the electrochemical environment.
For instance, the effects of ion solvation, electrolyte bond-
ing, and potential at the solid-electrolyte interface must be
considered when designing energy materials with increased15

operating voltage windows and energy storage capacity [8]
Capturing the effects of the electrochemical interface

in first-principles calculations remains challenging [9, 10].
Techniques to account for solvation and electrification in
first-principles electrochemistry vary considerably in level20

of detail, accuracy and computational expense, and cross
over many disciplines. There is not yet a coherent overview
of all these techniques with a clear comparison of which
physical and chemical effects they each account for, mak-
ing it difficult for practitioners in this field to choose the25

appropriate technique for their investigation. In partic-
ular, continuum solvation models have developed signif-
icantly in recent years and are capable of inexpensively
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describing an increasing number of solvation effects in elec-
trochemistry [11–18]. However, the appropriateness of these30

models for describing any given electrochemical phenom-
ena is not yet widely known beyond the solvation model
development community, limiting the application of recent
and more advanced models.

In this review, we seek to help researchers applying35

first-principles methods to electrochemical systems under-
stand the state of available techniques, ranging from ex-
pensive first-principles molecular dynamics to inexpensive
implicit solvation models, and guide their selection of the
most appropriate modeling approach. We also aim to40

provide a broad understanding of the outstanding issues
associated with solvation model development for electro-
chemistry, targeting model developers and practitioners
from diverse fields. Thus, we limit our focus to calcula-
tions of aqueous, charged interfaces using periodic density-45

functional theory, with emphasis on the range of calcu-
lation techniques, versus specific application to chemical
problems, reaction mechanisms, or kinetics.

This article begins by explaining the crucial differences
between ultra-high vacuum surface science and electro-50

chemistry and the complex, nonlinear interfacial proper-
ties that arise due to the charge on the electrode. We thus
motivate the need for models of the electrochemical dou-
ble layer, provide an overview of such approaches, and dis-
cuss general considerations for first-principles electrochem-55

istry that span all these approaches. We then describe ap-
proaches that use explicit solvent and/or electrolyte atoms
to describe the interface, followed by continuum solvation
approaches in the final section.

1.2. Electrochemical interfaces60

Electrochemistry and vacuum surface science both fo-
cus on interfacial properties that depend on surface po-
tentials and adsorbate coverage. [19]. However, electro-
chemistry differs fundamentally from surface science in an
electrolyte.65

The key difference arises from the capability of mo-
bile charges (ions) in the electrolyte to balance charges
on the electrode, forming the electric double layer that
localizes electric fields to the immediate vicinity of the
electrode surface [20]. This makes it possible for the elec-70

trode surface and adsorbates at the surface to easily adopt
charged states, rapidly equilibrating electrons with the
bulk electrode and ions with the bulk electrolyte. Fur-
ther, equilibrium charge states of each possible atomic
configuration of the interface change with electrode po-75

tential, making properties of the electrochemical interface
strongly potential dependent. Consequently, the most con-
venient description of electrochemical interfaces uses the
grand canonical ensemble with respect to both electrons
and electrolyte ions, with the bulk electrode and elec-80

trolyte serving as the corresponding reservoirs.1 In con-

1The bulk regions are reservoirs by definition when the interfacial
region is the system chosen for defining the thermodynamic ensemble.
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trast, the canonical ensemble is the most convenient de-
scription of constant-charge vacuum interfaces. This fun-
damental difference between vacuum and electrochemical
interfaces [21] necessitates drastically different approaches85

for first-principles electrochemistry [22].
The chemical potential µe of electrons is a key ther-

modynamic parameter that governs this grand canonical
ensemble, and is closely related – equivalent up to an offset
as we discuss in Section 2.1 – to the electrode potential.90

This chemical potential directly influences the grand free
energy Φ ≡ A−Neµe, where A is the Helmholtz free energy
and Ne is the total number of electrons. Further, Φ is the
thermodynamic quantity minimized in equilibrium in this
ensemble and is therefore the key quantity of interest in95

determining electrochemical reaction pathways. The low-
est order effect of µe is that it linearly alters the free energy
Φ with a slope that depends on the charge state (related
to Ne). The earliest first-principles schemes for predict-
ing electrode properties [23] and electrochemical reaction100

mechanisms [24–26] employed this approximation of a lin-
ear relationship between Φ and µe, neglecting deviations
from integer charge states and corresponding changes in
the Helmholtz free energy.

However, the potential (µe) does not alter the thermo-105

dynamics of the electrochemical interface in this strictly
linear manner. Changing µe necessarily results in a corre-
sponding change of the local charge at the electrode sur-
face, and hence Ne as well. This charge, in turn, generates
a local electric field ~E(~r) at the surface of the electrode,110

which affects the free energy, A, that may critically impact
reaction mechanisms and rates [27–30]. In particular, the
interaction of the induced dipole moments of the adsor-
bates with the local electric fields and electrostatic inter-
actions with the surface can introduce a nonlinear change115

in the energies with field [31–33]. The net result is a
complex nonlinear variation of charges, fields and free en-
ergies in response to the electrode potential, which are all
sensitive to the structure and electric response of the elec-
trochemical interface.120

Figure 1 schematically illustrates this key difference
between the role of the potential in vacuum and electro-
chemical interfaces. In vacuum (Figure 1(a)), the poten-
tial is applied relative to another electrode far away, and
the electric field at the surface depends on the separation125

between these electrodes and their overall geometry. The
surface charge density at the electrode is proportional to
the surface electric field by Gauss’s law, σ = ε0Ez, and
the counter charge appears only on the other electrode, so
that the electric field does not vary spatially at the atomic130

scale. The electrode potential (or potential difference to
the other electrode) in vacuum is not physically signifi-
cant: only this surface electric field influences the energet-
ics of processes at the vacuum interface [35]. Consequently,
first-principles calculations sometimes apply uniform elec-135

tric fields like those shown in Figure 1(a) to approximate
the complex field effects in electrochemical interfaces [27].

The electrolyte dramatically changes this picture (Fig-

Electrode Vacuum

(a)

Electrode Electrolyte

(b)

Electrode

(c)

Static countercharges

Figure 1: Schematic comparison of electrostatic potentials φ and
electric fields ~E in (a) vacuum between a pair of electrodes, (b) in
an electrode-electrolyte interface (for simplicity, sketched using the
Gouy-Chapman-Stern model [34]) and (c) with a fixed configuration
of counter charges. For equal potential differences, Debye screening
with inverse-length κ in (b) localizes fields within a half cell and
increases capacitance relative to (a). For equal surface charge den-
sity generating the same surface field, static counter charges do not
generally capture the thermodynamically-averaged field distribution,
potential and capacitance.

ure 1(b)) due to its solvated ionic charges that can move in
response to the field. The ions balance the charge on the140

electrode such that the net charge up to a distance z into
the electrolyte decays exponentially, and then by Gauss’s
law, so does the electric field Ez(z).

2 Most importantly,
this makes the local electric field distribution and charge
density depend only on the electrode potential, and not on145

the overall geometry up to the far away counter-electrode
(not shown) in the electrochemical cell. The same poten-
tial difference results in fields localized to a much smaller
length scale than the vacuum case, resulting in much larger
electric fields near the electrode surface, and correspond-150

ingly, much larger surface charge densities. Additionally,
the solvent in the electrolyte also exhibits a dielectric re-
sponse which further enhances the surface charge density,
σ = εbEz, since the dielectric permittivity εb � ε0 for most
solvents used in electrochemistry. (For example, εb ≈ 80ε0155

for liquid water at standard conditions.) Consequently,
electric fields are typically much larger at electrochemi-
cal interfaces than their vacuum counterparts, resulting

2As the net charge approaches zero, the potential asymptotes to
the potential of the electrons deep in the fluid, which is solely a
property of the bulk electrolyte; the reference potential of an electron
in that electrolyte.
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in substantially larger electrification effects.3 Experimen-
tally, these surface electric fields are often characterized160

using Stark shifts in vibrational frequencies of adsorbates
[36–39], but the interpretation of these experiments re-
quires careful description of the charge and electric field
distribution in the double layer [40, 41].

This schematic picture of the potential and electric field165

distribution is the essence of the classical Gouy-Chapman-
Stern model of the electrochemical interface: the elec-
trode surface is adjacent to the solvent (dielectric) com-
ponent of the electrolyte in a region that excludes ions
due to their larger effective size, and the ions distribute170

exponentially outside this region [34, 42]. The dimen-
sions and dielectric response of the solvent region, and
the precise ionic distribution beyond, all contribute signif-
icantly in determining the relationship between the elec-
trode potential, surface charge density, and electric field175

distributions. First-principles calculations that attempt
to account for the local electrification of the electrode sur-
face often employ fixed ions as counter-charges [43, 44] to
mimic the electrolyte charge density (Figure 1(c)). This
approach can introduce surface electric fields by control-180

ling the counter-charge surface density, but neglecting dy-
namics prevents, in general, simultaneously capturing real-
istic potential, electric field and charge distributions within
the electrochemical interface.

1.3. Electrochemical capacitance185

The charge density σ(φ) on an electrode surface at a
given potential φ is determined by both the potential at
which the electrode surface is neutral, i.e., the potential
of zero charge, σ(φ0) = 0, and the electrochemical ca-
pacitance. The potential of zero charge is related to the190

energy required to move an electron from the electrode
to the bulk electrolyte, up to a constant offset in the ex-
perimental potential scale that arises from the reference
electrode potential [45].4 It is analogous to the work func-
tion of a surface in vacuum, defined as the energy required195

to move an electron from the surface to the vacuum, but
the potential of zero charge additionally includes solvation
effects.

The variation of charge with potential is captured by
the differential capacitance, C(φ) = dσ(φ)/dφ, defined per200

unit area of the interface. Integrating from the potential
of zero charge, the electrode surface charge density at any

potential5 is given by σ(φ) =
∫ φ
φ0

dφ′C(φ′). The electro-
chemical capacitance quantifies the relationship between

3Note that the electric field is screened substantially by the di-
electric response of the solvent within the solvent and electrolyte
regions. However, the surface of the solvent is still subjected to the
large unscreened surface electric fields, and these fields determine the
response of the solvent.

4 Here, we define the potential of zero charge of a surface without
adsorbates. In the presence of adsorbates, the PZC depends on the
charge transferred to the electrode, and hence is not intrinsic to solely
the metal electrode [46].

5This assumes no irreversible reduction or oxidation reactions.
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Figure 2: (a) Schematic spatial decomposition of electrochemical ca-
pacitance of Pt(111) with adsorbed CO into metal (quantum, Cm),
adsorbate (Ca), gap (Cg), solvent (Clq) and ionic (Cion) capaci-
tances in series, and (b) their typical corresponding dependencies on
electrode potential. (Adapted with permission from Ref. 40.)

the net potential across the entire electrochemical inter-205

face and the (equal and opposite) charge on each side of
it. It does not directly capture the microscopic charge,
field and potential distributions discussed above. However,
its dependence on potential and electrolyte concentration
provides indirect information about the contributions from210

various spatial regions within the electrochemical inter-
face.

Figure. 2(a) shows a simple idealized model for electro-
chemical capacitance that generalizes the classical Gouy-
Chapman-Stern (GCS) model and assumes that the elec-215

trochemical interface can be decomposed into distinct spa-
tial regions with precisely defined charges. A sequence of
(approximately) neutral regions separate the electrode re-
gion with surface charge density σ from the electrolyte
region with surface charge density −σ (integrated over the220

z-extent of the electrolyte).6 The original GCS model [34,
42] assumes a single neutral region corresponding to the
solvent alone, but realistic electrochemical interfaces also
include a ‘gap’ region with no dielectric response between
the solvent and the electrode (where the electron density225

of each is negligible), and optionally, adsorbates on the
electrode forming an additional dielectric layer [40].

Within this simple model, the electric field in each in-
termediate region is directly determined by σ using Gauss’s

6The intermediate regions may only be approximately neutral,
accounting for finite electron density (or spill-over) in the gap region
and small but non-zero probabilities of ions in the liquid region.
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Figure 3: (a) Total capacitance is dominated by quantum capaci-
tance rather than the electrochemical double layer (EDL) or dielec-
tric contributions for few-layer graphene electrodes [47], and (b) by
the adsorbate and gap (a, g) capacitances in CO adsorbed on Pt
electrodes rather than the metal or diffuse (m, d) capacitances [40].
(Adapted with permission from Refs. 40 and 47.)

law, E = σ/ε(E), where ε(E) is the permittivity of that230

region, which could depend on the electric field (nonlin-
ear response). This in turn directly determines the po-
tential difference, φ = σw/ε(E), where w is the thick-
ness of that region, and hence the differential capacitance,
C(E) = dσ/dφ = (ε(E) + Eε′(E))/w. The two end re-235

gions, the metal and the electrolyte, each generate a sur-
face charge density that depends directly on the potential
φ in that region. The net potential difference across the
entire interface is the sum of the potential differences in
each region, each forming a capacitor with the same sur-240

face charge density σ. Therefore, the net electrochemical
capacitance is nominally the series combination of differ-
ential capacitances in each spatial region shown in Fig-
ure. 2(b), C−1net = C−1m + C−1a + C−1g + C−1lq + C−1ion.

The differential capacitance of each neutral region above245

could depend nonlinearly on the field, while the differ-
ential capacitance of each charged region could depend
nonlinearly on the potential. Therefore calculating the
overall capacitance involves non-trivial coupled equations
that require numerical solution in general. 7 The series250

7Approximating this complex capacitance behavior at the inter-
face as a constant [48] may suffice for modeling certain reactions at
nearly neutral interfaces.

capacitor model still serves as a useful first approxima-
tion, with the primary consequence that the net capaci-
tance is dominated by the smallest capacitance in series.
For example, the ‘quantum’ capacitance of the electrode
Cm(φ) = e2wg(εF (φ)), where w is the thickness of the elec-255

trode and g(εF (φ)) is the electronic density of states at the
Fermi level at a given electrode potential φ, is extremely
large for conventional metallic electrodes and therefore
negligible. In contrast, two-dimensional electrodes such
as graphene and 2D boron can have a low quantum ca-260

pacitance which can dominate the overall electrochemical
capacitance [47, 49]. For example, Figure 3(a) shows that
with decreasing number of layers in few-layer graphene
electrodes, the quantum capacitance decreases proportion-
ally and limits the total capacitance, even though the di-265

electric capacitance (Clq) increases [47].
Similarly, adsorbates on the electrode surface e.g., CO

on a Pt electrode, can introduce a dielectric layer Ca with a
low capacitance that can dominate the overall capacitance;
this is sometimes grouped together with the electrode, re-270

sulting in a low quantum capacitance for electrode + ad-
sorbate. This presents challenges for experimental probes
of local electric fields, such as Stark shifts of the vibrational
resonances of adsorbates (such as CO), because the intro-
duction of adsorbates can drastically alter the field dis-275

tribution by changing the dominant lowest capacitor [40].
Further, hydrophobic adsorbates could even strongly re-
duce the adjacent gap capacitance (discussed in Figure 2),
making that the dominant contribution instead. For ex-
ample, CO adlayers on Pt electrodes decrease the total280

capacitance both by introducing an adsorbate capacitance
Ca and by reducing the gap capacitance Cg [40], as shown
in terms of the inverse capacitance (potential profile di-
vided by charge on the electrode) in Figure 3(b). Addi-
tionally, the changing local electric field with charge can285

alter the adsorbate geometry, such as in the case of Cl, Br
adlayers adsorbed on Cu(100) [50, 51], which can result
in nonlinear changes of the quantum (or adsorbate-layer)
capacitance with electrode potential.

The gap region is typically very narrow (� 1 Å), but290

can have a relatively small capacitance (large impact on
total capacitance) due to its low dielectric constant (≈ 1).
In addition to adsorbates as discussed above, the gap ca-
pacitance can also change with potential as the location of
the charge responses in the electrode and solvent can vary295

with the applied potential (and corresponding local elec-
tric field). In principle, the electrode and solvent need not
even exhibit the strict charge separation assumed above,
as electrons may weakly delocalize across the interface,
and chemical interactions leading to charge transfer can300

occur between the electrode and solvent. The impact of
such ‘charge spillover’ into the fluid is still not completely
known and remains the subject of active research [52–56].

The region to the right of the gap in Figure 2(a) con-
sisting of solvent and electrolyte ions is the portion cap-305

tured by the Gouy-Chapman-Stern model. The ionic ca-
pacitance increases strongly with magnitude of potential
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Figure 4: First-principles electrochemical simulations vary widely in
accuracy of solvation effects, electric field distributions and compu-
tational efficiency. Pure DFT techniques (shown in red) may employ
no solvent molecules / electrolyte ions, fixed configurations thereof,
or full molecular dynamics (AIMD). Hybrid techniques can achieve
significant gains in computational efficiency, including QM/MM ap-
proaches (shown in blue) that treat solvent/electrolyte atoms with
force fields, and continuum approaches (shown in green) that treat
solvents/electrolytes using density and charge distributions alone.

(Poisson-Boltzmann behavior), while the solvent capaci-
tance decreases with magnitude of electric field (controlled
by the potential) due to dielectric saturation, as discussed310

in detail below in Sections 4.1 and 4.5. The net series
combination results in the characteristic shape of electro-
chemical capacitance variation with potential comprising
a broad hump with a narrow dip near the potential of zero
charge. Low values of quantum, adsorbate or gap capaci-315

tances in series would typically mask this shape, and there-
fore this shape is most often seen experimentally for inert
metallic electrodes in non-adsorbing electrolytes. A goal
of modern computational electrochemistry is to probe the
local electric field effects in realistic electrochemical inter-320

faces beyond the GCS regime, and to accurately predict
the total charge on the electrode as well as microscopic
charge and field distributions as a function of potential.

1.4. Overview of approaches

First-principles calculations of electrochemical systems325

must correctly capture the field and charge distributions
in order to accurately predict the potential and electrolyte
dependence of electrochemical processes. Because of the
localization of the electric field, these calculations only
need to describe an electrochemical half-cell: a single,330

charged electrode and its double layer.8 Broadly, these

8Additionally, the difference in chemical potential of the electrons
at two half-cells in an electrochemical cell prevents a typical electron-
ically equilibrated first-principles calculation from describing the full
cell.

calculations need electrification techniques to introduce
charge on the surface (section 2.1) and dynamics to ac-
count for thermodynamic averaging of solvent and elec-
trolyte configurations (section 2.2). These approaches clas-335

sify into explicit solvation (section 3), where the solvent
and electrolyte are included as atoms in the DFT or as
classical atoms/molecules treated using force fields, and
implicit solvation (section 4) which approximates only the
density or distribution of solvent and/or electrolyte. Fig. 4340

schematically outlines the most common approaches used
in first-principles electrochemistry.

Fully explicit ab initio approaches treat the entire sys-
tem using DFT or another quantum mechanical method.
These include the simplest computational hydrogen elec-345

trode approaches [25] that do not include any solvent molecules
or electrolyte ions. Introducing electric fields or counter-
charges [27, 43] can improve the description of the electric
field distribution (Fig. 4), but still neglect solvation effects.
Frozen configurations of solvent molecules and electrolyte350

ions (section 3.1) can somewhat improve the description of
solvation and electric field effects, but systematically cap-
turing these effects in an explicit approach requires ther-
modynamic sampling over all possible configurations using
a molecular dynamics approach.355

Molecular dynamics simulations of solvent and elec-
trolytes are potentially the most accurate technique for
first-principles electrochemistry, but incur significant com-
putational cost both due to the large number of additional
atoms included within the quantum-mechanical DFT cal-360

culation and the large number of atomic configurations
that must be calculated explicitly. Hybrid quantum me-
chanics / molecular mechanics (QM/MM) methods (sec-
tion 3.3) can relieve the number of atoms in DFT com-
pared to full ab initio molecular dynamics (AIMD) calcu-365

lations (section 3.2), but still require calculation of a large
number of configurations. Most importantly, the length
scales of ion distributions in an electrolyte (especially at
low concentrations) and the time scales of equilibration of
this distribution make both the system size and number370

of configurations extremely large for molecular dynamics
treatment of electrochemical interfaces [57–59].

Implicit solvation methods (section 4) replace explicit
solvent molecules or electrolyte atoms with continuum ap-
proximations of their densities and charge distributions.375

These distributions are implicitly averaged over all possi-
ble configurations, removing the need for thermodynamic
sampling, making these techniques highly efficient compu-
tationally. Recent developments in implicit solvation mod-
els capture an increasing level of detail in the response of380

the electrolyte, potentially achieving an accurate descrip-
tion of solvation and electric field effects at low computa-
tional cost (Fig. 4).

Another way to classify these approaches is into ‘pure’
approaches that treat every atom with the same theory,385

and hybrid techniques. AIMD is arguably the only pure
approach, while both implicit solvation models and QM/MM
are hybrid techniques that contain regions of quantum de-
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Figure 5: Schematic charge distributions in various approaches to
electrification of a perfect metallic electrode, including (a) No elec-
trification, various static counter-charge distributions such as (b) uni-
form compensating background, (c) static ions or (d) compensating
charge layer / boundary condition, and (e) self-consistent counter-
charge distribution in an electrolyte. (f) Corresponding electrostatic
potentials and (g) electric fields in one half of an inversion-symmetric
unit cell for a periodic calculation.

scription (using DFT) spatially separated from regions
treated classically. The accuracy and reliability of the390

hybrid methods are often dependent on the treatment of
this interfacial region. This requires careful matching be-
tween force fields and explicit solvent/electrolyte atoms in
QM/MM methods (section 3.3) and careful parameteriza-
tion of the solvation cavity (section 4.2) in implicit contin-395

uum solvation methods.

2. General considerations

2.1. Electrification schemes

In addition to choices for treating solvation effects,
techniques for first-principles electrochemistry vary sub-400

stantially in their approach for describing the effect of elec-
trode potential and local electric fields (as shown in Fig-
ure 4). These range from no electrification (as in the com-
putational hydrogen electrode), electrification using static
countercharge distributions, and self-consistent electrifica-405

tion accounting for charge distribution in the electrolyte.
As we discuss below in detail, these approaches differ sig-
nificantly in the effective distribution of electric fields and
potential near the electrode surface (Fig. 5).

At the simplest end of the electrification spectrum, lin-410

ear free energy relation approaches [23, 24] such as the
most basic application of the computational hydrogen elec-
trode [25] only deal with neutral configurations explicitly
(Fig. 5(a)). These approaches then expand the free energy
as a linear function of potential about the neutral reference415

point, as discussed in section 1.2. Going beyond this lin-
ear approximation requires electrification: the treatment
of charged surface configurations in order to capture the
change of local geometries and adsorbate configurations
due to the surface charge and electric field.420

In periodic DFT calculations, charged surface configu-
rations require special treatment that neutralize the unit
cell. This is because total energies and electrostatic poten-
tials of charged unit cells are not well-defined (diverge to
infinity). There are many approaches for constructing neu-425

tral unit cells of charged surface configurations, starting
from a uniform compensating background (jellium) charge
density at the simplest level [60]. This is the default han-
dling of charged unit cells in plane-wave basis DFT cal-
culations, which set the average value of the electrostatic430

potential to zero. As shown in Fig. 5(b), this results in a
linear spatial variation of electric field and a corresponding
quadratic variation of potential that differs markedly from
those in a real electrolyte.

The potential profile from a uniform counter-charge435

distribution can be improved by strategically placing lo-
calized counter charges, either in the form of an explicit
ion [43, 44, 61] (Fig. 5(c)) or as a sheet of continuum
charge density (equivalently a counter-electrode boundary
condition) [62–64] (Fig. 5(d)). Both options result in an440

electric field localized between the electrode surface and
this counter-charge layer, with a linear potential variation
within that region. Ultimately, the most realistic counter-
charge distributions result from both explicit and implicit
electrolyte models [65–67], combining a region with con-445

stant electric field and linear potential nearer to the elec-
trode, with a region of exponentially decaying field and
potential beyond it (Fig. 5(e)).

In summary, the electrification scheme determines the
fidelity of the potential and electric field profiles relative to450

those created by the electrolyte, as illustrated by Fig. 5(f)
and (g). The uniform countercharge approach generates
a physically-incorrect non-zero electric field (and corre-
sponding potential variation) within the metallic electrode
due to the countercharge distribution that covers the en-455

tire unit cell including the metallic region. The counter-ion
and counter-sheet generate the same electric field as the
electrolyte in the vicinity of the electrode, but miss the
screening due to the solvent and electrolyte regions. This
leads to an overestimate of the potential difference between460

the electrode and the regions of the unit cell far from it.
Importantly, only calculations with an electrolyte exhibit
a potential that decays asymptotically to a constant, while
all other schemes yield a potential whose unit cell average
is zero.465

Finally, we need to establish the connection between
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electrified calculations at a specific surface charge and the
corresponding electrode potential. This connection can be
split into two required components: establishing an abso-
lute scale of electron chemical potential in the DFT cal-470

culations, and connecting this DFT scale with the exper-
imental scale of electrode potentials. In particular, cal-
culations that include implicit or explicit electrolytes au-
tomatically have a meaningful absolute scale of electrode
potential because the electrostatic potential exponentially475

decays to zero far from the electrode surface (Fig. 5(e))
[68]. All other electrification schemes have an undeter-
mined offset in the electrostatic potential far from the elec-
trode and require an additional step of subtracting this
asymptotic potential in referencing the electron chemical480

potential to an absolute scale [60]. Referencing the elec-
trostatic potential to zero far from the system additionally
sets the reference for the eigenvalues in Kohn-Sham DFT.
The corresponding occupation factors of the Kohn-Sham
orbitals are Fermi functions of these eigenvalues. Thus,485

the electron chemical potential, which is equivalent to the
Fermi energy of the interface [69], is also referenced to zero
electrostatic potential at infinity.

After fixing the electrostatic potential reference, the
theoretical electron chemical potential must be calibrated490

to the experimental electrode potential scale. Implicit sol-
vation approaches typically base this calibration on com-
puted and measured potentials of zero charge of single-
crystal metal electrodes [70]. Explicit calculations either
relate the work function of the solvated interface to that of495

the experimentally determined standard hydrogen poten-
tial [71–74], or calculate the value of an internal reference,
such as the free energy of a proton [75]. See Ref. 45 for a
detailed review of these approaches.

2.2. Dynamics500

The equilibrium electric field distribution within the
electrochemical interface is a critical component of first-
principles electrochemistry, as discussed above. Ensuring
appropriate distributions of solvent, electrolyte and sur-
face species at the electrode is a general challenge in any505

approach for predicting electrochemical phenomena at or
near equilibrium. Moreover, these equilibrium distribu-
tions should correspond to the grand canonical ensemble
with respect to both electrons and electrolyte ions, as dis-
cussed in Section 1.2. We outline the key considerations510

for correctly sampling equilibrium distributions of the ap-
propriate ensemble in electrochemical calculations below.

First consider a completely explicit treatment of sol-
vent and electrolyte in a first-principles calculation, which,
in principle, should provide the most accurate description515

of both solvation and electric field effects (‘AIMD elec-
trolyte’ in Figure 4). This is extremely computationally
expensive for two reasons. First, most electrolytes in ex-
periment have low concentrations of ions. This neces-
sitates large simulation cells with large numbers of sol-520

vent molecules to include a statistically significant num-
ber of ion pairs in the calculation cell [59]. For example, 1

mol/L of monovalent ions in water corresponds to 56 water
molecules (∼ 170 atoms) per ion pair, while 0.1 mol/L of
ions corresponds to 556 water molecules (∼ 1700 atoms)525

per ion pair. This is significantly larger than typical DFT
calculations for catalysis that already include 100-200 elec-
trode atoms (surface slab and adsorbate). Second, in such
simulation cells, the diffusion time scales for ions to sample
their equilibrium distribution may substantially exceed the530

few to tens of picosecond time scales practical for AIMD
simulations [57, 58]. This motivates replacing several sol-
vent molecules and electrolyte ions in DFT with classi-
cal versions instead in the hybrid quantum mechanics /
molecular mechanics (QM/MM) methods. Alternatively,535

a portion of the DFT solvent and electrolyte may also
be replaced with continuum solvation models in hybrid
explicit-implicit approaches [76, 77].

Electrolyte ions are the primary contributor to both is-
sues leading to the extreme computational expense for full540

explicit solvation discussed above. Hence, current prac-
tical approaches to explicit solvation in electrochemistry
predominantly include only solvent molecules, with elec-
trolyte species, if any, restricted to those in the vicinity
of the electrode. As a result, such calculations do not545

automatically capture the correct long-range variation of
electrostatic potential and need special handling for elec-
trification scheme, as discussed above in section 2.1. The
grand canonical ensemble for the electrons additionally
imposes a fluctuating electron count in these simulations,550

which requires a potentiostat to maintain the correct en-
semble [78, 79]. The fluctuation of electron number can
have physical consequences, affecting the electronic cou-
pling of adsorbates and electrodes, which is a current topic
of research [80–82].555

Implicit solvation approaches using continuum models
directly approximate the equilibrium distributions of the
solvent and electrolyte, and thereby do not always require
explicit dynamics. However, the interfacial structure of the
electrode may involve adsorbate configurations and cover-560

ages that change with potential. Sampling the ensemble of
such configurations is also important for accurate electro-
chemical simulations, requiring statistical techniques such
as cluster expansions to average over many possible con-
figurations [83, 84]. Finally, all of the above approaches565

still require additional dynamics techniques to model re-
actions, ranging from simple and relatively inexpensive
nudged elastic band for reactions in fully continuum elec-
trolyte, to metadynamics for more complex reactions and
explicit solvent and electrolyte.570

3. Explicit solvation

Solvation effects in electrochemistry may be described
using explicit solvent / electrolyte molecules or implicit
models, as discussed above. This section describes explicit
approaches in ab initio calculations, starting from the sim-575

plest ones with no or fixed solvent/electrolyte configura-
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tions, to molecular dynamics approaches of both the full
DFT (AIMD) and partially classical (QM/MM) varieties.

Explicit solvation approaches differ substantially both
in computational cost and accuracy. Explicit AIMD of sol-580

vent and electrolyte (section 3.2) provides the most con-
ceptually straightforward description of the electrochem-
ical double layer, treating the entire system on an equal
footing at the electronic structure level. However, using
semi-local DFT for the explicit solvent has accuracy lim-585

itations for the electronic structure, underestimating the
band gap due to self-interaction errors and leading to in-
correct predictions of redox potentials [85] and interfacial
band alignment [86]. Hybrid functionals with exact ex-
change or higher-level methods including GW many-body590

perturbation [87, 88] may capture solvent electronic struc-
ture more accurately, but at significant computational ex-
pense.

Replacing explicit DFT solvent with classical force field
models in QM/MM methods (section 3.3) substantially re-595

duces computational costs compared to AIMD, but these
methods are limited by the accuracy of the solvent force
field models and their interaction with the DFT. Overall,
molecular dynamics approaches remain computationally
expensive regardless of DFT or classical solvent. Most ap-600

plications of first-principles methods to electrochemistry,
especially for modeling electrochemical reactions, typically
avoid dynamics entirely by omitting solvent and electrolyte,
or using frozen configurations (section 3.1).

3.1. Fixed / no solvent605

The simplest and currently most prevalent scheme of
applying ab initio methods to address electrochemical chal-
lenges is the Computational Hydrogen Electrode (CHE) [25].
In its simplest form, this approach does not include elec-
trification or solvation effects (section 1.4), predicting re-610

action potentials from neutral, unsolvated surface calcula-
tions alone using a linear free energy approximation (sec-
tion 1.2). Here, we discuss approaches based on CHE that
include varying levels of solvation and electrification.

The simplest form of the Computational Hydrogen Elec-615

trode model [25] captures the thermodynamics driven by
change in potential, and can capture trends in electro-
chemical reactions that are driven by surface chemistry.
However, it neglects the contributions of electrolyte, ki-
netic barriers, and electric fields, and cannot correctly cap-620

ture the potential of zero charge or the capacitance. In par-
ticular, this model misses the complex nonlinear variation
of grand free energy with potential for each configuration,
because it implicitly linearizes the grand free energy about
the neutral state as discussed in section 1.2.625

The lack of solvation can be partially remedied by in-
cluding a layer of explicit (DFT) solvent in the calculation.
This is sufficient for certain applications, especially those
that require identifying trends in reactivity. For example,
a CHE approach with explicit water applied to water split-630

ting reactions at metal surfaces elucidated the linear rela-

tionship between the binding strength of the adsorbates
O, OH, and OOH with the surface. [89].

The CHE method may also be extended to describe
the electrolyte, through addition of explicit, frozen (fixed,635

optimized geometry) electrolyte ions. Electrolyte ions are
known to alter the properties of electrochemical systems.
For instance, cations have been shown experimentally to
significantly impact rates of the oxygen reduction reac-
tion [90], the peak position of the hydrogen underpoten-640

tial deposition on Pt [91], and the Stark tuning of CO on
Pt [92]. Including explicit electrolyte also comes with the
challenges discussed above: enhanced DFT self-interaction
errors due to localized charges on ions, and the need for dy-
namics (section 2.2). It additionally introduces new chal-645

lenges due to low ion concentrations which require large
DFT supercells.

Frozen solvent may also be combined with any of the
electrification schemes described in section 2.1. For exam-
ple, Ref. [33] compares variants of the frozen solvent ap-650

proach coupled with CHE, a constant field, and a uniform
background charge to compute the reduction and oxida-
tion of water on Pt(111). These electrification schemes dif-
fer in complexity and provide similar results for the simple
configurations considered, but the choice of electrification655

method may matter for more complex adsorbate geome-
tries, especially those with large dipoles [33].

The reduced computational cost of frozen solvent/electro-
lyte (extended CHE) techniques allows for a more ex-
tensive exploration of reaction mechanisms and electronic660

structure methods. However, the CHE strategy is intrin-
sically limited by the fact that fixed solvent configura-
tions do not capture the thermodynamics or structure of
liquid water at the interface [93]. Attempts have been
made to capture the fluid thermodynamics using a con-665

tinuum model, and chemical bonding and electronic struc-
ture effects from frozen configurations of a few explicit
molecules. Such approaches require particular care be-
cause they can re-introduce the dynamics and accuracy is-
sues of explicit and implicit electrolytes respectively. Ad-670

ditionally, in practice there is some amount of arbitrary
decision-making in placing these solvent molecules. These
limitations can be more fully addressed by moving from
using fixed solvent structures to performing molecular dy-
namics, at additional computational expense and increased675

complexity of the simulation, as discussed next.

3.2. Ab initio molecular dynamics (AIMD)

Ab initio molecular dynamics (AIMD) treats the entire
electrochemical interface in an electronic structure method
such as DFT and samples the thermodynamic phase space680

of solvent configurations using molecular dynamics. This
makes AIMD potentially the most accurate technique for
first-principles electrochemistry in principle, but is limited
by the substantially higher computational cost in practice.
AIMD calculations must address many of the same chal-685

lenges discussed above, including referencing the poten-
tial to an experimentally-measurable quantity and treat-
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Figure 6: (a) Computational standard hydrogen electrode in ab ini-
tio molecular dynamics (AIMD) simulations by aligning electrostatic
potentials in metal/water interface and bulk water simulations con-
taining an excess proton [55]. (b) An electron reservoir approach
in AIMD utilizing neon atoms as a wide-band gap counter-electrode
to control charge and field in the remainder of AIMD unit cell [79].
(Adapted with permissions from Refs. 55 and 79.)

ing both the electrons and the electrolyte within the grand
canonical ensemble appropriate for the thermodynamics
of the electrochemical interface. While AIMD is still not690

yet computationally tractable for many electrochemical re-
actions, significant progress has been towards addressing
these computational challenges.

The electron potential must be referenced to an experi-
mentally accessible quantity. Early calculations referenced695

the electron potential to the water-vacuum interface [26],
but large differences between the reference potentials and
the potential range of interest introduce large errors. Using
the solvation free energy of a proton in solution as an in-
ternal reference [45, 75] (Fig. 6(a)) leads to more accurate700

results. An extension of this hydrogen insertion method,
or computational standard hydrogen electrode approach
(distinct from the computational hydrogen electrode ap-
proach), has been successful for calculating the PZC of
metal surfaces with AIMD [55].705

As discussed in Sections 1.2 and 2.2, the grand canon-
ical ensemble is the most convenient ensemble for compu-
tational electrochemistry. AIMD calculations have tradi-
tionally been designed in the canonical and microcanonical
ensembles, in part because of the simplicity of these ensem-710

bles. These ensembles preserve the number of particles,
whereas the grand canonical ensemble fixes the chemical
potential of each species, a more difficult constraint to sim-
ulate. AIMD calculations in the grand canonical ensemble
require a reservoir for excess particles, both electrons and715

ions, and the definitions of these reservoirs is an active
area of research. While all ensembles are equivalent in
the thermodynamic limit, the system-size convergence of
molecular dynamics and Monte Carlo simulations can dif-

fer dramatically, with best convergence typically obtained720

in the grand canonical ensemble [94].
Current approaches to electron reservoirs include modi-

fications of the electrostatic boundary condition deep within
the liquid [78] and counter-ions with variable charge [79],
analogous to the counter-sheet and ion electrification schemes725

shown in Fig. 5. Counter-ions that can serve as electron
reservoirs must have a wide band gap, such as the modi-
fied neon atoms in Ref. [79], to allow varying the Fermi
level (applied potential) over a wide range (Fig. 6(b)).
Making simulations grand canonical in atoms or ions is730

much more challenging [79], and typically requires grand-
canonical Monte Carlo (GCMC) techniques. Such tech-
niques have typically been practical only for classical force-
field simulations [95–97] due to the substantial computa-
tional cost of DFT calculations with Monte Carlo moves735

that substantially change geometries (and hence, the elec-
tronic structure) at each step. Although computationally
inefficient, an alternative is to combine several canonical
AIMD simulations with varying numbers of charge pairs
with Monte Carlo sampling as a post-processing step [98].740

Recent developments in AIMD simulations have made
it possible to more accurately reference electrochemical
predictions to the experimental scale and electrify the DFT
unit cell. However, the computational cost of AIMD limits
the number of solvent molecules and typically precludes745

the inclusion of electrolyte species in the calculation, as
discussed in Section 2.2. Including a single counter-ion
may approximate electrification, but does not correctly
capture the long-range electrostatic potential and capaci-
tance of the electrochemical interface. Additionally, semi-750

local DFT errors limit the accuracy of solvent structure in
AIMD [99, 100], requiring more expensive methods such as
hybrid functionals to improve accuracy. Alternate strate-
gies to retain solvent and electrolyte dynamics while mit-
igating the computational limitations of AIMD are neces-755

sary to more broadly explore electrochemical phenomena
in first-principles calculations.

3.3. Quantum mechanics / molecular mechanics (QM/MM)

QM/MM is a broad class of hybrid molecular dynamics
techniques that treat a part of the system quantum me-760

chanically, while approximating the remainder using clas-
sical force fields [101]. QM/MM has been widely applied in
biochemistry and biology, particularly for protein studies,
and sparingly for electrochemical applications [102, 103].
The promise of QM/MM is to retain the chemical accuracy765

of ab initio molecular dynamics at a much lower computa-
tional cost due to the reduced size of the quantum compo-
nent of the simulation. This allows for longer simulation
times and larger numbers of simulated atoms, which is im-
portant for accurate sampling of electrolytes, as discussed770

in section 2.2.
Realizing the full potential of QM/MM requires fur-

ther developments on two fronts: accurate force fields for
the classical region and reliable approximations for the in-
terface between the classical and quantum regions. These775
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Figure 7: (a) Quantum mechanics/molecular mechanics approaches
may partition electrode, electrolyte and surface species in numerous
ways, e.g., using different molecular mechanics approaches for the
metal electrode and the electrolyte, surrounding a quantum molecule
[104]. (b) Molecular mechanics models may treat metal electrodes
using image charges, shown above for the top two atomic layers of
Au(111) [105]. (Adapted with permissions from Refs. 104 and 105.)

requirements further depend on how the overall system is
partitioned into classical and quantum regions. For ex-
ample, in Figure 7(a), treating the metal surface and ad-
sorbate in quantum mechanics surrounded by a classical
liquid requires accurate force fields for the liquids alone.780

On the other hand, including the metal in the classical
subsystem provides further opportunity for reducing com-
putational costs, but requires treatment of metal polariza-
tion in a classical force field [104].

We first discuss the considerations in selecting force785

fields for the classical subsystem. Classical force fields vary
in complexity from pair potentials with fixed charges; to
polarizable and charge-equilibration force fields with vari-
able local dipoles or charges; and to reactive force fields
with dynamic bond connectivity. Increasing complexity in790

the force fields allows more accurate description of charge
distributions in the classical subsystem, but introduces
challenges in force field parameterization, especially when
dealing with many atomic species. For example, classical
molecular dynamics simulations of liquid water range from795

pair potential models such as SPC/E [106] and TIP4P
[107, 108], through polarizable force fields [109], to charge-
equilibration force fields [110–113]. The latter force fields
provide an accurate description of the structure and di-
electric response of liquid water, including at extreme tem-800

peratures, pressures and electric fields, but are specific to

pure water. In contrast, pair potential models do not si-
multaneously capture thermodynamic and dielectric prop-
erties of water accurately [114], but parameterization of
electrolytes in pair-potential models of water is relatively805

straightforward [115].
Classical force fields can either focus on specific ma-

terial systems with highly detailed parameterization and
potentially high accuracy for those materials as outlined
above, or span large classes of materials, trading off ac-810

curacy. General-purpose force fields such as COMPASS
[116], CHARMM [117] and AMBER [118] are intended
for organic and biomaterials, while universal force fields
(UFF) [119] address the entire periodic table with lower
fidelity. On the other end of the spectrum, reactive force815

fields such as AIREBO [120], COMB [121] and ReaxFF [122]
can potentially describe liquids and electrolytes in much
more detail beyond the long-range charge response alone,
including their chemical reactions. Most reactive force
fields include a charge equilibration scheme based on elec-820

tron affinities of each atomic species to capture variable
charge states. In electrochemical simulations, this provides
an additional opportunity to account for the fixed chemical
potentials of the electrons within the liquid / electrolyte
region in the vicinity of the electrode as well [123]. These825

reactive force fields require careful parameterization with
extensive first-principles calculations for calibration, and
their reliability is typically limited to a few atomic species
and molecular environments. Thus, embedding in QM is
generally still required to achieve the necessary chemical830

accuracy for the reactive portions of the simulation.
Machine learning may hold the key to addressing chal-

lenges in classical force-field parameterization by automat-
ically generating them from DFT calculations [124, 125].
Further, using MM potentials developed using the same835

level of theory as in QM regions potentially increases the
accuracy possible for QM/MM methods [126, 127]. At
present, however, most machine-learned potentials (e.g.,
gaussian-approximation potentials (GAP) methods [128])
only account for local interactions [129]; QM/MM for elec-840

trochemistry requires machine-learned potentials that also
extract atomic charges [130] in order to correctly describe
long-range interactions. Alternatively, physics-based em-
pirical approaches such as density-functional tight-binding
(DFTB) [131] models may provide another path forward845

for accurate QM/MM simulations of electrochemical sys-
tems.

In addition to accurate force fields for the classical re-
gion, QM/MM simulations also require reliable approxi-
mations for the interface between the classical and quan-850

tum regions. The QM/MM interface must both partition
the atoms between classical and quantum regions, and de-
scribe the interactions between the two regions. The quan-
tum region must include atoms in the vicinity of chemical
processes of interest. Interfaces within liquids, in particu-855

lar, require adaptive methods so that species can be either
MM or QM depending on whether they have diffused in
or out of a region in space designated as QM [101].

11



The accuracy of QM/MM depends on the treatment
of electrostatic interactions across the interface. This can860

range from simple ‘mechanical embedding’ that describes
the QM system with predetermined charges, through ‘elec-
trostatic embedding’ that utilizes the QM charge density,
to ‘polarized embedding’ that allows the MM charge to ad-
just self-consistently [101]. Complex interaction schemes865

incur greater computational expense, but can allow re-
duction in the size of the QM region for equivalent ac-
curacy [132]. All these schemes exclude charge transfer
across the quantum-classical interface, which limits the ac-
curacy of electrostatic potentials in QM/MM [133].870

Lastly, to further reduce computational cost, QM/MM
calculations may include both the electrode and the elec-
trolyte in the classical region [104]. However, classical
treatment of metallic regions is particularly challenging
due to the strong effects of polarization and the delocaliza-875

tion of charge [134–136]. These effects are difficult to cap-
ture in conventional polarizable and charge-equilibration
schemes for atom charges, but are more naturally captured
in image-charge response models of metals [105] (Fig. 7(b)).
Application of such methods to electrochemistry requires880

further developments, especially in the image-charge treat-
ment of non-neutral metal surfaces [135].

4. Implicit / continuum solvation models

The highly complex interactions between the atoms
and electrons in the electrode and the electrolyte impact885

the equilibrium distributions of orientations, positions, and
polarization of the solvent molecules and electrolyte ions.
As discussed above, explicit solvation methods attempt to
directly include these molecules and/or ions in the calcu-
lation, and need to invoke molecular dynamics to sample890

their distributions.
On the other hand, implicit / continuum solvation mod-

els break this complex problem into two simpler problems:
describing where the solvent molecules or electrolyte ions
are, and then, given this distribution, capturing how the895

electrolyte species respond to the electrode (Figure 8).
This section presents a unified overview of the wide range
of continuum solvation models applied to electrochemistry,
discussing the physics they capture, strategies and inputs
for parameterization, and their resulting accuracy for de-900

scribing electrochemical properties.
Most continuum models approximate the distribution

of solvent molecules near an electrode with a cavity: no
molecules or ions in the region occupied by the electrode,
and a uniform distribution outside it. The interactions905

between the electrolyte species and the electrode include
mean-field electrostatic interactions and beyond mean-field
effects including dispersion interactions, local repulsion,
etc. Among these, the mean-field electrostatic interactions
have the longest range and consequently most strongly im-910

pact the distribution of charges, and thus the energetics,
of the electrode. The capability of continuum solvation
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Figure 8: Continuum solvation models describe the equilibrium effect
of electrolytes on electrodes by approximating the distribution of
solvent molecules and ions near the electrode in the form of a cavity,
and then approximating the interaction of the rotation, polarization
and translation of molecules and ions with the electrode.

models to describe specific electrochemical phenomena de-
pends most vitally on this interaction, which we describe
in detail next in Section 4.1. All remaining interactions915

are described approximately in terms of the shape and
size of the cavity, as we discuss in Section 4.3. The quan-
titative accuracy of both the dominant electrostatic inter-
action and the remaining secondary interactions depend
on the precise size of the cavity and its proximity to the920

electrode. We discuss several approaches to determine and
parameterize the cavity subsequently in Section 4.2.

4.1. Bulk response of electrolyte

The solvent and electrolyte interact with the electrode
primarily through long-ranged electrostatic interactions be-
tween their charge densities. This interaction significantly
contributes to interfacial properties such as capacitance
and surface free energies. The net electrostatic potential
that governs this electrostatic interaction is determined by
Poisson’s equation,

−∇2φ(~r) =
ρtot(~r)

ε0
, (1)

where the ρtot(~r) is the total charge density and ε0 is
the permittivity of free space.9 The total charge density925

ρtot(~r) = ρel(~r) + ρlq(~r) includes the electrode charge den-
sity ρel(~r) in the electronic DFT calculation (electrons and
nuclei) and the net charge density ρlq(~r) in the liquid re-
gion (solvent and electrolyte).

The net charge density in the liquid depends on the in-
teractions of the liquid with the electrode, primarily through
the dominant long-ranged electrostatic interaction medi-
ated by the net electrostatic potential, φ(~r). However,
this “response” of the fluid is rather complicated in gen-
eral with ρlq(~r) = ρlq[φ](~r), a general functional where
the charge density at one location ~r in space depends
non-locally and non-linearly on the potential everywhere.
Therefore, we can write the electrostatic potential in terms
of the electrode charge density ρel(~r) from the electronic

9Note that many density-functional theory and continuum solva-
tion model articles use atomic units with Gaussian/cgs system for
electrical quantities, within which ε0 = 1/(4π).
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DFT calculation alone as

−∇2φ(~r)− ρlq[φ](~r)

ε0
=
ρel(~r)

ε0
, (2)

but that is not feasible to solve directly in general.930

To arrive at practical approximations to the fluid re-
sponse, continuum models focus on the long-range poten-
tial alone, neglecting complexities in the short-ranged in-
teractions at the atomic scale. Consequently, a multipole
expansion is convenient to describe both the interaction of935

a charge distribution with an electrostatic potential and
the potential generated by that charge distribution. The
most important contributions will arise from the move-
ment of net charges in the potential, which are monopoles
at l = 0 in the multipole expansion. The next contribu-940

tion will be from dipoles orienting to the gradient of the
potential (the electric field), which is l = 1 in the multi-
pole expansion. Subsequent terms involving quadrupoles
at l = 2, octupoles at l = 3 and so on will become succes-
sively less important in the long-range limit.945

The multipole components present depend on the na-
ture of the species in the fluid. The monopole contri-
bution requires net charges that can move independently
in response to the electrostatic potential, which are only
present in the electrolyte ions. Consequently, the l = 0950

response dominates for electrolyte ions, and l ≥ 1 contri-
butions are less important. For neutral solvent molecules
without a net charge, the monopole contribution is absent
and therefore the l = 1 dipolar response dominates.

The picture so far is still fully general in terms of
the locality of the response. This multipole expansion
can, in principle, capture the effect of an atomic-scale
charge distribution within the ion or molecule moving, ro-
tating and polarizing in response to the electrostatic po-
tential over the same length scales. Additionally making
a linear-response approximation (with respect to electro-
static potential) allows the entire fluid response due to
both molecules and ions to be written as a series of differ-
ential operators D̂(2l) of order 2l for each multipole order,

ρlq(~r) =
∑
nl

wnl ∗ D̂(2l)
(
wnl ∗ φ(~r)

)
(3)

along with convolutions wnl∗ to capture the nonlocality955

of the interaction, where n indexes different contributions
at each l. This is the basis of the SaLSA continuum sol-
vation model [18] that captures the nonlocal response of
both solvents and electrolytes, but within a linear response
approximation.960

Most solvation models neglect this non-locality of the
response, which effectively reduces all species in the fluid
to point particles. In this limit, only the dominant mul-
tipole contributions of each species remains relevant, re-
ducing the response to l = 0 alone for ions and l = 1965

alone for solvent molecules. As we discuss next, this gen-
eral perspective results in the family of Poisson-Boltzmann
approaches.

The simplest model for the monopole response of ions is
to treat them as an ideal non-interacting gas of particles,
such that the local concentration of ions at any point is
proportional to their potential energy. For a general elec-
trolyte with several species of ions with charges Zi and
bulk concentrations Ni (satisfying

∑
iNiZi = 0 for charge

neutrality), this results in an ionic charge density

ρionlq (~r) =
∑
i

NiZie exp

(
−Zieφ(~r)

kBT

)
, (4)

where e is the elementary charge. For a symmetric Z : Z
electrolyte containing cations and anions of charges ±Z
with the same bulk concentration Nion, the above simpli-
fies to

ρionlq (~r) = −2NionZe sinh

(
Ze

kBT
φ(~r)

)
. (5)

At low potentials where Ze|φ| � kBT , we can approx-
imate sinh(x) ≈ x and substitute back into the Poisson
equation to yield the linearized Poisson-Boltzmann equa-
tion

−∇2φ(~r) +
φ(~r)

λ2
=
ρel(~r)

ε0
, (6)

with the Debye screening length λ given by

λ−2 =
2NionZ

2e2

ε0kBT
. (7)

(Note that ε0 will be replaced by εb, the net dielectric per-
mittivity of the electrolyte after accounting for the solvent970

dielectric response below.) The solution to the linearized
Poisson-Boltzmann equation in regions without charge takes
the form e−r/λ, causing the potential to exponentially de-
cay with a characteristic length scale given by the Debye
screening length λ.975

More generally, without making the small potential ap-
proximation above, the Poisson-Boltzmann equation for a
symmetric electrolyte is

−∇2φ(~r) +
φ(~r)

λ(φ)2
=
ρel(~r)

ε0
, (8)

with a potential-dependent Debye screening length λ(φ)
given by

λ−2(φ) =
2NionZe

φ
sinh

(
Ze

kBT
φ

)
. (9)

Figure 9(a) compares the Debye screening length of aque-
ous 1:1 (Z = 1) electrolytes at Nion = 1 mol/liter in the
linearized and nonlinear potential-dependent forms. As
expected, the linear form is appropriate only when the
potential satisfies Ze|φ| � kBT (lower x-axis), which cor-
responds to φ � 0.026 V at room temperature of 300 K
(upper x-axis). The Debye length exponentially decays
to zero with increasing potential, which corresponds to an
ionic charge density ρionlq ∝ λ−2 that diverges to infinity.
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Figure 9: (a) Nonlinear Debye screening length due to Poisson-
Boltzmann ionic response, and its saturation (lower bound) due to
ion packing in the modified Poisson-Boltzmann (mPB) approach
[137], shown for 0.01 M aqueous KPF6 (assuming 2.4 Å and
2.8 Å ionic radii). (b) Nonlinear dielectric response of water due
to saturation of dipole rotations, captured in the NonlinearPCM sol-
vation model [13] and classical DFT [114, 138].

This is an unphysical consequence of assuming that the
ions are non-interacting. The modified Poisson-Boltzmann
approach [137] mitigates this issue by enforcing a ‘packing
limit’ on the ions, resulting in

λ−2(φ) =
2NionZe

φ

sinh
(
Ze
kBT

φ
)

1 + 2η
(

cosh
(
Ze
kBT

φ
)
− 1
) , (10)

where η = Nion

∑
i(4πR

3
i /3) is the volume fraction of ions

with radii Ri (i = cation, anion) in the bulk electrolyte.
Figure 9(a) shows that this modified Poisson-Boltzmann
equation results in a lower bound on the Debye screening
length, corresponding to an upper bound in the concentra-980

tion and charge density of the ions. Without this upper
bound, the Poisson-Boltzmann equation may lead to an
unphysical pile-up of ionic densities near the electrode and
a corresponding divergence of the solvation energetics [13].

As discussed above, the monopole l = 0 response dom-985

inates for ions in the local response limit, while for neu-
tral species like solvent molecules, the monopole response
is forbidden and the dipole l = 1 response dominates.
Unlike the monopole response corresponding to transla-
tional motion of charges, there are two classes of response990

that contribute at the dipole order. First, analogous to
the movement of charge monopoles, molecules with per-

manent dipoles can rotate to align with the electric field,
creating a net dipole moment with contributes an induced
charge density. Additionally, the electric field can polar-995

ize the molecules both by distorting the electron density
and by stretching / bending bonds, creating an induced
dipole which contributes an induced charge density. In
both cases, each molecule in the fluid generates a net
dipole moment ~p = Cα~E in response to the local elec-1000

tric field ~E = −∇φ, where α is the polarizability of the
molecule. The local field coefficient, C, is a constant that
accounts for the difference between the local electric field
seen by the molecule, compared to the net electric field
~E which includes the contribution of that molecule and1005

its surroundings. Mean-field theory with C = 1 is in-
adequate except for extremely dilute gases. For liquids
with low dielectric constants, determining C by placing
the molecule in a spherical cavity of the net dielectric con-
stant determined self-consistently (i.e., Clausius-Mossoti1010

theory [139]) works much better. High dielectric constant,
polar liquids like water typically require more advanced
theories of the correlated response of molecules [140], or
an empirical approach as we will discuss below.

In a solvent with density Nlq of the molecules described

above, the electric field induces a polarization density ~P =
Nlq~p, which in turn leads to an induced charge density of
the solvent

ρsolvlq (~r) = −∇ · ~P = ∇ · (NlqCα∇φ(~r)). (11)

For a uniform fluid without any ions, substituting back
into the Poisson equation, reduces it to the form

−∇2φ(~r)−∇ ·
(
NlqCα

ε0
∇φ(~r)

)
=
ρel(~r)

ε0
, (12)

which can be rearranged to −∇2φ = ρel/εb with an effec-
tive bulk dielectric constant

εb = ε0 +NlqCα. (13)

Each of the contributions to the overall dipole response in-1015

cluding polarization and rotation contribute a term above
with a separate polarizability α.

The electronic and vibrational polarizability of the molecule
contribute an αpol that is typically assumed constant with
respect to field strength E. This is because the characteris-1020

tic energy and length scales of this response are several eV
and a few Å respectively, requiring fields substantially ex-
ceeding the V/Å = 1010 V/m scale in order to modify the
response substantially. However, the rotational response
of permanent molecular dipoles, such as in liquid water,1025

occur at the much smaller thermal energy scale ∼ kBT
(0.026 eV at room temperature). Correspondingly, this re-
sponse may be strongly affected by fields on the 108 V/m
scale, which is easily exceeded at an electrochemical in-
terface. In particular, a typical electrode surface charge1030

density of 10 µC/cm2 corresponds to an electric field of
1.1× 1010 V/m or 11 V/nm, and fields of this magnitude
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have been measured experimentally using the vibrational
Stark effect in a number of material systems [141, 142]. It
is therefore vitally important to account for the nonlinear1035

rotational response of solvents.
The simplest model for the rotational response of sol-

vent molecule dipoles, much like the corresponding case
for ions above, assumes the dipoles all respond freely and
independently to the external field. A simple statistical-
mechanical derivation writing out the Boltzmann probabil-
ities for dipoles aligning to the field with potential energy
−~p·Crot

~E [139] and computing the average dipole moment
yields the field-dependent polarizability

αrot(E) =
pmolCrot

E
coth

(
pmolCrotE

kBT

)
− kBT

E2
. (14)

Here pmol is the magnitude of the solvent molecule dipole
and Crot is the rotational contribution to the local field
coefficient discussed above. This polarizability has the
highest value of (pmolCrot)

2/(3kBT ) for low electric fields
E → 0. It reduces in magnitude with increasing E when
most dipoles have aligned completely with the field, re-
sulting in saturation of the response. The net dielectric
constant of the fluid is therefore

εb(E) = ε0 +Nlq(Cpolαpol + αrot(E)). (15)

The local field coefficients Cpol and Crot for the polariza-
tion and rotational responses can be determined by match-
ing the E → 0 limit of the dielectric response to experi-
ment. Specifically, matching εb(E) to the low-frequency1040

dielectric constant εb (≈ 78.4 for water at 300 K), and
matching εb without the rotational term to the experi-
mental optical-frequency dielectric constant ε∞ (≈ 1.8 for
water) yields two conditions that fix both Cpol and Crot

[13, 114].1045

Figure 9(b) demonstrates for water that εb(E) varies
significantly with applied field, and that εb(0) only ap-
proximates εb(E) at the smallest applied field strengths.
The simple model described above, incorporated into the
NonlinearPCM solvation model [13], agrees very well with1050

a more detailed classical density-functional theory predic-
tion for the nonlinear dielectric response [114]. Specifically,
note that the relative permittivity of water reduces by a
factor of two for a surface charge density of 15 µC/cm2,
a rather nominal value for electrochemical interfaces. It is1055

therefore critical to include nonlinear dielectric response in
solvation models used for first-principles electrochemistry.
Most continuum solvation models in widespread use cur-
rently do not include it as detailed in section 4.4, which
lead to an incorrect qualitative description of electrochem-1060

ical capacitance as discussed in section 4.5.
Above, we have discussed models for the nonlinear re-

sponse of electrolyte ions and solvent molecules in a bulk
fluid. For a continuum solvation model, the fluid will only
be present in the region not occupied by the electrode or
any adsorbates or surface species treated using electronic
DFT. As discussed next in section 4.2, this is described by

a cavity shape function s(~r) that is zero in the electrode
region and one in the bulk fluid region. With that modifi-
cation, the electrostatic potential φ(~r) in a local-response
continuum solvation model is very generally given by the
generalized Poisson-Boltzmann equation

− ε0∇2φ(~r)− (εb(|∇φ|)− ε0)∇ · (s(~r)∇φ(~r))

+
εbs(~r)φ(~r)

λ(φ)2
= ρel(~r). (16)

This is obtained from the above by modulating the bulk
solvent density Nlq and ion density Nion by the cavity
shape function. Different local solvation models assume
different simplified models for εb(E) and λ(φ), with the1065

simplest limit being the fully linearized Poisson-Boltzmann
where εb(E) and λ(φ) are each replaced by their low-field
and low-potential limits.

4.2. Defining the cavity

The previous section discusses how the solvent and1070

electrolyte environment respond; a complete model for
the electrochemical interface must also account for where
this environment response is present. Continuum solvation
models approximate the real atomic-scale environment re-
sponse with the bulk environment response outside the so-1075

lute (electrode) region modeled explicitly in the first prin-
ciples calculation. All these models effectively scale the
bulk response by a cavity shape function s(~r) that switches
from zero in the solute region to one in the solvent re-
gion, but differ substantially in how they parameterize and1080

determine s(~r). Additionally, for an electrolyte, a shape
function sion(~r) determines where the ions respond, which
in general could be different from s(~r). We first discuss
the solvent cavity s(~r) in detail below, before discussing
similar considerations for the electrolyte cavity at the end1085

of this section.
Intuitively, the solvent cavity shape function s(~r) ac-

counts for the fact that solvent molecules can reach the
solute or electrode surface up to a distance of nearest ap-
proach, which limits the spatial extent of their response.1090

However, the spatial extent of the response is not precisely
defined by the location of the solvent molecules, either in
terms of their geometric centers or their constituent atoms
(Figure 10(a-b)). The primary reason for this difference is
that, fundamentally, the response is nonlocal at the atomic1095

scale. For example, the rotation of a water molecule dipole
depends on the electric field over the spatial extent of the
molecule, and produces a charge distribution over this spa-
tial extent as well.

Most continuum solvation models approximate the re-1100

sponse as local, and in order to reproduce the energet-
ics of the true non-local response, they should still pro-
duce induced charge density at the correct locations (Fig-
ure 10(c)). This implies that the effective local response
must extend closer to the solute than the location of the1105

geometric centers of molecules. Consequently, the cavity
needs to ‘switch on’ somewhere between the distance of
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Figure 10: (a) Schematic distance of nearest approach of atoms in
solvent molecules near an electrode surface, compared to (b) the
electron density n(~r) of the electrode and induced charge density
ρlq(~r) in the solvent. (c) Local solvation models require cavity shape
functions s(~r) that transition at the induced charge density peak,
rather than solvent atom approach distances.

nearest approach of solvent geometrical centers (farther
from solute) and that of the solvent atomic or electronic
charge densities (nearer to solute). In most cases, this cav-1110

ity distance requires empirical parameterization. Solvation
models with nonlocal response [18] can mitigate this em-
piricism, as described below in Section 4.4, but most con-
tinuum solvation models employ local response because of
easier implementation and lower computational cost.1115

Despite the complexities discussed above, ultimately,
the cavity correlates with the distance of nearest approach
of solvent molecules to the solute. This distance is re-
lated to the effective sizes of the constituent atoms for non-
bonded interactions, often described using van der Waals1120

(vdW) radii. The atom size, in turn, arises from the strong
repulsion when electron densities of two atoms overlap.
Therefore, continuum solvation models have adopted two
broad classes of strategies to determine the cavity s(~r):
atomic spheres based on empirical atomic radii, and iso-1125

density approaches based on electron densities.
Atomic sphere cavities use atomic radii to define the so-

lute region (s = 0) based on a union of spheres centered on
the atoms of the solute. The simplest approach directly
defines the cavity as a union of atom-centered spheres,1130

with radii that account for the solute atom radius and
an additional empirical distance to the start of the sol-
vent response. More complex approaches first estimate
the cavity governing the solvent molecule centers, called
the solvent accessible surface (SAS), from atom-centered1135

spheres with radii equal to the sum of solute atom and
solvent molecule radii. They then remove spheres of an
empirical radius centered on the SAS to form a smaller
cavity (s = 0 region), called the solvent excluded surface
(SES), which then determines the location of the response1140

(Fig. 11). This approach results in a smoother cavity sur-

face and avoids spurious placement of solvent response
in small gaps between solute atoms. See Ref. [143] and
[144] for comprehensive reviews on the large number of
approaches used for atomic-sphere cavity determination1145

in traditional solvation methods.
On the other hand, iso-density approaches correlate the

position of the cavity to the electron density of the solute.
They typically allow the solvent response (s = 1 region)
to occupy all space where the solute electron density n(~r)1150

is smaller than a characteristic value nc, below which it
is assumed to not significantly repel the solvent. In this
case, nc is treated as an empirical parameter that controls
the size of the cavity that directly determines the location
of the solvent response (Fig. 11).1155

Comparing the two types of approaches, atomic-sphere
based parameterizations are highly flexible, with poten-
tially a large number of parameters that can be adjusted
to deliver high accuracy in domains with a lot of data to
parameterize the models. They are predominant in de-1160

scribing the solvation of organic molecules, for which ex-
tensive solvation free energy databases from thermochem-
ical measurements can be used for fitting a large number
of atomic radii and scale parameters. On the other hand,
iso-density cavity approaches typically incur fewer param-1165

eters, such as a single global nc for a solvent, making them
more transferable to domains with less reliable data.

Both the atomic radius and the electron density ap-
proaches define a surface at which the solvent cavity turns
on. The solvent-solute transition can either occur abruptly1170

in space across this surface, or smoothly over some dis-
tance. This smoothing function can serve two purposes:
to approximate the nonlocal nature of this transition, and
to improve the numerical stability of ab initio calculations
near these interfaces. Smooth solvation cavities are par-1175

ticularly important for the stability of ab initio calcula-
tions employing a plane-wave basis sets and those per-
forming molecular dynamics [11, 145, 146]. Implementa-
tions vary in the precise functional form for deriving s(~r)
from n(~r), including a function of log(n/nc) transitioning1180

over a width σ [13, 70, 147] or a sigmoidal function tran-
sitioning over a range nmin to nmax [11, 12], but generate
very similar results when parameterized to the same data
sets [148].

These cavity definition strategies, originally developed1185

for the solvation of small organic molecules [143], are par-
ticularly successful when the charge density is compara-
tively uniform and unchanging for the same atomic species
in different chemical environments. However, these ap-
proaches have been less successful for charged species and1190

electrochemical interfaces. Charged species are problem-
atic for the atomic radius strategy because species with
different charges, and hence different electron densities at
the surface, are treated using the same atomic radii. The
electron density approach does not resolve this problem1195

either because positive and negative charges affect the sol-
vent in different ways with different magnitudes, and this
effect is not captured by a simple electron density thresh-
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Figure 11: Atomic-sphere cavities typically define an outer solvent-
accessible surface (SAS), from which an inner solvent-excluded sur-
face (SES) defining the location of the solvent response is con-
structed. Iso-density approaches define cavities by thresholding the
electron density n(~r) and typically correspond directly to the solvent-
response surface (SES). (Adapted with permission from Ref. 150.)

old. This effect is solvent specific. For instance, water
more strongly solvates anionic species relative to cations1200

and neutral molecules, effectively requiring a smaller cav-
ity for anionic species to account for this effect [149]. Ace-
tonitrile has the opposite response, more strongly solvating
cationic species [17]. Intuitively, this charge asymmetry
occurs because of the asymmetry in the solute accessibility1205

of the solvent. In the case of water, the positive charge cen-
ter (the hydrogen) can more closely approach the solute,
favoring solvation of negatively charged species. For ace-
tonitrile, the negative charge center (the nitrogen) is more
solute-accessible than the buried but positively charged1210

central carbon atom.
Continuum solvation models do not automatically cap-

ture such charge asymmetry effects because they reduce
molecules to point dipoles. Some solvation models empir-
ically address the charge asymmetry problem by defining1215

separate parameters for anionic and cationic cavities [149].
This reduces solvation energy errors, but application of
these solvation models is limited to systems with only one
charged species, excluding the study of systems such as
zwitterions and ionic surfaces. A more general approach1220

is a cavity that dynamically contracts or expands in re-
sponse to the local electric field, capturing the asymmetry
of solvation within a single parameterization [17, 151].

The approaches described above for handling charged
species are all intrinsically empirical, requiring fitting pa-1225

rameters and/or a choice of functional form in the depen-
dence of cavity size on local electric field [17, 149, 151].
Extensive databases of molecular solvation free energies
are available to determine these fitting parameters and

functional forms for solvation models for organic species1230

and small ions [152–154]. Describing solvation at electro-
chemical (charged) interfaces is challenging for similar rea-
sons as charged ions and molecules. However, interfaces
are additionally difficult to benchmark because similarly
systematic experimental data sets for calibrating interfa-1235

cial solvation do not yet exist. Most continuum solvation
studies of electrochemical interfaces so far employ models
parameterized exclusively to molecular and ionic data sets.
Improving the accuracy and reliability of electrochemical
solvation requires alternate strategies to define cavities at1240

charged interfaces and to benchmark energetics of charged
surfaces.

The above discussion focuses on the cavity s(~r) that
defines the dielectric response of the solvent. Describing
an electrolyte requires an additional cavity sion(~r) that de-1245

fines the ionic response of the electrolyte, which should be
distinct from s(~r) in general. In fact, the concept of an
“ionic cavity” predates solvation models and is implicit
in the Gouy-Chapman-Stern (GCS) model of the electro-
chemical double layer [34]. Electrolyte ions are limited1250

in their approach to the surface because of their solva-
tion shells, leaving a region adjacent to the electrode with
solvent alone (Fig. 2(a)). The width of this solvent-only
region, typically denoted x2, is therefore approximately
equal to the solvated radius of the electrolyte ions. (This1255

notation follows from defining x1 as the width of the ‘vac-
uum gap’ between the electrode and the solvent-only re-
gion, as shown below in Fig. 12(a).)

Construction of a separate ionic cavity sion(~r) should
be straightforward in principle based on the above consid-1260

erations. However, a combination of numerical challenges
and parameterization issues makes ionic cavities more dif-
ficult to define, and most prior solvation models applicable
to electrochemical systems utilize a single cavity for both
solvent and ionic response [12–14, 17, 18, 70, 149, 155].1265

Numerical challenges in defining ionic cavities result pri-
marily from the greater distance of the ionic cavity from
electrode atoms, larger by x2 compared to the solvent cav-
ity. Solvation models applied to electrochemistry predomi-
nantly employ iso-density cavity parameterizations, which1270

will require an extremely low nc to describe a further-away
ionic cavity due to the exponential decay of electron den-
sity away from the surface. This exponential decay con-
stant will additionally differ between electrodes depending
on their work function and resulting orbital localization1275

precluding a single, numerically-stable nc that can cap-
ture a given x2 for different electrodes. These numeri-
cal challenges may be avoided either by using an atomic
parameterization with x2 added to the atomic radii [65],
or by using convolution tricks to expand iso-density sol-1280

vent cavities by a specified width x2 independent of the
electron-density exponential decay constant [150].

The greater challenge in defining ionic cavities is iden-
tifying reliable experimental data to parameterize x2. As
discussed above, solvation cavity parameterization relies1285

on extensive thermochemical databases of solvation free
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energies determined from temperature-dependent solubil-
ity measurements [152]. Importantly, the solvation ener-
gies depend primarily on the solvent dielectric response
even for solvation in electrolytes, especially with highly-1290

polar solvents like water in aqueous electrolytes. The sol-
vent region strongly screens the electric field of the elec-
trode and thereby reduces the energetic contribution of
electrode-ion interactions. Correspondingly, thermochem-
ical data do not constrain x2 sufficiently to identify de-1295

viations from the zeroth-order guess of x2 = ion radius,
such as reduction of x2 with increasing field strength as
ions are strongly attracted to the interface, or asymmetry
with the field direction due to different ionic sizes. Pre-
cise parameterization of ionic cavities therefore require ex-1300

perimental measurements of ion distributions, which are
significantly more challenging and sparsely available than
solvation energies. Accurately capturing field-dependent
ionic cavities may be important in future work for correctly
predicting the electrostatic potential and capacitance in1305

first-principles calculations of electrochemical interfaces.

4.3. Non-electrostatic free energy terms

Continuum solvation models adopt several approaches
to define the cavity that separates the continuum liquid
(or electrolyte) subsystem from the solute (or electrode)1310

subsystem treated using DFT, and make different levels of
approximations for the electrostatic interaction between
these subsystems as discussed above in Sections 4.2 and
4.1 respectively. The electrostatic interaction is the domi-
nant contribution to the overall effect of solvation on ener-1315

getics, especially for highly charged systems, but accurate
modeling of free energies in solvated environments requires
accounting for the sub-dominant non-electrostatic interac-
tions as well. Briefly, the three most important physical
effects that contribute beyond the electrostatic interaction1320

are the cavitation free energy required to remove liquid
from a region of space and replace it with the solute, dis-
persion interactions between solute and solvent, and the
repulsion between these subsystems [143]. Solvation mod-
els either treat these physical effects separately in detail,1325

or adopt an empirical approach for their overall energetic
contribution, as we discuss below.

The cavitation free energy, defined as the free energy
cost of forming the cavity in the solvent, exhibits a com-
plex dependence on the size and shape of atomic-scale cav-1330

ities relevant for solvation as predicted by molecular dy-
namics simulations [114, 156]. It reduces to the surface
tension energy proportional to the cavity surface area in
the macroscopic limit of large cavities, but transitions to a
volume-proportional contribution over cavity dimensions1335

comparable to the solvent-molecule size. Solvation models
can estimate size-dependent cavitation free energies using
scaled-particle theory estimates for spherical cavities [157–
159]. More generally, nonlocal models based on convolu-
tions of s(~r) derived from classical density-functional the-1340

ory can efficiently describe the cavity size and shape de-
pendence of this free energy contribution [150]. It is im-

portant to account for this dependence because the net
cavitation free energy for atomic-sized cavities is signif-
icantly smaller than the estimate based on macroscopic1345

surface tension and the cavity surface area.
While cavitation results from a modification of the sol-

vent distribution, the remaining effects are a consequence
of solvent-solute interactions. Dispersion interactions are
longer-ranged attractive interactions with an r−6 depen-1350

dence on separation, and proportional to the atomic polar-
izabilities of the interacting species [160, 161]. Repulsion
interactions resulting from solute-solvent electron overlaps
are shorter-ranged with an exponential decay with sepa-
ration [143]. The finite range of these interactions makes1355

their energy contributions dependent on the size and shape
of the cavity; this dependence is approximately propor-
tional to the surface area only for cavities much larger than
the range of interaction. Nonlocal dispersion models [150]
that directly employ pairwise interactions between solute1360

and solvent atoms [160, 161] capture the size and shape
dependence automatically. These approaches often also
combine repulsion and dispersion into a single ‘interaction
contribution’ to the non-electrostatic free energy [162].

Several solvation models instead employ an overall em-1365

pirical approach to the non-electrostatic contribution, such
as E = αS+βV , combining terms proportional to the sur-
face area S and volume V of the cavity, scaled by fitting
parameters α and β [12, 13]. Importantly, the coefficient
α is an empirical effective tension that differs from the1370

surface tension of the liquid because of the size and shape
dependence of cavitation discussed above, and because it
also includes dispersion and repulsion contributions. The
volume term βV can improve fits to solvation energies of
molecules [12], but is not meaningful for surface slab calcu-1375

lations used for electrochemical interfaces since the cavity
volume then depends on the number of layers and diverges
in the macroscopic limit. Therefore, electrochemical cal-
culations should exclusively use non-electrostatic parame-
terizations with surface terms alone, or the more detailed1380

nonlocal models discussed above.
Additionally, an empirical effective tension α depends

only on the solvent and does not account for the solute de-
pendence of the repulsion and dispersion terms contained
within. For example, such models for water with a posi-1385

tive α for water [12–14] predict a positive interfacial en-
ergy for metal-water interfaces [163], while models with
explicit dispersion terms [17, 18] result in a net-negative
interfacial energy because the attractive dispersion con-
tribution exceeds cavitation and repulsion in this geom-1390

etry. Some atomic-cavity solvation models [164] address
this with solute-atom-dependent cavity tension parame-
ters, but this results in a large number of parameters that
makes parameterization significantly more challenging.

Finally, empirical models of the non-electrostatic term1395

introduce fitting parameters such as α and β that may
be highly covariant with the parameters that determine
cavity size (such as nc or {nmin, nmax}), making the re-
liable determination of these parameters from solvation
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Model
Response Cavities

Year
ε κ Type x2 6= 0

Linear response
Gygi et al. [145] L none n No 2002
SCCS [12, 149] L L n No 2012
LinearPCM [13, 70]

L L n No
2013

= VASPsol [14] 2014
CANDLE [17] L L n̄, φ No 2015
SaLSA [18] L L n̄ No 2015
Soft-sphere [155] L none Atom No 2017
Nonlinear response
DFT+mPB [166] L NL n Yes 2008
Dabo et al. [167] L NL n Yes 2010
NonlinearPCM [13, 148] NL NL n No 2013
NESS [65] NL NL Atom Yes 2018

Table 1: Categorization of solvation models for electrochemistry by
linearity of fluid dielectric (ε) and ionic (κ) response, cavity param-
eterization type, and presence of a separate ionic cavity (x2 6= 0).
Here L = linear, NL = nonlinear, n = solute electron density (iso-
density models), φ = solute electrostatic potential and Atom =
atomic spheres. n̄ is nonlocal electron density. Modified with per-
mission from Ref. [65].

energy databases more challenging [165]. At present, for1400

the specific solvation models applicable to electrochemi-
cal systems discussed below (Table 1), only SaLSA [18]
and CANDLE [17] employ nonlocal cavitation and disper-
sion models [150] that avoid empirical tension parameters.
The choice of non-electrostatic free energy model impacts1405

energy calculations necessary for reaction energy predic-
tions, but does not affect the electrostatic potential that
determines charging behavior and capacitance of electro-
chemical interfaces. We focus on electrostatic potential
variations in the remainder of this review and therefore do1410

not discuss non-electrostatic energy terms in the compar-
isons between models below.

4.4. Solvation model implementations

The previous sections outline the three main compo-
nents of continuum solvation models: electrostatic response,1415

fluid distribution (cavity determination) and non-electrostatic
energy contributions. In addition, implementations of sol-
vation models differ greatly between finite basis set codes
used for molecular simulation and plane-wave DFT codes
used for surface calculations. Correspondingly, solvation1420

models in finite basis set codes, including the SMx (Solva-
tion Model x) series [164, 168, 169] and the PCM (Po-
larizable Continuum Model) series [143, 144, 170, 171],
are parameterized and applied predominantly to organic
molecules in solution. See Ref. 143 for a detailed review1425

of these models.
Here, we focus on solvation models developed for plane-

wave DFT that are suitable for first-principles calculation
of electrochemical interfaces. Table 1 compares such sol-
vation models based on their electrostatic response (Sec-1430

tion 4.1) and cavity determination technique (Section 4.2)

which strongly affect the predicted electrochemical capac-
itance and charge distributions, as we discuss below in
Section 4.5. We ignore details in the non-electrostatic en-
ergy contributions (Section 4.3) which are important for1435

reaction energy predictions, but do not affect capacitance.
The vast majority of solvation models employ a lin-

ear response approximation for both the dielectric (ε) and
ionic screening (κ) of the fluid; this is also the case for most
finite basis-set solvation models [143, 144, 164, 168–171]1440

not shown in Table 1. Only a small subset of the solvation
models in plane-wave DFT codes capture nonlinearity in
the ionic or dielectric response [13, 65, 148, 166, 167].

Most solvation models employ a smoothened iso-density
cavity [11, 145] parameterized either in terms of an elec-1445

tron density range {nmin, nmax} as in the self-consistent
continuum solvation (SCCS) models [12, 149], or a criti-
cal electron density nc as in the joint density-functional
theory (JDFT) based solvation models [13, 14, 70, 147].
Iso-density cavities may exhibit instabilities for surfaces1450

of non-close-packed solids due to low electron density in
voids that may get incorrectly filled with fluid [150]. Non-
local cavities determined from the overlap of solute and
solvent electron densities (n̄) avoid such issues by ensur-
ing that the fluid only occupies regions of space that can1455

fit an entire solvent molecule [17, 18].
Finally, most solvation models currently used for first-

principles electrochemistry use the same cavity for the di-
electric and ionic response, effectively setting x2 = 0. Only
one model shown in Table 1 includes a separate ionic cav-1460

ity (x2 6= 0), nonlinear dielectric response, and nonlinear
ionic response, all of which are necessary to predict elec-
trochemical capacitance correctly, as we discuss next.

4.5. Example: capacitance of Ag(100)

The ultimate goal of solvation models for electrochem-1465

istry is to accurately predict potential-dependent charge
distributions and their impact on energetics and reaction
mechanisms at the interface. Here, we delineate the impor-
tance of each solvation model component discussed above
by comparing electrochemical capacitance predictions against1470

measurements for a single-crystal Ag(100) electrode in an
aqueous non-adsorbing electrolyte (Figure 12). The exper-
imental capacitance (dashed black line in Figure 12(b)) is
roughly symmetrical about the potential of zero charge
indicated by the vertical line at the center of the plot.1475

This system exhibits the ‘double-hump’ behavior of an
ideal electrochemical interface with non-adsorbing elec-
trolytes. The minimum at the potential of zero charge
arises from the low ionic capacitance in the diffuse elec-
trolyte region for the neutral interface, as shown schemat-1480

ically in Fig. 2(b).
We consider a model of the electrochemical interface,

Figure 12(a), containing features of the interface that may
be necessary for a correct description of the capacitance
with potential. Specifically, we consider a vacuum-only1485

region with width x1, a solvent-only region with width x2,
dielectric nonlinearity ε(E) and ion-packing effects treated
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Figure 12: (a) Series capacitance model for a metal immersed in a
non-interacting electrolyte with vacuum gap (x1) and solvent-only
(x2) regions between electrode and electrolyte. (b) Capacitance pre-
dictions including x1, x2, nonlinear dielectric (ε(E)) and modified
Poisson-Boltzmann (mPB) agrees with experimental measurements
of Ag(100) in aqueous 0.1 mol/L KPF6 electrolyte from Ref. 172.
Each of these features (except mPB) is critical to obtain a qualita-
tively correct variation of electrochemical capacitance with potential.
(Adapted with permission from Ref. 65.)

using a modified Poisson-Boltzmann (mPB) approach. The
model capacitance including all of these features (solid
black line in Fig. 12(b)) is in good agreement with the ex-1490

perimental capacitance. The remaining lines in Fig. 12(b)
depict the capacitance of the model with each one of these
four features excluded. Except for mPB, all remaining fea-
tures of this model are necessary for achieving quantitative
agreement with experiment.101495

The first two features control the spatial structure (i.e.,
solvation cavities) of the model, starting from the metal
surface and moving outward towards the bulk electrolyte.
The atomic length-scale gap, x1, between the metal and
solvent regions corresponds to the separation between the1500

induced charges on the metal surface and the nearest sol-
vent molecules. This gap is necessary to reduce the mag-
nitude of the capacitance and bring it in agreement with
the experimental value near the PZC. Next, x2, is the dis-
tance of closest approach of the solvated electrolyte ions1505

as described in the Gouy-Chapman-Stern model. Without
x2, the ionic response is much closer to the metal surface
and exhibits an overall higher capacitance with broader
humps. Note that both x1 and x2 are necessary to simul-
taneously capture the capacitance magnitude at PZC and1510

width of the humps in agreement with experiment.
The remaining two features considered in Fig. 12(b)

relate to the nonlinearity of the fluid response. Specifi-
cally, ε(E) is the nonlinear dielectric response of water and

10All curves in Fig. 12(b) include nonlinearity in the ionic response
at the Poisson-Boltzmann (or mPB) level, without which the capac-
itance would not even exhibit a minimum at the potential of zero
charge.

mPB (modified Poisson-Boltzmann) constrains the den-1515

sity of electrolyte ions by enforcing a packing limit (see
Section 4.1 and Fig. 9). Both features cause a reduction
of the capacitance at potentials far from the PZC, due
to saturation of the dielectric response in ε(E) and the
saturation of the ionic response in mPB. For the aqueous1520

KPF6 electrolyte considered here, the dielectric saturation
is a much stronger effect than ion packing in mPB. The
presence or absence of mPB does not significantly change
the capacitance curves for common aqueous electrolytes
due to the strong nonlinear dielectric response and the1525

relatively small ionic sizes. For larger organic ions, as is
typical in ionic liquids, packing effects are more important
requiring mPB, even at potentials near the PZC. [173]11

In summary, capturing electrochemical capacitance in
agreement with experiment requires nonlinearity in both1530

the solvent dielectric response and ionic response, and both
x1 and x2 regions. Most solvation models currently in use
ignore nonlinearity of the dielectric response (Table 1),
which would lead to capacitance curves that exhibit a
much broader hump than experiment and overestimate the1535

charge on the electrode at potentials far from the PZC.
Additionally, using the same cavity for solvent and ions,
which amounts to assuming x2 = 0 also leads to capaci-
tance curves with the wrong shape. The nonlinear electro-
chemical soft-sphere (NESS) solvation model [65] incorpo-1540

rates all features discussed above and exhibits qualitative
agreement with experiment. However, applying this solva-
tion model in a DFT calculation introduces asymmetries
not seen in experiment or the toy model above due to a
variation in the location of the electrode-induced charge1545

density with potential [174], effectively making x1 vary
with potential. Therefore, no solvation model currently
captures electrochemical capacitance with the accuracy
shown in Fig. 12, necessitating further developments in
cavity parameterizations for metal electrodes.1550

4.6. Structured / cavity-less implicit solvation

The solvation models discussed above all invoke a cav-
ity to represent the distribution of the solvent and elec-
trolyte, and then treat the response of this fluid distri-
bution. Even nonlocal solvation models like SaLSA [18]1555

which capture atomic-scale structure in the response of
the liquid still assume a cavity distribution of the fluid
as a starting point for perturbatively capturing the liquid
response. An alternative strategy to continuum solvation
treats the fluid distribution as an independent variable and1560

optimizes it based on the interaction of the fluid with the
solute. Such approaches can capture features in the dis-
tribution of the fluid, such as shell structures in solvation
with oscillations in the fluid density at the size scale of the

11Ignoring dielectric nonlinearity can lead to the erroneous con-
clusion that packing effects dominate the saturation in the response.
In particular previous studies have used incorrectly large ionic radii,
amplifying the ion saturation effect [66].
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solvent molecule. Rearrangement of fluid charge distribu-1565

tion also captures the response implicitly, thereby unifying
response and cavity considerations from solvation models
above into a single problem of self-consistently optimizing
the equilibrium fluid density.

Two complementary approaches provide a pathway to
determine the equilibrium fluid density with atomic-scale
structure around a solute. Integral equation theories es-
tablish nonlocal integral equations on the fluid density
based on correlation functions and interaction potentials
of the liquid [175–180]. Briefly, these theories work with
the Ornstein-Zernike relation,

gαβ(~r, ~r′) = δαβ + cαβ(~r, ~r′)

+
∑
γ

∫
d~R cαγ(~r, ~R)

(
gγβ(~R,~r′)− δγβ

)
Nβ(~r′). (17)

This connects the pair distribution function gαβ(~r, ~r′), re-1570

lated to probability of finding atom type α at ~r given an
atom of type β located at ~r′, with the direct correlation
function cαβ(~r, ~r′), related to the second functional deriva-
tive of the free energy with respect to the densities Nα(~r)
and Nβ(~r′) of each atom type in the fluid. These theories1575

additionally require an approximate “closure” relation be-
tween gαβ and cαβ e.g., the Percus-Yevick or hypernetted
chain approximation, typically derived from diagrammatic
expansions of the partition function of the fluid [181]. The
free energy can then be estimated from the equilibrium1580

fluid densities and direct correlation functions obtained by
solving the equations [182–184].

On the other hand, classical density functional theory
minimizes a free energy functional of the fluid density

Φlq = min
{Nα(~r)}

[
kBT

∑
α

∫
d~rNα(~r)(lnNα(~r)− 1− µα)

+ Φex[{Nα(~r)}]
]

(18)

to simultaneously find the equilibrium free energy Φlq and
fluid density profile Nα (density of atom type α). The first
term is the exact non-interacting free energy of the fluid,1585

while the second term Φex is the excess functional that ac-
counts for interactions, analogous to exchange-correlation
functionals in electronic DFT. Classical DFT is exact in
principle [185], but require approximation of the excess
functionals in practical calculations for real liquids [114,1590

138]. Formally, integral equation theories may also be
viewed as a pathway to approximate the free energy func-
tional of classical DFT. In practice, integral equation the-
ories typically yield more accurate density profiles, while
classical DFT generally produces more accurate free ener-1595

gies.
Both approaches can be combined with DFT calcula-

tions of a solute or electrode to achieve a structured or
cavity-less technique for implicit solvation. For example,
integral equation theories in the reduced interaction-site

model (RISM) framework [186, 187] have been combined
with the electrostatic screening medium (ESM) [63] tech-
nique for DFT solvation in the ESM-RISM approach [67].
Classical DFT of solvents and electronic DFT of solutes
combine together in joint density-functional theory (JDFT)
of the solvated system [147, 188, 189]. Formally both such
approaches can be summarized within the JDFT frame-
work of minimizing a combined free energy functional of
the solvated system,

ΦJDFT[n, {Nα}] = AHK[n] + Φlq[{Nα}] + ∆Φ[n, {Nα}].
(19)

The first term is the Hohenberg-Kohn electronic functional
in terms of the electron density n(~r) alone, the second term
is the classical DFT liquid functional discussed above, and
the final term is a coupling functional capturing interac-1600

tions between the electronic and fluid systems. In prac-
tice, JDFT approaches directly approximate the free en-
ergy of the liquid and coupling terms as functionals of the
densities [147, 188], while integral equation solvation ap-
proaches approximate the coupling based on interaction1605

potentials (e.g. pair potentials) between solute and sol-
vent atoms [67].

Solvation approaches which capture liquid structure
may provide a level of solvation intermediate in accuracy
and computational cost between conventional implicit mod-1610

els and explicit molecular dynamics techniques (Fig. 4). At
present, these techniques need further work in developing
stable and accurate free energy functionals for electrolytes
(in addition to pure solvents), and algorithms to efficiently
optimize the free energy or self-consistently determine the1615

fluid densities.

5. Conclusions and outlook

In this review, we have described the diversity of meth-
ods used in ab initio electrochemical modeling, from the
simplest methods with no solvent or electrolyte, to contin-1620

uum, to full AIMD of solvent and electrolyte. We have
discussed the fundamental challenges of electrochemical
modeling for atomistic-level computation, namely the rel-
atively long range of the electric fields and the need to
describe thermodynamics of liquid solvent and electrolyte.1625

All explicit and implicit electrolyte implementations
approximate interfacial physics, compromising between com-
putational expense and accuracy. While no perfect method
exists yet, both classes of methods have recently made
significant progress towards describing the interface. The1630

newest generation of continuum models have evolved to in-
clude the saturation of the dielectric response with electric
field, and AIMD methodology has developed over the past
decade to more accurately identify the applied potential
in a given simulation.1635

However, challenges remain, especially in accessing longer
length scales. Challenges in implicit solvation focus on
capturing the capacitance of the interfacial region, and
defining the near-surface region boundary. In explicit DFT
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solvation, challenges include reducing computational ex-1640

pense and designing computations in the grand canoni-
cal ensemble. In classical explicit solvation, preserving
electronic structure information, and properly handling
charge transfer and polarization at large length-scales re-
main as unsolved challenges. Machine learning is rapidly1645

changing computational science, and incipient fields such
as machine-learned force fields and novel electronic struc-
ture approximations may hold the key to addressing these
challenges. Continued methods development on multiple
fronts is needed to capitalize on these opportunities, and1650

to expand the application of computational electrochemi-
cal modeling.

Lastly, computational efforts are most useful in their
relationship to experimental reality. Further experimen-
tal work to unravel atomically precise double layer struc-1655

ture [190], visualize electric fields, and evaluate capaci-
tance [191] will provide new opportunities to test these
models and parameterizations, and build new models.
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