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Abstract 

Segmentation of additive manufacturing (AM) defects in X-
ray Computed Tomography (XCT) images is challenging, 
due to the poor contrast, small sizes and variation in 
appearance of defects. Automatic segmentation can, 
however, provide quality control for additive manufacturing. 
Over recent years, three-dimensional convolutional neural 
networks (3D CNNs) have performed well in the volumetric 
segmentation of medical images. In this work, we leverage 
techniques from the medical imaging domain and propose 
training a 3D U-Net model to automatically segment defects 
in XCT images of AM samples. This work not only 
contributes to the use of machine learning for AM defect 
detection but also demonstrates for the first time 3D 
volumetric segmentation in AM. We train and test with three 
variants of the 3D U-Net on an AM dataset, achieving a mean 
intersection of union (IOU) value of 88.4%.  

1   Introduction   

Additive manufacturing (AM), also known as three-

dimensional (3D) printing, is experiencing rapid adoption in 

the manufacturing domain. AM introduces several 

advantages such as the fabrication of models with complex 

geometries, quick prototyping, customization of materials 

and flexibility in design (Ngo et al., 2018). During an AM 

fabrication process, consecutive layers are printed (Gross et 

al., 2014). Internal defects can be created due to reasons 

such as print error, residual stress, or cyber-attack 

(Holzmond and Li, 2017). The presence of defects leads to 

flaws, such as insufficient material properties, in the printed 

object (Reese, Bheda and Mondesir, 2016). An automatic 

defect segmentation system to identify interior defects can 

therefore aid AM quality control.  

 Some current non-destructive defect segmentation 

techniques include infrared radiation monitoring and X-ray 

computed tomography (XCT). The former monitors 

radiation given off by melt pools during the printing process. 

The monitoring process requires a complex laser setup and 

 

 

only works for the powder bed fusion (PBF) process 

(Holzmond and Li, 2017). XCT can be used to visualize 

internal structures, including porosity, in three dimensions 

(Buffiere et al., 2001; Masad et al., 2002).  While XCT can 

be used to obtain images and segmentation labels, it   

requires manual thresholding, which can be tedious given 

many samples. Other approaches including analyzing an 

array of sensor signals to monitor the process (Rao et al., 

2015), but such approaches require the installment of 

multiple sensors and analysis of multiple signal types. 

Automatically identifying small defects inside an object 

therefore remains a challenging task in manufacturing.   

 Defect segmentation can be treated as an image 

segmentation problem in computer vision. In defect 

segmentation, each 2D pixel or 3D voxel is classified as 

either defect or background. Image segmentation is a 

difficult task, and many methods have been proposed to 

solve the problem, especially in the medical imaging 

domain, which requires localization of objects 

(Ronneberger, Fischer and Brox, 2015). State of the art 2D 

and 3D segmentation methods that perform best in various 

segmentation tasks are based on deep learning and use 

convolutional neural networks (CNN) (Guo et al., 2018). 

The benefits and the drawbacks of some of the current 

segmentation methods are further discussed in Section 2.  

 Despite their drawbacks, 3D CNNs have demonstrated 

potential in 3D medical image segmentation tasks (Cicek et 

al., 2016; Milletari, Navab and Ahmadi, 2016; Lee et al., 

2017; Yu et al., 2017; Zhou et al., 2018; Ghavami et al., 

2019). AM images share similar characteristics with 

medical images such as their volumetric nature and similar 

level of contrast. Therefore, it is thought that certain deep 

learning approaches from the biomedical domain might be 

of similar benefit in the AM domain. However, processing 

XCT data from AM parts poses certain difficulties that are 

less prevalent in the biomedical domain, such as small and 

highly irregular defect geometries. In addition, the sparsity 

 



of defects in AM varies dramatically, as exemplified by the 

dataset used in this paper which contains samples that range 

from 0.37% to 19.38% porosity. Furthermore, AM datasets 

are both difficult and costly to produce and hence there are 

very few publicly available datasets large enough to employ 

machine-learning approaches. Despite these challenges, 

developing fast and reliable quality control procedures is 

essential to the mainstream adoption of additive 

manufacturing processes.  

 The need for automatic manufacturing defect detection 

and the promising performance of CNN in the volumetric 

segmentation of medical images thus motivates our work. 

We propose to train a 3D U-Net model with existing defect 

labels and use the trained model to automate the 

segmentation process on XCT or 3D images of unknown 

additive manufacturing samples. To demonstrate the 

effectiveness of our method, an experiment is conducted 

using an AM defect dataset constructed with XCT images. 

We train and evaluate 3 variants of the 3D U-Net model and 

obtain a mean intersection of union (IOU) value of 0.863 to 

0.884. Although no previous work has been done in AM 

defect segmentation to compare this accuracy with, our 

mean IOU is comparable with the accuracy of 3D U-Net 

segmentation of kidney embryos, which achieves a mean 

IOU of 0.704 (Cicek et al., 2016). 

 The rest of the paper is organized as follows. Section 2 

provides an overview of related works. Section 3 briefly 

introduces 3D CNNs and presents the network architecture 

of our 3D U-Net models. Section 4 discusses our 

implementation and experimental results. Finally, Section 5 

briefly concludes our work.  

2   Related Works 

This section reviews current advancements in 3D image 

segmentation using deep learning approaches, as well as 

related works in automatic AM defect identification. 

 Segmentation of 3D objects are often framed as a 2D 

segmentation task with post processing (Zhou et al., 2016; 

Milletari, Navab and Ahmadi, 2016). The most commonly 

used CNN architectures used for 2D segmentation problem 

are region-based and fully-convolutional-network-based 

(FCN-based) (Guo et al., 2018).  

 Region-based segmentation methods first extract regions 

and describe them, then classify the region (Caesar, Uijlings 

and Ferrari, 2016). Region-based CNN (R-CNN) is a 

representative method using this approach (Guo et al., 

2018). The Mask R-CNN architecture is an example of R-

CNN that performs object detection and segmentation 

simultaneously (He et al., 2017). Mask R-CNN has proven 

to be effective in segmenting everyday objects (He et al., 

2017), medical images (Johnson, 2018) and metal casting 

defects in manufacturing (Ferguson et al., 2018).  

 On the other hand, FCN-based methods perform 

segmentation by directly learning a mapping from input to 

output pixels, without proposing regions (Long, Shelhamer 

and Darrell, 2015). U-Net is a CNN model that extends the 

FCN architecture, achieving excellent performance in the 

segmentation of ventral nerve chord (Ronneberger, Fischer 

and Brox, 2015). U-Net is less computationally expensive 

than Mask R-CNN, since it does not require the generation 

of region proposals.  

 Despite the success of the above-mentioned methods, AM 

specimens are 3D, and therefore predicting one 2D slice at 

a time loses information on the correlation between slices 

(Yu et al., 2019). A similar problem exists in the medical 

imaging domain, where most images are 3D volumes. To 

that end, 3D CNN models have been developed to make 

predictions on volumetric medical images (Cicek et al., 

2016; Milletari, Navab and Ahmadi, 2016). 

 While 3D CNN models can leverage information between 

slices, they lack pre-trained models, leading to less stable 

training (Yu et al., 2019). Patch-wise predictions are also 

more time-consuming to generate compared to 2D 

predictions. V-Net (Milletari, Navab and Ahmadi, 2016) 

and 3D U-Net (Cicek et al., 2016) are examples of end-to-

end architectures for 3D segmentation. In this work, we 

adopt 3D U-Net and two of its variants in our experiments 

with AM defect data.  

 A few related works have been done to automatically 

detect AM defects using CNN. Scime and Beuth (2018) and 

Zhang, Liu and Shin (2019) perform 2D detection and 

classification on defects using slices of camera images in 

their work. Shevchik et al. (2018) use CNN to analyze 

acoustic emissions during AM processes.  

 As discussed in this section, the use of 3D CNN to 

segment AM defects represents a new and novel approach, 

and will be the subject of discussion in the rest of this paper.    

3   3D Convolutional Neural Networks 

In this section, we present some background knowledge on 

3D CNNs. As discussed in the previous section, 2D CNNs 

and 3D CNNs each have their own drawbacks and 

advantages. 3D CNNs extend upon 2D CNNs by using the 

same technique of convoluting a kernel spatially through the 

input of a convolutional layer with two important 

distinctions:  

1) The kernel of a 2D convolutional layer is two 

dimensional (2D) with width and height  (W × H), and 

the kernel of a 3D convolutional layer is three 

dimensional (3D) with width, height and depth 

(W × H × D). 

2) A 2D kernel moves in 2 directions, along the axis 

corresponding to W  and H dimensions. A 3D kernel 

moves in 3 directions, with an additional axis along the 

D dimension.  

3D U-Net  

The 3D U-Net is an extension upon the standard (2D) U-Net 

architecture proposed by Ronneberger, Fischer and Brox, 



 

 

(2015). The 3D U-Net can be implemented using a modular 

architecture, as shown in Figure 1. The architecture consists 

of two types of modules, encoder modules shown on the left 

and decoder modules on the right. The encoder modules 

perform max pool operations and the number of feature 

maps produced increases as the number of layers increases. 

On the other hand, the decoder modules perform 

upsampling and the number of feature maps produced 

decreases as the number of layers increases. This overall 

encoder-decoder design is preserved for all 3D U-Net 

models, but the design of each module can be altered. Each 

3 x 3 x 3 convolution module consists of a convolutional 

layer as well as group normalization (GN) or batch 

normalization (BN) layer, and a rectified linear unit (ReLU) 

layer (Cicek et al., 2016).  

 Both GN and BN are techniques to improve the speed and 

stability of training neural networks (Ioffe and Szegedy, 

2015). Wu and He (2018) propose GN, which is more robust 

than BN, and does not suffer the limitation of  BN that 

smaller batch size leads to larger errors. The 3D U-Net in 

the work by Cicek et al. (2016) uses BN and reports 

outstanding results. To conduct the experiments on the AM 

defects, the 3D U-Net implementation by Cicek et al. (2016) 

is employed. However, we modify the convolutional 

modules to replace BN with GN, as well as rearranging the 

layer structures, allowing us to achieve a higher accuracy on 

the AM defects, as discussed in the next section. 

 Residual Symmetric 3D U-Net is an improved variant of 

3D U-Net, proposed by Lee et al. (2017). Several changes 

are made compared to the 3D U-Net architecture, including 

the addition of a layer by redesigning convolutional modules 

to include residual skip connections and symmetricity, as 

well as modifying the downsampling and upsampling 

techniques.  Lee et al. (2017) report that their model exceeds 

human accuracy in an experiment segmenting neurites in 

electron microscopic (EM) brain images. 

 As discussed in the next section, we modify the 

convolution module of the 3D U-Net architecture to analyze 

their impact on the model’s performance on the AM defect 

segmentation task. We also compare Residual Symmetric 

3D U-Net against the two designs.  

4   Implementation Details and Experimental 

Results 

This section describes the implementation and results of the 

experiments conducted using a dataset of AM defect 

images.  

4.1  Data 

The dataset consists of four cylindrical AM specimens, 

shown in Table 1. The datasets were introduced and ana-

lyzed by Kim et al. (2017), and the data are publicly availa-

ble (Kim et al., 2019). The artificial defects were produced 

by changing AM processing parameters. The sample con-

tains AM defects due to unoptimized AM processing param-

eters. Each specimen consists of 8-bit grayscale images of 

2D slices. These images are 16-bit raw images obtained us-

ing XCT reconstruction processed by adding a median 3D 

filter and a non-local means filter (Buades, Coll and Morel, 

Table 1: Details of the AM defect data 

Specimen Distance between 2D 

slices [pixel] 

Total number of 

voxels 

Porosity 

(%) 

Dataset 

Sample 1 0.00245 6.57 × 108 1.01 Validation 

Sample 2 0.00277 6.61 × 108 19.28 Training 

Sample 3 0.00243 6.55 × 108 0.37 Training 

Sample 4 0.00252 5.50 × 108 11.01 Training 

 

 

Figure 1: 3D U-Net architecture implemented in this study. The numbers on the convolutional blocks indicate the number of input and 

output channels (Cicek et al., 2016). 
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2011; Sun, Brown and Leach, 2012). To obtain the segmen-

tation mask, the 8-bit images are processed with Bernsen lo-

cal thresholding (Bernsen, 1986). The local contrast thresh-

old parameters of the thresholding process are set by relating 

average noise value to local contrast threshold as explained 

by Kim et al. (2017). Examples of some images and corre-

sponding masks are shown in Figure 2. 

 In the experimental study, Sample 1 is used for validation. 

Samples 2, 3 and 4 are used for training. This choice is due 

to the fact that Sample 1, among all samples, does not have 

an extreme value of porosity.  

4.2  Training and Inference 

To analyze the effect of 3D U-Net convolutional modules 

on performance and convergence, three 3D U-Net models 

are trained and evaluated in this study. The three models 

vary in the layers of the basic convolutional modules. The 

first model, hereby referred to as 3D U-Net with 

Conv+BN+ReLU, follows the implementation by Cicek et 

al. (2016). The model uses a 3D convolutional layer, a BN 

layer and a ReLU nonlinearity layer in its basic 

convolutional module. The second model, 3D U-Net with 

Conv+ReLU+GN, is a variant that uses a 3D convolutional 

layer, a ReLU nonlinearity layer, followed by a GN layer. 

The third model, Residual Symmetric 3D U-Net, follows the 

implementation by Lee et al. (2017).  

 Network inputs are 3D images of dimensions Depth ×
Width × Height, constructed by stacking the 2D slices, as 

shown in Figure 3. The inputs are normalized, randomly 

flipped and rotated prior to training. Network outputs and 

targets are compared using the softmax function with cross-

entropy loss. The models are trained end-to-end and without 

pretraining for 2000 iterations using a NVIDIA Tesla T4 

GPU, which fits patches of size 128 × 128 × 128.  

 The models are fine-tuned on the AM defect dataset. Each 

model is trained with an initial learning rate of 0.0002 that 

decays at a rate of 0.5 at the 600th, 1000th, and 1400th 

iteration. The networks are trained via the Adam optimizer 

(Kingma and Ba, 2014). A weight decay factor of 0.0001 is 

used. We set the batch size and the group size of one in BN 

and GN, respectively. Stride sizes are 32 × 32 × 32  to 

overlap the patches and to capture the fine details in the 

images. All modifications and fine-tuning to the models are 

conducted using a publicly available implementation of the 

3D U-Net architecture (Wolny, 2019). 

 The models are evaluated with the same GPU. The 

prediction accuracy of each model is evaluated using the 

mean intersection over union (IOU) metric.  

 
 

 
 

 
 

 

Figure 2: Examples of images from the AM defect dataset. 

Processed XCT images are on the left and segmentation masks are 

on the right.  

Table 2: Mean IOU and average training time  

Model Training Time on 

GPU [hours] 

Validation 

Mean IOU  

3D U-Net with 

Conv+BN+ReLU 

6.58 0.863 

3D U-Net with 

Conv+ReLU+GN 

14.00 0.881 

Residual Symmetric 

3D U-Net 

19.97 0.884 

 



 

 

4.3  Results and Discussion 

The performance of the three different 3D U-Net models are 

compared in Table 2. Each model’s validation accuracy and 

the amount of time taken to achieve that are reported in the 

table. The Residual Symmetric 3D U-Net model, with a 

mean IOU of 0.884, exceeds the other models slightly in 

performance, but requires the longest training time. With the 

3D U-Net model, GN improves the result with respect to 

BN, but is slower in the training iterations. In general, we 

observe a trade-off between training time and accuracy. In 

practice, an appropriate model should be selected taking into 

consideration the time and accuracy trade-off.  

Figure 4 shows an example of a slice segmented using the 

Residual Symmetric 3D U-Net model. It can be seen that the 

segmentation probability map compares well with the target 

(labelled) sample. One observation is that the voxels 

corresponding to sharp geometries of the defects are often 

misclassified. Due to the size of the defects and poor 

contrasts at the edges, these sharp geometries appear to be 

small and light in color, and their true label is often 

ambiguous, hence posing difficulties for segmentation. 

Input          Predicted probability map          Target       

           

Figure 4: An example slice of a defect and its segmentation probability map outputted by Residual Symmetric 3D U-Net. 

 

Figure 3: Reconstruction of a 3D image. Note that the voxels on the right are downsized for display purpose. 



5   Summary and Discussion 

This paper has presented a method for automatic volumetric 

segmentation of AM specimens using 3D U-Net, a CNN 

model previously developed for medical image 

segmentation. Three variants of the model are compared 

using an AM defect dataset, and the highest mean IOU 

achieved is 0.884, which is a good accuracy considering the 

various challenges in segmenting small defects. The 

proposed method is able to automatically segment defects in 

AM samples with a reliable amount of accuracy, and can be 

of assistance to quality control for the additive 

manufacturing process.  

Future work could focus on tuning the network to handle 

the misclassification of areas with very few voxels. One 

improvement might involve using focal loss, which puts less 

penalty on well classified samples and focuses on 

misclassified samples (Lin et al., 2017). Dilation could be 

used to pre-process the training images to add voxels to the 

boundaries of the defects (Jackway and Deriche, 1996). The 

proposed models could also be trained to segment defects in 

AM specimens with different geometries, materials and 

additive manufacturing approaches. Furthermore, the effect 

of transfer learning on the performance and training speed 

of the CNN models could be explored. It would also be 

interesting to develop CNN models to focus on studying 

other important characteristics of AM defects, such as defect 

pattern classification. 

 The ability to segment defects with high accuracy could 

be beneficial in a number of situations in practice. A trained 

CNN model could be used to evaluate fabricated AM 

specimen for quality assurance. Furthermore, images of a 

specimen could be captured in the middle of fabrication to 

identify warning signs early on during the printing process, 

thereby saving materials from a failed printing process. 

However, to deploy this method in practice would require 

more training data and ensure that the model generalizes to 

other types of AM defects.  
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